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ABSTRACT 

Lattice calculations are used to show the dominant role of instantons in determining 
light hadron structure and quark propagation in the QCD vacuum. The instanton content 
of gluon fields sampling the Wilson action is extracted using cooling as a filter to selectively 
remove essentially all fluctuations of the gluon field except for instantons. Close agreement 
is demonstrated between quenched lattice QCD results including all gluonic contributions 
and including only instantons for vacuum correlation functions of hadronic currents and for 
density-density correlation functions in hadronic bound states. 
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INTRODUCTION 

The motivation for this work is to use lattice QCD as a tool to obtain insight into the 
structure of the QCD vacuum and light hadrons. To date, the known analytic techniques of 
theoretical physics have been inadequate to provide even a qualitative understanding of the 
mechanism responsible for the gross structure of hadrons - whether it is the Coulomb-like 
interaction between quarks arising from short-wavelength fluctuations of the gluon field, the 
behavior at large distances associated with confinement, or physics associated with topolog
ical structures in the QeD vacuum corresponding in the semiclassical limit to instantons. 
Hence, we have turned to numerical solution of nonperturbative QCD for insight into the 
underlying physics of hadron structure. 

In this talk, I will describe results obtained in collaboration with Ming Chu, Jeff Grandy, 
and Suzhou Huang [1,2J which provide strong evidence for the dominant role of instantons 
in determining the structure of light hadrons and the propagation of light quarks in the 
vacuum. Our strategy is to consider correlation functions which characterize the gross 
structure of hadrons and quark propagation in the QCD vacuum and which are well described 
by quenched lattice QCD calculations which sample the full Wilson action. These lattice 
calculations include all the fluctuations and topological excitations of the gluon field and 
thus include the full perturbative and non·perturbative effects of the short-range Coulomb 
and hyperfine interactions, confinement, and instantons. We then use cooling to remove 
essentially all fluctuations of the gluon field except for the instantons which, because of 
their topology, cannot be removed by local minimization of the action. Thus, both the 
Coulomb interaction and confinement are almost completely removed while retaining most 
of the instanton content. Finally, we use the instantons alone to recalculate the correlation 
functions characterizing light hadron structure. To the extent to which the gross features 
of light hadron structure and quark propagation in the QCD vacuum are unaffected by 
removing all the gluonic modes except instantons, we have strong evidence for the dominant 
role of instantons. 

This work is strongly motivated by the physical arguments and instanton models of 
Shuryak and others [3-6J in which the zero modes associated with instantons produce lo
calized quark states and quark propagation takes place primarily by hopping between these 
states. The additional information which lattice calculations bring to bear are a quantitative 
determination of the instanton content of the QCD vacuum and a direct comparison of the 
effects of all gluon contributions versus those of instantons alone. 

CORRELATION FUNCTIONS 

As in the case of other strongly interacting many-body systems, to understand the struc
ture of the vacuum and light hadrons in nonperturbative QCD, it is instructive to study 
appropriately selected ground state correlation functions, to calculate their properties quan
titatively, and to understand their behavior physically. 

The vacuum correlation functions we consider are the point-ta-point equal time correla
tion functions of hadronic currents 

R(x) = (OITJ(x)J(O)IO) 
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discussed in detail by Shuryak [3] and recently calculated in quenched lattice QCD [I]. The 
motivation for supplementing knowledge of hadron bound state properties by these cor
relation functions should be particularly obvious to physicists at this conference on Few 
Body problems. If your goal were to understand the nucleon-nucleon interaction in each 
spin, isospin and angular momentum channel as a function of spatial separation, the limited 
information provided by ground state deuteron properties would be frustratingly incom
plete, and you inevitably would be led to study nucleon-nucleon scattering phase shifts. 
Although, regrettably, our experimental colleagues have been most inept in providing us 
with quark-antiquark phase shifts, the same physical information is contained in the vac
uum hadron current correlation functions R(x). As shown by Shuryak [3], in many channels 
these correlators may be determined or significantly cons~rained from experimental data 
using dispersion relations. Since numerical calculations on the lattice agree with empirical 
results where available, we regard them as valid solutions of QCD in all channels and thus 
use them to obtain information comparable to scattering phase shifts. 

