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1. Introduction 

The goal of quantum cosmology is to understand the origin and evolution 
of the universe in quantum mechanical terms. The prime motivation for t.his 
endeavour concerns the issue of initial conditions in cosmology. Virtually all 
predictions of classical cosmology always uepend to some £!xtent, even though 
very weakly, on initial conditions. This dependence may not be so obvious 
for processes in the late universe, but in the very early universe, around the 
inflationary era, it is becomes apparent that the present universe could only 
have arisen from a certain class of initial conditions. What is the origin of these 
initial conditions? What sort of form does a theory of initial conditions take? 

In looking for the point in time at which to impose initial conditions, it is 
natural to follow the evolution of the universe backwards. As we do this, the 
scale factor goes to zero, the energy density and curvature approach infinity, and 
the universe appears to have begun with an initial singularity. We know from 
the singularity theorems that these singularities are not artefacts of inaccurate 
modeling in cosmological models, but are generic. The existence of these regions 
of arbitrari1y high curvature is not taken to imply that the real universe actually 
began with a singularity, but rather, from general dimensional reasoning, that 
it emerged from a regime in which quantum gravitational effects are important. 
This suggests that the issue of initial conditions in cosmology is most properly 
addressed from a framework in which gravity is quantized. Quantum cosmology 
aspires tv be such a framework. 

In brief, quantum cosmology is the application of quantum mechanics to 
the dynamical systems describing closed universes, generally involving a com
bination of canonical and path integral methods, based on the Einstein action 
[1,2]. The point of this talk is to some describe some recent developments in the 
use of path integral methods, much of it by the present author in collaboration 
with J .B.Hartle, and with J .Louko. 

2. The Problem of Quantum Gravity 

The first and perhaps most serious difficulty with quantum cosmology 
is the problem of quantum gravity. Einstein gravity is perturbatively nOI1
renormalizable, and no-one to date has had any reasonable degree of SUCCf'SS in 
making sense of it a.., a quantum field theory. It is claimed that st.ring theory is, 
or at least contains a consistent wel1-u(>fined quantum theory of gravity, But. it 
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lias 1I0t. yet beell cast ill a manageable form allowing it to be directly applied 
to COSIlIO!Ogy. 

(; iveil, on the one hand, the considerable int.erest in the issue of initial 
cOlldit.iuIIS, hut 011 the other I t.I)(~ sl'riolls dilliculties with quantum gravity, it 
SVl'IlIS reasonable at present ill quant.um cosmology to persevere with a (possibly 
sick) tlwory based on Einst.ein gravit.y coupled to matter (or possibly simple 
Illodifications of t.his theory, stlch as those discussed by Steinhardt in his lectures 

). Then~ are a 1I11111ber of reasons why this is a reasonable thing to do: 

(i) 	There is a chance that it may be correct, that is) that the theory may make 
st!lIse lloll-peturLativeiy. This possibility is currently being investigated by 
Ashtekal' and collaborators [4], and also in numerical studies of DeWitt 
and collaborators 

(ii) 	The results obtained Il)ay be correct in the low-energy regime, well away 
frolll the Planck scale. This regillle may in fact still contain some interesting 
physics. For example, in tunneling from nothing scenarios, the scale (of 
curvatures, ellergy densities etc.) is set by demanding that one match on 
to an inflationary model, and this sets the scale to be four or five orders of 
IlJagllitude below the Planck scale [6]. 

(iii) 	A quantum gravity theory based on Einstein gravity possesses features 
and difficulties one might expect to appear in a full quantum theory of 
gravity. We can therefore have a "practice run" at the full theory. For 
example, we can try and leal'll how to quantize generally covariant theories, 
with the associat.ed problem of time, etc. In fact, I would say that the 
IIlain achievements of contell\p0l'ary quantum cosmology have been in the 
illvestigatioll of issue.s, rather than detailed technical results. 

These, tlwll, are some of the reaSOllS why one might want to study a quantum 
of cosmology based on the Einstein action. Let us turn now to the 

ft )l"Il1alism of qualltum coslIlology. 

