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ABSTRACT: We review soine recent advances in a path-integral approach
to quantum cosmology developed over the last few years. We discuss the con-
struction of the path integral for the wave function of the universe. Because the
Euclidean Einstein-Hilbert action is not bounded {rom below, the integration is
necessarily over a contour of complex metrics. Criteria for a suitable choice of
contour are discussed, many of them motivated by studies of simple minisuper-
space models. We show that if the contour is suitably chosen, the wave functions
renerated by the path integral will be solutions to the Wheeler-DeWitt equation
and momentum constraints of the Dirac quantization procedure.

To appear in Proceedings of the Sixth Marcel Grossman Meeting,
Kyoto, Japan, 1991.
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1. Introduction

The goal of quantum cosmology is to understand the origin and evolution
of the universe in quantum mechanical terms. The prime motivation for this
endeavour concerns the issue of initial conditions in cosmology. Virtually all
predictions of classical cosmology always depend to some extent, even though
very weakly, on initial conditions. This dependence may not be so obvious
for processes in the late universe, but in the very early universe, around the
inflationary era, it is becomes apparent that the present universe could only
have arisen from a certain class of initial conditions. What is the origin of these
initial conditions? What sort of form does a theory of initial conditions take?

In looking for the point in time at which to impose initial conditions, it is
natural to follow the evolution of the universe backwards. As we do this, the
scale factor goes to zero, the energy density and curvature approach infinity, and
the universe appears to have begun with an initial singularity. We know from
the singularity theorems that these singularities are not artefacts of inaccurate
modeling in cosmological models, but are generic. The existence of these regions
of arbitrarily high curvature is not taken to imply that the real universe actually
began with a singularity, but rather, from general dimensional reasoning, that
it emerged from a regime in which quantum gravitational effects are important.
This suggests that the issue of initial conditions in cosmology is most properly
addressed from a framework in which gravity is quantized. Quantum cosmology

aspires tu be such a framework.

In brief, quantum cosmology is the application of quantum mechanics to
the dynamical systems describing closed universes, generally involving a com-
bination of canonical and path integral methods, based on the Einstein action
[1,2]. The point of this talk is to some describe some recent developments in the
use of path integral methods, much of it by the present author in collaboration

with J.B.Hartle, and with J.Louko.

2. The Problem of Quantum Gravity

The first and perhaps most serious difficulty with quantum cosmology
is the problem of quantum gravity. FEinstein gravity is perturbatively non-
renormalizable, and no-one to date has had any reasonable degree of success in
making sense of it as a quantum field theory. It is claimed that string theory is,
or at least contains a consistent well-defined quantum theory of gravity. But it
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lhas not yet been cast in a inanageable form allowing it to be directly applied
to cosmology.

Given, on the one hand, the considerable interest in the issue of initial
conditions, but on the other, the serious diflicultics with quantum gravity, it
seems reasonable at present in quantum cosmology to persevere with a (possibly
sick) theory based on Einstein gravity coupled to matter (or possibly simple
muodifications of this theory, such as those discussed by Steinhardt in his lectures
[3]). There are a number of reasons why this is a reasonable thing to do:

(1) ‘There is a chance that it may be correct, that is, that the theory may make
seuse non-pelurbatively. T'his possibility is currently being investigated by
Aslitekar and collaborators {4], and also in numerical studies of DeWitt
and collaborators [5].

(11) The resnlts obtained may be correct in the low-energy regime, well away
fromi the Planck scale. This regiine may in fact still contain some interesting
physics. For example, in tunneling from nothing scenarios, the scale (of
curvatures, energy densities elc.) is set by demanding that one match on
to an inflationary model, and this sets the scale to be four or five orders of
maguitude below the Planck scale [6].

(11) A quantum gravity theory based on Einstein gravity possesses features
and difliculties one might expect to appear in a full quantum theory of
gravity. We can therefore have a “practice run” at the full theory. For
example, we can try and learn how to quantize generally covariant theories,
with the associated problem of time, efc. In fact, I would say that the
main achievements of contemnporary quantum cosinology have been in the
investigation of issues, rather than detailed technical results.

These, then, are some of the reasons why one might want to study a quantum
theory of cosmology based on the Einstein action. Let us turn now to the
{ormalism of quantum cosmology.

3. Canouical Quantization

We begin by considering the canonical quantization of Einstein gravity
coupled to matter for closed universes [7]. Our starting point is the action

S = /d4$ \/—-_g (R-“QA) + Smauer (31)
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where Sp,qatrer is the action for some matter field, a scalar field ¢ say, and we
are using units in which 167G = 1. To obtain the Hamiltonian form of the
action we first write the metric in (3 + 1) form,

2= —(N? = N;N*)dt* + 2N;dz*dt + h;;dz*dz! (3.2)

where N is the lapse, N* is the shift and h;; is the three-metric. The Hamilto-
nian form of the action may then be straightforwardly obtained, and takes the
form

S= / dt &z [hign's + br — NH — N'Hi] (3.3)

where 7/ and my are the momenta conjuate to h;; and ¢ respectively. The
Hamiltonian is a sum of constraints,

B i 1. .
H=h % (7!"’7!‘,'1'—571':7!';-) —h%(aR—zA)‘f‘Hmatter:O (3.4)
H; = __27('_1[1' + HPatter = ¢ (3.5)

with the lapse and shift playing the role of lagrange multipliers.