The correlation functions we calculate in the pseudoscalar, vector, nucleon and Delta 
channels are 

R(x) (OITJP(x) Jp(O)IO) , 
R(x) (OIT J,.(x) },.(O)10) , 

R(x)=~Tr ((OITJN(x) XII '1,,) , 
and 

R(x)=~Tr ((OITJ:(x)J:(O)IO)xll '1,,) , 

where 

JP =U'15 d , 

J,. = U'1,.'15d , 

IN = t:Gbc[tl' C '1,. ubI '1,. '15 dC 

Cand J: = t:dc[U Q C '1,. ubI U • 

As in Refs. [1] and [3], we consider the ratio of the correlation function in QCD to the 
correlation function for non-interacting massless quarks, ~, which approaches one as 
x -+ 0 and displays a broad range of non-perturbative effects for X of the order of 1 fm. 

As discussed in Refs. [1,3], these correlators already show strong indications of instanton 
dominated physics. As shown by 't Hooft [7], the instanton induced interaction couples 
quarks and antiquarks of opposite chirality leading to strong attractive and repulsive forces 
in the pseudoscalar and scalar channels respectively, and just this behavior is observed in 
the vacuum correlation functions. 

To characterize the gross properties of hadrons, in addition to the mass, we consider 
quark density-density correlation functions [8-10] p(x) (hlp(x)p(O)lh). In contrast to 
wave functions, which have large contributions from the gluon wave functional associated 
with the gauge choice or definition of a gauge invariant amplitude [U], the density-density 
correlation function is a gauge-invariant physical observable which directly specifies the 
spatial distribution of quarks. 

INSTANTONS 

The Feynman path integral for a quantum mechanical problem with degenerate minima 
is dominated by paths which fluctuate around stationary solutions to the classical Euclidean 
action connecting these minima [12]. In the case of the double well potential, a typical 
Feynman path is composed of segments fluctuating around the left and right minima joined 
by segments crossing the barrier. If one had such a trajectory as an initial condition, 
one could find the nearest stationary solution to the classical action numerically by using 
an iterative local relaxation algorithm. In this method, which has come to be known as 
cooling, one sequentially minimizes the action locally as a function of the coordinate on 
each time slice and iteratively approaches a stationary solution. In the case of the double 
well, the trajectory approaches straight lines in the two minima joined by kinks and anti
kinks crossing the barrier and the structure of the trajectory can be characterized by the 
number and positions of the kinks and anti-kinks. 

In QCD, the corresponding classical stationary solutions to the Euclidean action for the 
gauge field connecting degenerate minima of the vacuum are instantons [13], and we apply 
below the analogous cooling technique to identify the instantons corresponding to each gauge 
field configuration. 

Two features of instantons are of particular interest to light hadron physics. The first is 
the fact that although the fermion spectrum is identical at each minimum of the vacuum, 
quarks of opposite chirality are raised or lowered one level between adjacent minima, so 
that instantons give rise to vertices connecting qL and qR. The second fact is that each 
instanton gives rise to a localized zero mode of the Dirac operator D,.'1,.¢o(x) = 0, so that 
the propagator for light quarks is dominated by these zero modes. This gives rise to a 
physical picture in which qq pairs propagate by "hopping" between localized zero modes 
associated with instantons. 

LATTICE CALCULATIONS 

Cooling [14,15] is used as a filter to extract the instanton content of 19 gluon configu
rations obtained by sampling the standard Wilson action on a 163 x 24 lattice at fr 5.7. 
We used the Cabibbo-Marinari [16] algorithm with three 8U(2) subgroups and p = 00 to 
minimize the action sequentially on each link of the lattice in each cooling step. 

To monitor the filtering of different degrees of freedom as a function of cooling steps, 
we measure several gluonic observables. Short wavelength fluctuations giving rise to the 
Coulomb and hyperfine interactions are reflected in the total action 8. Confinement is 
monitored by measuring the string tension extracted from a 4 x 7 Wilson loop, and we refer 
to results from an earlier calculation at the same value of {3 with the same cooling algorithm 
[17]. Finally, to monitor the instanton content, we measure the topological charge (Q) 
and topological susceptibility (Q2), using the simplest expression for the topological charge 
density Q(x,,) = --d;rt:,."pa ReTr [U,.,,(x,,) Upa(x,,)]. Note that for a random ensemble of 
Poisson distributed instantons and anti-instantons, (Q) =0 and (Q2) = I +A, the number 
of instantons plus anti-instantons. 