3. 	Canonical Quantization 

vVe begin by considering the canonical quantization of Einstein gravity 
coupled to matter for closed universes [7]. Our starting point is the action 

S =Jd"x ..;-:::g (R - 2A) + Sma.tter (3.1) 
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where Sma.tter is the action for some matter field, a scalar field tP say, and we 
are llsing units in which 1611"G 1. To obtain the Hamiltonian form of the 
action we first write the metric in (3 + 1) form, 

ds2 =_(N 2 - NiNi)dt2 + 2Njdx'dt + hijdxidxi (3.2) 

where N is the lapse, N i is the shift and hii is the three-metric. The Hamilto
nian form of the action may then be straightforwardly obtained, and takes the 
form 

jS = Jdt d3x [il ij1l"i +Jlf' - N1t - N i1ti] (3.3) 

where 1I"ij and 11" ~ are the momenta conjuate to hij and tP respectively. The 
Hamiltonian is a sum of constraints, 

- 1. ( i' 	 1. ( 3 )1 i')1t = h :I 11" J1I"ij - 2'1I"i"-; - h:J R - 2A + 1tmatler = 0 (3.4) 

1f
I
' -21f',!j + 1t,!,atter =0 	 (3.5) 

'J • 

with 	the lapse and shift playing the role of lagrange multipliers. 

In the quantum theory, the state of the system is represented by a wave 
functional, \II [hii ! 4>], a functional of the field configurations on the three
surfaces. The wave function has no explicit dependence on time. There is 
therefore no Schrodinger equation, only the constraints of the Dirac quanti
zation procedure, obtained by insisting that the state is annihilated by the 
operator version of the constraints: 

1l\ll[hij,tP] = 0, 1l,W[hij ,tP] = 0 (3.6) 

These relations are referred to, respectively, the Wheeler-DeWitt equation and 
the momentum constraints. 

4. 	Path.lntegral Quantization 

The wave function for the univerl;e may ~Iso be obtained from a ~path 
integral expression. Suppo;;e we wi:Jh tb obtClin~ tlte wave (unc.t.i~m for a-threer 
surface B on which the three-tQeti'iC;'ls hii and t,he Illatter field is tP. Regard B 
as part of the boundary~f,a fodr-manifold M, on w'hicn the' four-metric is g~~ 
and the matter field is", ~ith ~hes~ fields matc\ling hij and:4> Oll B. Then th~ 

t 	 ~ 
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wnvl' fllnction is obt.ained by slimming over all such mctrics and matter fields 
Oil the manifold M. and over some class of manifolds: 

I'11 [hij ,cP. B] L f VgIHlV~ e-	 (4.1) 
M 

Here, I is the Euclidean action of t.he gravity plus matter system. Perhaps the 
hest known example of such a construction is the "no-boundary" proposal of 
IImtl(' allel Hawking, in which t.he c1a.c:;g of manifolds summed over is taken to 
he compact. manifolds whose only boundary is B [8J. 

The path integral approach is pot.entially more powerful than the canonical 
approach in that it can in principle deal with multiple surface amplitudes, 
<IS might. he involved in topology changing situations, or in the decoherence 
rllllct.ional [2J. These more general amplitudes are likely to be the objects of 
~real.cst interest. in future approaches to quant.um cosmology. Here however, 
for sillJplicit.y, we will consider only single surface amplitudes. 

't is not known how to define t.he sum over four-manifolds, so in practice 
\Vlln!. is done is to study the path integral for each candidate four-manifold 
s(')laratcly. As with all snch path integral expressions, a number of technical 
nspects of this constl'llction then need to be specified before it can be regarded 
as properly and uniquely defined, such as gauge-fixing machinery, mea.c;ure, 
regularization elc. After all of t.his has been done, two question naturally arise~ 

t) 	Does the wave function so generated satisfy the constraints of the Dirac 
qIlFlnt.izat.ioll proceoure, i. e., the Wheeler-DeWitt equation and the mo
mentlllll constraints? 

2) 	The Euclidean action for gravity is not bounded from below. The integral 
will therefore not converge unless the fields are integrated along a com
1,lex contour. There are presumably many suitable contours. How is this 
complex contour chosen? 

Thes(' t.wo questions are the topic of the rest of t.his talk. 

5. 	Derivation of the Wheeler-DeWitt Equation 

\Ve HOW consider t.he first. quC'stion, t.hat. of the connect.ion between the 
I·at.h illl f'gral alld the cOlIst.raillt$ [9]. It is enlightening t.o cast this question 
ill a more general setting, and tlsk, for more general systf'ms with symmetry, 
wlldher or not t.he wave' functiolls gf~lIeral.ed by the path integral satisfy t.he 
rOllst.raillts of t.he Dirac qUFlllt.izat.ioll procedure. For definit.eness, let us foclIs 

5 


on constrained Hamiltonian systems, although the following discussion is not. 
restricted to this ca.c;e. 

