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In 1993 fall semester I was asked to lecture on nuclear structure and in due course 

and relatively early I came to the section on the shell model. The shell model is a marvelous 
creation, especially when one realizes that it exists, in spite of the relatively strong nucleon
nucleon forces. We now realize that this mean field feature is characteristic of complex 
systems and relatively independent of the character of the interparticle forces. What I 
needed to present to the students was a simple derivation of the shell model together with a 
way for estimating the error in making the mean field approximation and thus quantitatively 
guaranteeing its validity. I must be careful here - I did not do a literature search and what 
I will present to you may not be new. But at least it is not currently in the books on 
nuclear structure or in presentations in conferences on the shell model. Serendipitously, 
Claude Mahaux wrote me to ask some questions on my discussion of the Pauli principle for 
the optical model he is writing a review article on the mean field. I realized that my 
1962 [1] derivation of the optical model potential, simplified in the paper on doorway states 
with Kerman and Lemmer [2] was in fact also a derivation of the shell model. Moreover the 
error could be expressed as a matrix element whose evaluation could be performed using 
techniques Kerman, Koonin (FKK) and I had developed in a paper on statistical multi-step 
reactions [3]. These developments, optical model derivation, doorway states, and multi-step 
reactions are in my recent work on nuclear reactions [4]. 

This derivation of the mean field depends essentially on two elements. The first: As in 
the case of the optical model the shell model potential is an energy average of the many body 
Hamiltonian. The second: The error can be calculated using the assumption that the matrix 
elements for highly excited states are random. Energy averaging removes the complicated 
modes of motion and retains the simpler excitations upon which the shell model is based. 
The assumption of randomness is expected to be valid when a state or the states involved 
in the matrix element are highly excited. This assumption greatly simplifies the calculation 
of the error in the shell model. 

We begin by using the projection operator analysis. Let 

lIt = PlIt +QlIt (0.1) 

where 

p 2 = P, PQ = 0, Q2 = Q , P +Q = 1 

The operator P projects the sub-Hilbert space consisting of the Slater determinants formed 
from single particle wave functions. Q subtends all the remaining states. The many body 
Schrodinger equation 

Hifl=Eifl 

upon substituting Eq. (0.1) becomes the coupled equations 

(E - Hpp)(Pifl) = HpQ(Qifl) (0.3) 
(E - HQQ)(Qifl) = HQp(PlIt) (0.4) 

where 

Hpp = PHP, HpQ = PHQ etc. 



The operator Hpp is the Hartree Fock potential. To go beyond the Hartree Fock approxima
tion we reduce the Coupled equations Eq. (0.3) and Eq. (0.4) to a single equation in P space 
by taking energy averages. The energy average of Eq. (0.3), indicated by angular brackets, 
is 

(E - Hpp )(PW) = HpQ{Qw) 	 (0.5) 

or 

(PW) = tPo + J? 

1 
H 	 HpQ(Qw} (0.6) 

- PP 

where (E - Hpp)tPo = O. To obtain (Qw) we turn to Eq. (0.4). Substituting Eq. (0.3) into 
Eq. (0.4) yields 

- HQQ WQQ)(Qw) =HQPtPo 

where 

WQQ = HQp J? 

1 
1-1 HpQ (0.8) 

- PP 

Therefore 

1 (0.9)Qw = r.l 1-1 ltv. HQPtPo 
- QQ - QQ 

A veraging, one obtains 

(Qw) = (E HQ~ _ WQQ) HQPtPo 

= (e~) HQPtPo (0.10) 

where 

eQ == E - HQQ - WQQ 

Eq. can now be written 

{Pw} = tPo + J? \, 	HpQ / .!.) HQPtPo (0.11) 
- PP \eQ 

or 

(E - Hpp )(pw) = HpQ (e~) HQPtPo (0.12) 

Solving (0.11) for tPo and substituting in Eq. yields an equation for (Pw): 

/ 1 ) 1 (PW)
(E Hpp){Pw) = HpQ}\eQ HQP 1+E_1ppHpQ(~)HQP 
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A little bit of algebraic manipulation reduces this equation to 

( E Hpp HpQ ( I )} HQP) (Pw) 0 (0.13) 
;q +WQQ 

This then is a mean field potential in which the effect of the excitations not included in the 
shell model space are included by an averaging procedure. This potential varies slowly with 
energy and therefore can be represented by a non-local potential operating in P space. We 

shall not go into the detailed evaluation of (~) -1. Suffice it to say that when the energy of 
excitation of the shell model state is large as is the case for the hole state formed in (e, e'p) or 
(p,2p) reactions it will be complex and thus the shell model potential will have an imaginary 
component. On the other hand when we consider a low lying state the average of t- should 
be real. This version of the shell model potential makes a straightforward transitYon with 
increasing energy to the optical model potential which has the same form as that given by 
Eq. (0.13). 