The ratios of vacuum point to point correlation functions, :::~)' are calculated as de
scribed in [1]. The effects of lattice anisotropy are removed by calculating .8.o(x) on the 
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FIG. 1. Cooling history for a typical slice of a gluon configuration at fixed x and y as a function 
of z and t. The left column shows the action density S(I, 1, z, t) before cooling (a) and after cooling 
for 25 steps (c). The right column shows the topological charge density Q(I, 1, z, t) before cooling 
(b) and after cooling for 25 steps. 

same lattice as R{x) and measuring the ratio for a cone of lattice sites concentrated around 
the diagonal. Finite lattice volume effects are corrected by subtracting the contributions 
of first images, and the correlation functions are fit by a spectral function parameterized 
by a resonance mass, the coupling to the resonance, and the continuum threshold. Hadron 
density correlation functions, (hIPu(X)Pd(O)lh), are calculated as in Refs. [9,10,18] for the 
pion, rho and nucleon, where Pu = u"YotL and similarly for Pd. Image corrections for finite 
volume effects are applied as in Ref. [18]. 

A significant conceptual issue in comparing observables calculated using cooled config
urations with uncooled results is how to change the renormalization of the bare mass and 
coupling constant as the gluon configurations are cooled. We use the physical pion and 
nucleon masses to determine " and a for the cooled configurations, with the result that 
a changes by '" 16% after 25 cooling steps. It is significant that the rho mass remains 
unchanged within errors with this value of a. 

INSTANTON CONTENT OF THE GLUON VACUUM 

To provide a clear picture of how cooling extracts the instanton content of a thermalized 
gluonic configuration, we display in Fig. 1 the action density S(I, 1, z, t) and topological 
charge density Q(I,I,z,t) for a typical slice of a gluon configuration before cooling and 
after 25 cooling steps. As one can see, there is no recognizable structure before cooling. 
Large, short wavelength fluctuations of the order of the lattice spacing dominate both the 
action and topological charge density. After 25 cooling steps, three instantons and two 
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FIG. 2. Topological charge density-density correlation function after 25 cooling steps. Lattice 
measurements are denoted by solid points with error bars. The curve shows the best fit obtained 
using a convolution of the topological charge density for a single instanton of size p =2.5a. 

anti-instantons can be identified clearly. The action density peaks are completely correlated 
in position and shape with the topological charge density peaks for instantons and with 
the topological charge density valleys for anti-instantons. Note that both the action and 
topological charge densities are reduced by more than two orders of magnitude, so that the 
fluctuations removed by cooling are several orders of magnitude larger than the topological 
excitations that are retained. Further cooling to 50 steps results in the annihilation of the 
nearby instanton-anti-instanton pair but retains the well separated instantons and anti
instanton. 

As expected, the action is dominated by the short range modes and is therefore very 
strongly affected by cooling. Denoting the action of a single instanton by So = 811'2/92, 
< S> / So decreases from 20,211 before cooling to 64 and 31 at 25 and 50 sweeps respectively. 
The topological charge is less sensitive to short range modes, and Q2 is essentially constant 
at '" 25 ± 10 throughout the cooling. The string tension in lattice units, ua2 

, is 0.18, 0.05, 
and 0.03 at 0, 25, and 50 cooling steps. At cooling step 25, the action and string tension 
have dropped to 0.3% and 27% of the uncooled values, indicating a dramatic reduction in 
perturbative and confining effects. The difference between < S > / So "" 65 and (Q2) "" 25 
indicates that there are sufficient nearby instanton-anti-instanton pairs in each configuration 
that we have not yet reached the dilute regime where (Q2) "" A + I, which only sets in 
beyond 50 steps. We regard the configurations cooled with 25 steps as providing a more 
complete description of the instanton content of the original configurations, and will therefore 
emphasize them in our subsequent calculation of hadronic properties. 

To estimate the instanton size we measure the topological charge density correlation 
function f(x) = LII Q(y)Q(x + y) where Q(y) is the topological charge density at point y 
and the sum is over the whole lattice. The ensemble average of f(x) at cooling step 25 is 
displayed in Fig.2. The strong peak at small x is the correlation of a single instanton or 
anti-instanton with itself. The vanishing of (f(x)) at large x implies that the topological 
charge is uncorrelated at this larger distance and thus averages to zero. 