A const.rained Hamiltonian system [10] is one defined on a phase space 
(Pi, qi), characterized by an action of the form 

," 
S[Pi, l, .\a] = f dt [Pili' - Ho - .\aTaJ (5.1 )

Jel 
where .\a are multipliers which when varied enforce the constraints Ta = O. 
The constraints satisfy the Poisson bracket algebra 

{Ta, Tp} =UJpT-, 	 (5.2) 

Ho 	is the physical Hamiltonian of the theory, and satisfies 

{Ho, Ta} =VfTp 	 (5.3) 

UJp and V! may depend on Pi and qi.. H 0 vanishes identically when the physical 
time is included among the dynamical variables q. (parametrized theories) and 
the action as a consequence is reparametrization invariant. 

For t.he case of general relativity the qi represent the components of 
the three-metric, qi ,.." hij(X), the .\a represent the lapse and shift, .\a ,.." 
(N(x), Ni(x)), and the Ta represent (1l(x) , 1l,(x)). Ho = 0 and the strut
ture coefficients UJp depend on qi, but not Pi. In any summation over indices, 
it is implicit that there is also an integration over spatial coordinates x, hut 
this will be omitted for notational simplicity 

The Hamiltonian form of the action, (5.1), is invariant under canonical 
transformations generated by the constraints. To see this, consider the trans
formations 

bPi = {pi, (aTa}, bqi = {qi, (aTa} (5.4) 

where (a(t) is a function of time. An elementary calculation shows that if 

b.\a = fa - U;-,.\fJ(-' - Vl(P 	 (5.5) 

then 	 ," 
-	 (5.6)68 [,a(t) (Pi :; Ta)L 

The action is t.herefore invariant if (a(t') =0 =(a(t"), unless the constraint.s 
are linear in the momenta, in which case the terms in the square bracket vanish 
identically without restrictions on (a(t). 
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Consider now the path iutcgral represcnt.ation of the wave functions of this 
IIH'oI'Y. For collvenicnce, illtroduce the notation ZA = (Pi, qi, ,\0'). Then the 
pat.h integral represent.ation of the wave fUllclions has the form 

lJI(qi") 'DzA olGa] !:l.G eiS[t] 6(qi(t") _lIt) (5.1)1 
The sum is over a class C of paths, restricted by the explicit delta-function 
t.o end 011 the argument of the wave function. CO' are a set of gauge-fixing 
conditiolls, with associated weight factor !:l.G which may be constructed using 
the mclhod of Batalin, Fradkin and Vilkovisky (BFV) [11]. For gauge theories 
it. is the Faddeev-Popov determinant. S[z] is the action. Here we have focussed 
011 the Hamiltonian form of the path integral, but the form (5.1) is actually 
quite general, if zA is suitably defined, e.g., zA =(qi, ,\0') for the Lagrallgian 
form of path integral, zA = (Pi, qi , ,\a, ghosts) for the BaST form [11]. 

We shall show that the constraints of the Dirac quantization procedure 
011 IJI (qi) follow very readily from this path-integral expression, assuming only 
cNtain invariance properties of the sum-over-histories. Let us spell out what 
we mean by an invariant path integral construction. Suppose the theory has 
all illvariallce under ZA _ ZA + 6z A , where OZA depends linearly on some 
pa.rameters (a(t) and their derivatives, ia(t). We also need to assume that, 

6qi =ca /!(Pi, qi) 	 (5.8) 

(1'01' Lagrangian theories, Pi denotes 8Ljotji, where L is the Lagrangian). That 
is, t.lle transfonnation of (i docs HOt uepcnd on the Lagange multipliers or on 
itt. This is clearly satisfied fol' constrained Hamiltonian systems, by virtue of 

). Theil all invariant path integral construction would involve an action, 
IIWilsure and class of paths for which t.he following four properties hold under 
tI. is transformation: 

1) 	The action S changes at the most by a surface term of the form 

. til 
6S [to' Fo(Pi, ql)] t' 	 (5.9) 

That is, it should not depend on the Lagrange multipliers, or on i. a . 

2) 	The class of paths, C, is invariant. 

:~) 	 The path integral (5.7) is indepenuent of the choice of gauge conditions 
/"'0
t] 	• 

'I) 	The combination of the measure and the gauge-fixing weight factor trans
form ulluer a symmetry transformation according to 

Vz A !:l.G[ZA] _ Vz A!:l.G.[zA] 	 (5.10) 

where GdzA] =G[zA +O(zA]. 

In addition to these four properties characterizing the invariance of the path 
integral (5.1) we will also need to assume the following: 

5) 	 Illteg,rals of the form (5.1) weighted by functions of Pi and qi on the final 
surface are equal to corresponding, appropriately ordered operators acting 
on ~(qill). That is, for given :F(Pi' qi), 

1Vz A :F (pi (t"), qi(t")} 0 (l(tll) - qi") !:l.G[zA] 6[Ca (zA)] exp (is[zA]) 

- :F (-.~ ill) \If( ill) 	 (5.11)- a{}qi" , q q 

for some deducible operator acting on the right-hand side. 