An estimate of the error accompanying the shell mode,l potential of Eq. (0.13) can be 
obtained as below. Following Kawai, Kerman, and McVoy (0.5) one can show that the exact 
equations can be written as follows: 

(E - fl)tPP = VPQtPQ 
- HQQ)tPQ = VQPtPP (0.14b) 

where fl is the shell model potential and V is a renormalized interaction. Let tPo be a 
solution of Eq. (0.15): 

(Eo - fl)tPo = 0 	 (0.15) 

where we shall take fl to be hermitian. Secondly we note that 

1 
tPQ = D 

-
1-1 

QQ -
ltv. VQPtPo

QQ 
(0.16) 

where 

W'QQ = VQP (E 1 fI)' VPQ (0.17) 

The prime indicates that in the expansion of (~)' in terms of the eigenstates of fl the 
term proportional tPo is to be omitted a requirement which is equivalent to the condition 
(t/Jo,tPp) = 1. 

Multiplying Eq. (0.14a) from the left yields 

(tPo, (E fI)tPp) = E Eo = {tPoVPQtPQ} 

SUbstituting Eq. for tPQ one obtains 

D.E 	 E - 1£ (tPoVPQ E 1 hVQptPo) (0.18) 
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where 

h E -HQQ - WQQ 

The average of 6.E in Eq. (0.18) is zero by construction. To make this explicit it is convenient 
to replace Eq. (0.18) by 

6.E = (4)oVPQ E ~ h VQP4>o) - (4)oVPQ E ~ h VQP4>o) AV 

But the average of the square of 6.E 

[(6.E)2tv {[( 4>oVPQ E ~ hVQp4>o)] Lv - [( 4>oVPQ E ~ h VQP4>o) Avf (0.20) 

is not. It is a measure of the error in the shell model of this paper. 
One notes the close relationship of the matrix element Eq. (0.18) with the starting 

of the statistical multi-step compound reaction theory of FKK [3]. In ref. [4] it is given as 
(V.5.33): 

.J(m.c) _ (.J.(-h.r 1 IF .J.(+»)
ii - 'l'i VPQ E _ h VQP'I'i (0.21) 

where .Jj;'uc) is the multistep transition amplitude for the reaction i ~ f. As in the case 

being considered here (.J};n.c)}AV = 0 but the average of the square is not. The similarity 
of Eq. (0.21) and Eq. (0.18) suggests that the methods employed by FKK to evaluate the 
square magnitude of .J},:'c can be employed here. 

As a first step we partition the Hilbert space into classes of increasing complexity: initial 
state, Ip - Ih states, 2p - 2h states, etc. The initial state is a solution of (Eo il)4>o = o. 
The action of the interaction is to induce transitions to states of increasing complexity as 

1p-1 h 2p-2h 3p-3h 

indicated by the diagram. Using the analysis of FKK the matrix element in Eq. IU.HSI can 
be rewritten as follows: 

(6.E)m 

where 

where m is t

= 

he 

(4)OVoIGIV02G2''' 

maximum n

6.E = E(6.E)m 
m 

Vm-l,mGmVm,m-lGm-l'" 

umber of particle-holes: 

'V:n GlVio4>o) - (}AV (0.22) 

Vm,m-l = QmVQm-l (0.23) 

4 

The propagators G,.. satisfy 

G= 1 = __ (0.24) 
,.. E - h,...,.. - V,...I'+1G,..+1 V,..+1.,.. E 1i,.. 

In Eq. we now insert the eigenfunctions of G;l 

= e,..,OItPl',OI (0.25) 

We write out the first two terms of Eq. 

6.E1 (4)OVol Gl Vio4>o) - {4>0 Vol G1Vio4>o}AV 

=E (4)oVtPl,OI)(tPl,OI V4>o) - {6.E )AV
t 

01 E et,OI 
2 

= E I4>OVtPl,OII (6.E
1
}AV (0.26) 

01 E 6,01 
6.E2= (4)oVoIGlVi2G2l':nG1Vio4>o) 

= E (4)oV tPl.0I}(tPl,OI VtP2r;)(tP2r;V tPl.-r}(tPl.'·Y4>o) (6.E2}AV 
OI,r;,-r (E - elOl)(E 6r;)(E - 6-r) 

U sing the random phase approximation 'Y = 0: 

I(4)OVtPl,OI} 12 1(tPIOlVtP2r;) 12 (6.E }AV
2 (0.27) 

= E (E - elOl)2(E e2r;)OI,r; 

We shall stop at this point as the numerical evaluation has not yet been performed. You 
will note that our goal is a modest one. We are not attempting to determine the residual 
interaction. We are only providing an estimate of the error in using the mean field model. 
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