If we assume that all instantons are well separated, we would expect that each individual 
peak can be approximated by the analytic instanton topological charge density Qp(x) = 

h (.r2~P2rwhere P is the size parameter. Although in principle one should fit with a 
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distribution of values of p, a first approximation is obtained by using a single value of p 
which we will interpret as an average value. A convolution of Qp(x) with itself defines a 
function which can be used to fit the lattice data with p as the fitting parameter. The 
continuous curve in Fig. 2 is the fitted result with p = 2.5a for 25 cooling steps and we 
similarly obtain p 2.8a for 50 cooling steps. The fit fails to reproduce the detailed shape 
for x/a,..., 5, both because of the range in instanton sizes and the nonlinear overlap of 
instantons as observed in Fig.I. By analyzing the sizes of lumps in the topological charge 
density, we also obtain rough histograms of the distribution of instantons with p which are 
consistent with the average values quoted above. 

To obtain results in physical units, we use the scale a determined from the nucleon mass, 
which decreases from 0.168 fm before cooling to 0.142 fm and 0.124 fm at 25 and 50 cooling 
steps respectively. The 16% decrease in a after 25 cooling steps is quite modest, so that our 
qualitative conclusions are relatively insensitive to the scale change. The values at 25 (50) 
cooling steps for the instanton size of 0.36 fm (0.35 fm), for the instanton density of 1.64 
fm-4 ( 1.33 fm-4), and for topological charge susceptibility, X, of [177 MeV}4 ([200 MeV}4) 
comp,are well with the values 0.33 fm, 1.0 fm-4, and [180 MeV}4 used in instanton models 
by Shuryak and collaborators [8]. 

A similar analysis of cooled configurations has previously been carried out for SU(2) with 
smaller lattiCes and slightly different techniques [19], where the positions and magnitudes of 
peaks in S(x,y, z, t) were used to determine the distribution of sizes of instantons. 

HADRONIC OBSERVABLES IN THE COOLED VACUUM 

In the top pa.nels of Fig. 3, we show the ratio of vacuum correlation functions for in
teracting to non-interacting quarks ~ in the pseudoscalar channel for un cooled QCD, 25 
cooling steps, and 50 cooling steps:'OThis channel is by far the most attractive of all the 
meson channels, as reflected in the fact that the correlation function for interacting quarks 
is roughly 50 times larger than for free quarks, and is thus the only channel to be plotted 
on a log scale. Since the pion mass is used to determine the bare quark mass, masses of the 
pion resonance term in Fig. 3 are constrained to be fixed at 140 MeV. As previously noted 
and discussed in Ref. [3], the 't Hooft interaction is strong and attractive in the pseudoscalar 
channel. What is noteworthy in Fig. 3 is the fact that to within the statistics shown, as 
all other gluon excitations are removed by 25 to 50 cooling sweeps, the instantons alone 
quantitatively produce the observed attraction. To assure that this behavior is not a statis
tical artifact, in this and every other channel we analyzed two independent sets of 9 and 10 
configurations separately and verified that the same behavior occurred in both cases. 

Analogous results for ~ in the nucleon channel are shown in the bottom panels of 
Fig. 3, where again the nuc)eon mass is constrained to be constant because it is used to 
determine the lattice spacing. The behavior is similar to that in the pseudoscalar channel. 
After 25 sweeps, the correlation function is qualitatively similar to the un cooled result. In 
detail, the peak also appears lower after cooling, although it agrees within errors. After an 
additional 25 sweeps the peak height increases again, agreeing even more closely with the 
uncooled result. 

The ratios of correlation functions ft1M for the vector channel are shown in the upper 
panels of Fig. 4. The p mass governing the resonance peak is unconstrained, but does 
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FIG. 3. Comparison of uncooled and cooled vacuum correlation function ratios, ~,for pseu· 
doscalar currents (P) and nucleon currents (N). The left, center, and right panels show results 
for uncooled QCD, 25 cooling steps, and 50 cooling steps respectively. The solid points with error 
bars denote lattice correlation functions extrapolated to m", = 140 MeV. The solid lines denote 
fits to the correlation functions using a. three-parameter spectral function I' and the dashed and 
dotted curves show the contributions of the continuum and resonance components of the spectral 
functions respectively. The upper scale shows the spatial separation in lattice units and the lower 
scale shows the separation in physical units. 

not change significantly with cooling. Furthermore, there is virtually no change in the 
correlation function ratio with cooling. Similarly, in the tJ.. channel the peak position does 
not shift significantly with cooling and while its height appears to increase somewhat, the 
errors are consistent with its staying constant. 