Criterion (1) is clearly satisfied for constrained Hamiltonian systems. Per
haps the most important condition is (2), which concerns the domains of in
tegration of the integral. From (5.5), it implies that the Lagrange multipliers, 
and in particular the lapse function, must be integrated over an infinite range. 
Criteria (3) and (4) may be shown to be properties of the BFV path inte
gral construction [9,11]' and (5) may be shown to be true in a time-slicing 
implementation of the path integral. We will not devote any further space to 
discussing whether or not particular implementations of the sum-over-histories 
satisfy these criteria. This is discussed in detail in Ref.[9]. It suffices to state 
that they may be shown to be satisfied by standard implementations. The 
important point is that the above set of criteria is the minimal set that any 
implementation must satisfy if it is to satisfy the constraints. 

Turn now to the derivation of the constraints from (5.7). Translate the 
integration variables in (5.1) by a symmetry transformation for which (a(t) is 
non vanishing only in a neighborhood of til. The overall integral is unchanged 
because we are merely changing the variables of integration. The class of patits 
is unchanged because it is invariant. The action changes according to (5.9) with 
only the surface term at t =til contributing because (O'(t') =O. The change in 
measure allu gauge-fixing machinery consists of no more than a change of gauge 
conditions. The integral with translated int.egrand therefore takes the form 

\}I(l") =1Vz A 0 (qi(t") + oqi(t") - qi") Il.G [zA] 6[G~(zA)]c 

x exp (i(S[zA] +6S[zA])) 	 (5.12) 
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(Ising I.he assumed independence of gauge-fixing condition, G~ may be replaced 
GO in (5.12). Then subtracting (5.7) from (5.12), using (5.8) and (5.9), and 

to first order in fO I we have 

0= 1'D::A (O(t") 6 (qi(t") qi") ~G[zA) ~[Go(zA») exp (is[zAJ) 

x (O(t") [iPo(P;(t"), q;(t")) f~(p;(t"), q;(t")) a:',,] (5.13) 

Alld !Ising (5.11), Wf' Illay puill-he tprlll ill square brackets out.side the intt'rgal, 
I () df?dlln~ that 

[Fcr(Pi,f/) - f:y(iJi' (ii)i;;) W(qi) = 0 (5.14) 

\vhcrf' 

lJ
' - . {J
1--7 i/ qi 

amI we h:we Jropped t.he ..101lblc primes for convenience. This is the main 
!"I'sult a dirrerent.ial operator identity for 1Ji(I/) satisfied as a consequence of a 

invariance properties (1)-(;'), Finally, computing (5.14) 
ror the case of constrained Hamiltonian systems, by comparing (5.8) and (5.9) 
wit.h (5.1) an..1 (:),6). we readily d~rive the constraints of the Dirac quantization 

Tcr(iii' qi)\lI(qi) 0 (5.16) 

III part.icular, for the case of general relat.ivity for closed cosmologies, these 
const.raints are the Whf'e1er-DeWitt eqtlation and the momentum constraints. 

We have seen, t.herefore, that the path integral expression for the wave 
rUlldion for the universe will sat.isfy the \Vheeler-DeWitt equation and the 
1I10lllenf.lJm const.raints, provided that the integral is constructed in an invariant 
II 1111l1H'r , 

It is import.ant to he precise about, which invariance it is that leads to the 
constraillts. It is sometimes claimed that the Wheeler-DeWitt equat.ion is the 

mechallical expressioll of diffeomorphism invariallce, in the same way 
Ihat the Gauss law cOllstraint, ill canonically quantized gauge theories is the 
111I<lnl.lIIl1 exprpssioll of gauge illvariancc. This is not quite true. The symmetry 
IIspd to d('riv(' I.IIP cont.raint.s was t.he symlllr't,ry of t.he Hamiltonian form of the 

), (G,5), On the lapsp fllllction N this symmetry t,ransformat.ion ha.c; 
I h{' for III , ftc N i + . ". COlli pare t.his to four-dimensional diffeomorphisms, 
(~( J~lt , which on the lapse ftlnction have the form of. N = ~N + . ". The 
1.f;lII~forl11at.ions coillcidf:' if one makes t.h(' identification of parameters, ( =N~. 

To derive the const.raints, it is important that t.he symmetry transformation is 
parametrized ill Stich a way that. (5,8) and (5.9) do not depend on the Lagrange 
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multpliers (otherwise we could not make the step from (5.13) t.o (5.14». This is 
true of the parametrization in terms of f, but is not true of the parametrization 
in terms of~. The symmetry associated with the Wheeler-DeWitt equation, 
therefore, is not four-dimensional diffeomorphism invariance, but is the closely 
related symmetry of the Hamiltonian form of the action, in which ( and not ~ 
is the freely specifiable parameter. 

This subtle distinction has the following consequence. One might have 
thought that one could obtain a solution to the Wheeler-DeWitt equation by 
integrat,ing the lapse function over a half-infinite range, N > O. This is, after 
all, a diffeomorphism-invariant range. However, as we have just pointed 
the relevant symmetry is not diffeomorphisms, but is the symmetry associated 
wit.h the Hamiltonian form of the action. N > 0 is not an invariant range 
under this symmetry, since 6(N = i. + .. , may map positive lapse to negative 
lapse. This symmetry is slightly larger (and therefore more restrictive) than 
the diffeomorphisms, and the only invariant range is -00 < N < +00. 

The ahove derivat.ion can also be carried out for a path integral of Euclidean 
signature. One finds that the Wheel(!r-DeWitt equation is the same, irrespective 
of whether one takes a Euclidean or Lorentzian theory as the starting point [9]. 

For the special case of minisuperspace models, a derivation of the Wheeler
DeWitt equat.ion paying particular attention to the measure and operaf.or or
dering may be carried out [12). Other discussions of the connection between 
the path integral and the constraints may be found in Ref.[13). The case of 
global symmetries of field theory (e.g. Lorentz or de Sitter invariance) and 
their associated constraints on the wave functions was discussed in Ref.[l4]. 

6. Complex Contours 

Nt.\' we turn to the second question, that of choosing suitable complex 
contours. For definiteness, we will concentrate on the path integral for the no-
boundary wave function, although much of what follows is quite general. As 
stated earlier, the Euclidean Einstein action is not bounded from below, so the 
path integral will not converge if one integrates over real Euclidean metrics. 
To obtain convergence it is necessary to integrate along some complex cont.ollf 
in the space of complex four-metrics and matter fields. It is, therefore, rather 
misleading to refer to the expression (4.1) as a "Euclidean" path integral. 011(' 

should from the very beginning think of it as a complex integral representation 
of the wave function. 
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How do we chuose it suitable COlllpll~x COli tour? Numerous proposals for 
t.he cOlltour have been made over the years. Perhaps the best known is the 
collformal rotation of Gibhons, Hawking and Perry [15]. This involves writ

t.he fOllf-metric ac; !II''' = 0. 291'''' where gl''' is a fiducial metric fixed by 
SOllie suitable condition, sllch as R(g) = 0 (for the asymptotically flat case) 
or U(!/) = 11\ (for the dosed case). The integral over 0. is then rotated to lie 
parallel to t.he imaginary axis, and one can argue that the resulting integral 
will c01lverge. The main problem with this proposal is that not all metrics can 
be collformally tl'ansforlllcu to one satisfying the fiducial condition, so certain 
IIlclrics are being missed out. And ill general, there appears to be no entirely 
satisfactory proposal for defiuiug a suitable complex contour, for the case of 
dosed cosmologies considered here. For this reasoll, it seems sensible to em
ha.rk on a general search for suitable complex contours with which to define the 
lIo-boundary wave function. 

It is sometimes suggested that the indefiniteness of the Euclidean action for 
gravity rnealls that the t.heory is sick, and that in integrating along a complex 
fOlltour OIlC is pret('uding to cure the illcurable. This is not necessarily the 
case. The illdefinitencss of the gravitational action is intimately related to the 
fact t!tat gellcral relativity is all example of a parametrized theory - a theory 
ill which· t.he physical time is included amongst the basic dynamical variables. 
By way of example, cOllsider a much simpler parametrized system, namely the 
relativistic point particle. It's Lorentzian action may be written 

S[X"J = JdT [- (X~)2 + (X;)2 - Nm2] (6.1) 

lIere T is the parameter time, the physical time is XO, N is a Lagrange multi
plier, and a dol denotes a derivative with respect to T. The object commonly 
called the Euclidean action, I, is obtained by letting T = -iT and I = -is. 
One thus obtains, 

I[X"J = Jdi' [- (X;)2 + (X/ + Nm2] (6.2) 

(where with a slight abuse of notation, a dot now denotes a derivative with 
respect to T). This action is indefinite, but it is clear that one needs only to 
let XO --+ iXo to obtain a positive definite action. It is therefore necessary to 
perform two rotations to achieve a postive definite action, one of the unphysical 
parameter time T, one of the physical time XO. 