Density-density correlation functions in the ground state of the pion, rho, and nucleon 
are shown in Fig. 5. The errors for the uncooled results have been suppressed for clarity 
since they are comparable to those for the cooled results. 

The striking result for both the rho and the nucleon is the fact that the spatial distri
bution of quarks is essentially unaffected by cooling - instantons alone govern the gross 
structure of these hadrons, as indeed they also governed vacuum correlation functions of 
hadron currents in these same channels. The only case in which a noticeable change is 
brought about by cooling is in the short distance behavior of the ground state of the pion. 
This is understandable since in the physical pion, in addition to instanton induced interac
tions, there is also a strong attractive hyperfine interaction arising from perturbative QeD 
which, combined with the l/r interaction, gives rise to the central peak in the density. In 
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FIG. 4. Comparison of uncooled and cooled vacuum correlation function ratios, 1f!M, for vector 
currents (V) and Delta currents (D). The notation is the same as in Fig. 3. 

the rho, the hyperfine interaction has much less effect, both because it is repulsive and is 3 
times weaker. 

It is also noteworthy that the cooled density-density correlation functions shown in Fig. 5 
for the 11', p, and nucleon are comparable (within error bars), strongly suggesting that in
stantons set the overall spatial scale of these hadrons. 

CONCLUSION AND DISCUSSION 

In conclusion, the close agreement between hadronic observables with cooled and un
cooled configurations provides strong evidence for the dominant role of instantons in deter
mining hadron structure and quark propagation in the QCD vacuum. 

I should emphasize that although the physical picture I have presented of light quarks 
hopping between zero modes of size of the order of '" ~ fm is very different from the 
physical picture of heavy quarks interacting via an adiabatic potential, there is no necessary 
contradiction between the lattice results I have discussed and those presented by Peter 
Lepage at this conference [20]. Because zero modes are so important for light quarks and 
the characteristic size of instantons is '" ~ fm, it is essential for light quark physics to 
work with a lattice spacing a small compared with ~ fm to include the instantons and zero 
modes explicitly. Since there is no corresponding argument for the relevance of instantons 
for the heavy quark interaction potential, although ~ fm instantons cannot be described on 
the lattice with a '" 0.5 fm used by Lepage, there is no reason why with the inclusion of 
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FIG. 5. Comparison of uncooled and cooled density-density correlation functions for the pion, 
rho, and nucleon. The solid circles denote the correlation functions calculated with uncooled QCD, 
and the open circles with error bars show the results for 25 cooling steps. The rho and pion results 
are compared for m; = 0.16 GeV2and the nucleon results are compared for m; =.36 GeV2. As in 
Figs. 3 and 4, the separation is shown in physical units. All correlation functions are normalized to 
1 at the origin except for the cooled pion correlator, which is normalized to have the same volume 
integral as the uncooled correlator. 

higher order operators the gluonic excitations corresponding to the ~ potential, the hyperfine 
interaction, and confinement cannot be adequately described. A strong implication of our 
results, however, is that an analogous attempt to describe light quark physics on a 0.5 fm 
mesh cannot describe the essential physics. One simply cannot expect a set of perturbative 
corrections to describe the nonperturbative instanton physics which is excluded from such 
a coarse mesh. This distinction is far from academic, since it implies that very large scale 
calculations on meshes of the order 323 x 64 will be essential to understand the physics of 
light hadrons. 

Finally, since the present calculations were performed in the quenched approximation, 
which omits the contributions of quark-antiquark excitations, I should point out two signif
icant limitations of this work. Clearly, when nearly-zero modes are playing an important 
role in quark propagation, it is also important to include the small weights arising from 
the small eigenvalues in the fermion determinant. In addition, in studying the instanton 
content of the vacuum, it is important to include fermion feedback so that, for example, the 
tendency of qq pairs to bind instanton - anti-instanton pairs is included. Hence, the next 
step in studying the role of instantons in hadron structure is obviously to include the effect 
of dynamical fermions in full unquenched lattice calculations. 
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