In fact, generally for parametrized theories, one would expect that a 
hounded Euclidean action could be obtained by identifying the internal time 
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parameter and then rotating it. The Euclidean action for gravity is analagolls 
to the action (6.2), and is also unbounded - in the direction of rapidly varyillg 
cOllformal factors. And what the conformal rotation is doing is regarding t.he 
COli formal factor as the physical time, and rotating it. But the conformal factor 
is not really the true internal time of general relativity. Indeed, the problem of 
identifying this internal time - the so-called problem of time remains one of 
the oustanding problems of canonical general relativity [7]. It is because we do 
not know exactly what to rotate (but we know we need to rotate something) 
that is seems reasonable to look for general complex contours. Of course, we 
have not proved anything here. We have merely stressed that the indefiniteness 
of the action is not a sickness, and that the need for complex contours is Hot 
artifical. These things are just aspects of parametrized theories generally. 

It is also worth pointing out that the contour would still be an issue even 
if the action for gravity were bounded from below. The contour issue is not 
really about convergence, which is in fact quite easy to achieve by choosing 
suitable complex contours. Rather, the point is that there are many complex 
contours leading to solutions to the Wheeler-DeWitt equation, each of which 
may be regarded, mathematically at least, as candidate wave functions for the 
universe. The real issue is to identify those contours which lead to physically 
interesting wave functions. 

The situation may again be compared to that of the relativistic point parti 
cle. It has many two-point functions one may be interested in, t.g. Wightman, 
Feynman, advanced, retarded. All such two-point functions may be given by 
the samt.:: integral representation, 

G(X", X') =Jd4p eip.(X"_X/) (6.3)
p2+m2 

The various types of two-point function are obtained by appropriate choice 
of the contour in the Po plane. This is fixed by the boundary conditions of 
the problem. The integral (6.3) is analogous to the integral (4.1) for quantum 
cosmology. But none of the boundary condition proposals that have been made 
so far in quantum cosmology seem to fix a particular contour. It therefore seems 
reasonable to ask what restrictions one should put on the contour in order to 
obtain physically interesting wave functions. 
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i. Five Crit.el·i .. 

\Ve IIOW cOllsider five Cl"iteria which naturally suggest themselves as rea
S()IIC1bl,~ restrict.iolls on a contour defilling the wave function of the universe, :lnd 
how t.hey might t)(~ satisfied [16]. They are: 

( I) 	The int.egral along t.he contour should converge. 

As we have stated, this requires that the contour be complex. It is generally 
quit.e easy to find complex contours along which the integral converges. For 
example, in a variety of simple minisuperspace models, the path integral readily 
wdures to a ~ingle integration over the lapse, and one may integrate along the 
con tOll rs of steepest descent [1 i]. 

(2) 	The wave function generated should satisfy the Wheeler-DeWitt equation 
and the momentum constraints, (3.6). 

This criterion imposes restrictions on the end-points of the contour of integra
I.ion. It implies, in particular, that the contour for the lapse function N must 
be invariant, in the sense discussed above. Invariance may be achieved by tak
ing a contour which is infinite in length, and may lie anywhere in the complex 
plalle, consistent with convergence. Another possibility for the lapse is to have 
:l closed contour. This is not strictly invariant under the Hamiltonian symmetry 
discussed above, in that it is shifted in the complex plane; but it is invariant in 
t.he sense that t.he shift.ed contour is equivalent to the original one by Cauchy 
II ist.ort.ioTl. 

These first two criteria are mat.hematical, and any contour satisfying them 
d('fines an admissahle wave function for the universe. Bllt we need further 
crit.eria t.o single out wave functiolls making sensible physical predictions. We 
t.herefore impose the following t.hree requirements. 

(:J) 	 The wave function should predict classical spacetime on scales large com
parf'd to the Planck length. 

('Iassical spacetime is a manifest property of the late universe, but a property of 
only very special quantum states. There are a number of conditions that need 
t.o be satisfied before one can say classical spacetime is a prediction. For the 
purposes of the present analysis, the most important one is that the histories are 
highly correlat.ed according to classical laws. There are, of course, many wave 
functions which lead to classical correlations (e.g. Ref. [18]). However, c1Msical 
correlat.ions are most commonly signaled in quantum cosmology when the wave 
function is well-approximated by a certain type of semi-classical approximation. 
A t.ypical form corresponding to classical spacetime and quantum matter is: 

'II [h ij ,¢] ~ L ~p[hij] exp (iS1' [hij]) tPp [¢, gp] (7.1) 
p 
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Here, 8p is a c1aC)sical action obeying the Lorentzian Hamiltonian-Jacobi eqlla
t.ion for gravity coupled to the expectation value of matter fields. For this 
approximation to be valid, S1' must vary much more rapidly with hij than the 
prcfactor 6.p or tPp. The wave function (7.1) is th",n strongly peaked about the 
ensemble of classical spacetimes g1' defined by the integral curves of S1' [18}. 
The tP1' [¢, g1'] are the associated states of the matter field in these spacetime 
backgrounds. They should be normalizable in the variables ¢(x) on a spacelike 
surface of 91' [19]. Mathematically, a semiclassical approximation to 'Po of the 
form (7.1) arises when, in a steepest-descents approximation to the functional 
integral the dominating saddle-points are complex. The integral will frequently 
have many saddle-points, and for that reason we have included the sum over 
the discrete label p. The number of saddle-points supplying the dominant con
tribution to the integral, however, is typically very small so p runs over only a 
very small number of discrete values (one or two in simple examples) [20]. For 
each p, the prefactor IIp is of the form e-1RllwKB where llWKB is the usual 
WKB prefactor. Because the dominating saddle-points are generally complex, 
the prefactor also includes the factor e- /R , where IR is the real part of the 
complex action. 

The question of whether a no-boundary proposal predicts classical space
time is the question of whether the contour passes through the appropriate com
plex saddle-points to make an approximation like (7.1) valid when the universe 
is large. No general statement is available concerning the explicit restrictions 
this criterion places on the contour, but it turns out to be straightforward to 
apply it in simple models. 

(4) A closely related requirement is the reproduction of familiar quantum field 
theory for matter when spacetime is approximately classical. 

This is connected with the matter fluctuations in the steepest-descents approx
imation about the complex saddle-points. More precisely, it is the question of 
whether the wave functions tP1' [¢, 91'] in (7.1) correctly describe quantum field 
theory in the spacetime gp. The way in which this could fail to be the case is 
as follows. Because we are allowing all possible complex metrics in the path 
integral, it is possible to end up with saddle-points for which ..;g < 0 (as well 
as "usual" ones with ..;g> 0). The action for matter fluctuations about such 
saddle-points will be negative definite. In the semi-classical approximation the 
matter wave functions are of the form, "1' ~ e-1::!, where I,;! is the matter 
action of the classical solution satisfying the appropriate boundary conditions. 
Because I;;" < 0 at saddle-points with ..;g < 0, the matter wave functions will 
not be normalizable, and not belong to the Hilbert space of matter states. This 
implies that the contour should not be dominated by saddle-points with V9 < o. 
(5) 	To the extent that wormholes makes the cosmological constant dependent 

on initial conditions, the wave function should predict its vanishing. 
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Becent work by Hawking [21], Coleman [22], Giddings and Strominger [23} 
and others has shown that if non-trivial "wormhole" topologies are included 
ill the sum-over-histories (4.1) then the coupling constants of the effective low 
('IIf'rgy theory accessible to us may depend as much on the initial conditions 
of the uiliverse as they do on the form of the fundamental Lagrangian. In 
particular wormholes may provide a mechanism for making the cosmological 
(,,01l8tallt vanish. A reasonable restriction 011 a 110 boundary proposal is that it 
predict this. 'We measure the cosmological constant only through the evolution 
of the universe itself, tha.t is, through the dynamics of the classical spacetime 
of t.l.e late universe. A wave function of the universe predicts a distribution of 
("osmological constants when it predicts a family of classical spacetimes, each 
obeying Einstein's equation, but with differ'ent possible cosmological constant 
terms, A. That is, a semiclassical approximation of the form 

'l1[h ij ,4>] = JdA L>~~p[A, It'j] exp (iSp[A, hij]) "p [4>, YAp] (7.2) 
p 

lIere, Sp is the classical action for gravity with cosmological constant A coupled 
to expectation values of matter fields in the state "p. Roughly speaking, in 
the effective theory, the integral over metrics in Eq.(4.1) contributes the few 
terms in (7.2) labeled by different values of p, while the sum over manifolds 
becomes the slim over A. The distribution of the cosmological constant implied 
by 6 p [A, hij] is thus closely connected with the semiclassical approximation 
and therefore with the contour of integration of a no-boundary proposal. In 
particular, the prediction of vanishing cosmological constant depends on the 
contour being domillated by saddle-points for which IR, the real part of the 
complex action, is negative, and of the form IR "'" - *. For then one gets 
weight factors of the form exp (*) in ~p. However, this will not be the case 
if the contour is dominated by the saddle-points for which ..;g < 0, for then 
III '" +k. Agaiu, therefore, we deduce that the contour must not be dominated 
by a saddle-point for which ..fii < O. 

These then, are the conditiolls it seems reasonable to impose on the con
tour, and how they might be sat.isfied. Many interesting results have come out 
of a study of these criteria, but it is perhaps useful to fOCliS some of these results 
iulo concise statements: 

a) COlltours yielding physically interesting wave functions are readily found 
ill a val'iety of simple (miuislIpel'space) models (17]. 

b) 	 The no-boulHJary proposal, as it cuucutly stands, docs not define a 'Unique 
wave function of the universe. The proposal to sum over a given class of 
lliallifoids dof's IIOt fix the contour. Even after applying the above criteria 

there is residual ambiguity, and so there are a number of wave functions 
laying rightful claim to be called the no-boundary wave function. 

c) Any boundary condition proposal in quantum cosmology, in path integral 
form, must specify a choice of contour. 

8. 	Lorentzian Contours 

The indefiniteness of the Euclidean action has prompted a number of au
thors to suggest that one should never go to the Euclidean version of the theory 
in the first place, but always remain in the Lorentzian sector. That is, one 
should find a way of defining the Lorentzian path integral over real Lorentzian 
fields [24]. In connection with such proposals, we offer the following remarks. 

(i) 	From the perspective of the present work, Lorentzian contours are possible 
choices amongst the set of all possible complex contours, and one must ask 
whether or not they satisfy the five criteria set forth above. Convergence 
is not a difficulty because a real Lorentzian contour can always be pushed 
off the real Lorentzian axis into the space of complex metrics in such a 
way that exponentially rapid convergence is obtained. Similarly, satisfying 
the constraints is straightforward. Criteria (3)-(5) however, concerning the 
nature of the dominating saddle-points, are not obviously satisfied, and it 
would be necessary to check these in particular models. 

(ii) 	The description "Lorentzian" does not fix the contour uniquely. The action, 
and hence the integand of the path integral has a singularity at ..;g = 0, 
which lies on the real Lorentzian axis. Contours passing either side of the 
singularity could each be regarded as Lorentzian yet will be inequivalent. 
The above criteria, however, may resolve this ambiguity. 

(iii) Lorentzian contours are sometimes proposed on the grounds that the clas
sical spacetime we live in is a real Lorentzian geometry. However, this fact 
is not directly related to the nature of the contour, but rather, depends on 
the nature of the dominating saddle-points. As discussed above, classical 
spacetime is predicted when (amongst other conditions), the chosen con
tour may be distorted into a steepest descent contour dominated by a com
plex saddle-point for which the imaginary part of the action varies much 
more rapidly than the real part. Clearly there could be many complex, 
Ilon-Lorelltzian contours for which this is true. On the other hand, fixing 
the contour to be Lorentzian does not guanlltee that it will be do~inated 
by the correct. saddle-points. One eQuId say that a Lorentzian contour is 
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neither a necessary nor stcffi,ciel1t condition for the prediction of classical 
spacetime. 

Finally, we remark that there exist alternative suggestions for dealing with 
t.he inddiniteness of the Euclidean action, which do not involve a general study 
of complex contours. There is, for example, the observation of Deser and Nico

in t.he context of slIpergravity, that it. is formally possible to transform the 
:lction t.o quadrat.ic form, and so explicitly identify what it is that one needs 
1.0 rot.ate to obtain a po~it.ive action [25]. Another intriguing suggest.ion is that 
of Gre(~nsite and Halpern. which involves replacing the factor of e- i with t.he 
solution t.o a cert.ain Fokker- Planck equation 

U. 	 Suuuual'Y 

vVe have reviewed recent work on t.he definition of the path integral in quan
(,11111 cosmology, and it.s connections with the ,"'heeler-DeWitt equation. This 
work is part of a continuing effort. to make path-integral quantum cosmology 
more precise. There is much more t.hat can be done in this program. 

The derivation of the com:;taints considered here was formal, in that little 
or no attention was paid to the details of the measure, regularization, opera
t.or ordering etc. For quantum mechanical-type systems (e.g. minisuperspace 
models) t.hese issues are readily dealt with [12]. For field theories, however, 
they are likely to be highly non-trivial. It would be interesting, for example, to 
understand how the derivation of the constraints is affected by the presence of 
anomalies. It would also be interesting and useful to construct not just single
surface amplitudes like wave functions, but more complicated amplitudes such 
as the decoherence functional[2]. Finally, as stated at the beginning of this talk, 
the difficulties of quantum gravity cast a dark shadow over much of quantum 
cosmology. It would therefore be particularly interesting to somehow incorpo
rate string theory into quantum cosmology in a useful way. 
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