In the quantum theory, the state of the system is represented by a wave
functional, ¥(h;;,¢], a functional of the field configurations on the three-
surfaces. The wave function has no explicit dependence on time. There is
thercfore no Schrédinger equation, only the constraints of the Dirac quanti-
zation procedure, obtained by insisting that the state is annihilated by the
operator version of the constraints:

\I’[h,'j,lﬁ] = 0, ﬂi‘y[hij;d’] =0 (3‘6)

These relations are referred to, respectively, the Wheeler—DeWxtt equation and
the momentum constraints.

<

4. Path-Integral Quantization

.

The wave function fot the umverse may .also be obt.amed from a-path
integral expression. Suppose we wxsh tb obtam the wave function for a-three;
surface B on which the three-metnc is hi; and the matter field is ¢. Regard B
as part of the boundary of a fodr-manifold M, on which' the four-metric is g,,,
and the matter field is ®, with these fields matching h;; and ¢ on B. Then the
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wave function is obtained by summing over all such metrics and matter fields
on the manifold M, and over some class of manifolds:

Y[k, ¢, B Z / Dgu D e~ (4.1)

Here, I is the Buclidean action of the gravity plus matter system. Perhaps the
best known example of such a construction is the “no-boundary” proposal of
Hartle and Iawking, in which the class of manifolds summed over is taken to
be compact manifolds whose only boundary is B [8].

The path integral approach is potentially more powerful than the canonical
approach in that it can in principle deal with multiple surface amplitudes,
as might be involved in topology changing situations, or in the decoherence
functional [2]. These more general amplitudes are likely to be the objects of
greatest interest in future approaches to quantum cosmology. Here however,
for simplicity, we will consider only single surface amplitudes.

It is not known how to define the sum over four-manifolds, so in practice
what is done is to study the path integral for each candidate four-manifold
separately. As with all such path integral expressions, a number of technical
aspects of this construction then neced to be specified before it can be regarded
as properly and uniquely defined, such as gauge-fixing machinery, measure,
regularization elc. After all of this has been done, two question naturally arise:

1) Does the wave function so generated satis{y the constraints of the Dirac
quantization procedure, i.e., the Wheeler-DeWitt equation and the mo-
mentum constraints?

2) The Euclidean action for gravity is not bounded from below. The integral
will therefore not converge unless the ficlds are integrated along a com-
plez contour. There are presumably many suitable contours. How is this
complex contour chosen?

These two questions are the topic of the rest of this talk.

5. Derivation of the Wheeler-DeWitt Equation

We now consider the first question, that of the connection between the
path integral and the constraints [9]. It is enlightening to cast this question
i more general setting, and ask, for more gencral systems with symmetry,
whether or not the wave functions generated by the path integral satisly the
constraints of the Dirac quantization procedure. For definiteness, let us focus
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on constrained Hamiltonian systems, although the following discussion is not
restricted to this case.

A constrained Hamiltonian system [10] is one defined on a phase space
(pi, q'), characterized by an action of the form

"
t

Slpi, q*, A°] :/ dt [pig' — Ho — AT (5.1)
‘l

where A% are multipliers which when varied enforce the constraints T, = 0.
The constraints satisfy the Poisson bracket algebra

{Te, T3} = U;',,T7 (5.2)
Hy is the physical Hamiltonian of the theory, and satisfies
{Ho,To} =VPT, (5.3)

U] and V& may depend on p; and ¢*. Hy vanishes identically when the physical
time is included among the dynamical variables ¢* (parametrized theories) and
the action as a consequence is reparametrization invariant.

For the case of general relativity the ¢' represent the components of
the three-metric, ¢' ~ h;j(x), the A® represent the lapse and shift, A* ~
(N(x), N*(x)), and the T, represent (H(x),Hi(x)). Ho = 0 and the struc-
ture coefficients U] of depend on ¢*, but not p;. In any summation over indices,
it is implicit that there is also an integration over spatial coordinates x, but
this will be omitted for notational simplicity

The Hamiltonian form of the action, (5.1), is invariant under canonical
transformations generated by the constraints. To see this, consider the trans-
formations

spi = {pi,e°Ta}, 8¢ = {¢',°Tu} (5.9)
where €%(t) is a function of time. An elementary calculation shows that if
A% = ¢ — UG W — Vgte (5.5)
then a7 i
865 = [c"(t) (p.- 0,: - Ta)]y (5.6)

The action is therefore invariant if €*(t') = 0 = ¢*(t"), unless the constraints
are linear in the momenta, in which case the terms in the square bracket vanish
identically without restrictions on €°(t).
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Consider now the patl integral representation of the wave functions of this
theory. For convenience, introduce the notation z* = (p;,¢*, A*). Then the
path integral representation of the wave functions has the form

O /CI’ 5G] Ag T 8(gi (1) - ¢*) (57

The sumn is over a class C of paths, restricted by the explicit delta-function
to end on the argument of the wave function. G¢ are a set of gauge-fixing
conditions, with associated weight factor Ag which may be constructed using
the method of Batalin, Fradkin and Vilkovisky (BFV) [11]. For gauge theories
it is the Faddeev-Popov determinant. S{z] is the action. Here we have focussed
on the Hamiltonian form of the path integral, but the form (5.7) is actually
quite general, if z4 is suitably defined, e.g., 24 = (g*, A*) for the Lagrangian
form of path integral, 24 = (p;,¢*, A%, ghosts) for the BRST form [11].

We shall show that the constraints of the Dirac quantization procedure
on ¥(g¢') follow very readily from this path-integral expression, assuming only
certain invariance properties of the sum-over-histories. Let us spell out what
we mean by an invariant path integral construction. Suppose the theory has
an invariance under z* — z* 4 6z4, where 624 depends linearly on some

paraineters €*(t) and their derivatives, é(t). We also need to assume that,
8¢' = € folpira) (5.8)

(for Lagrangian theories, p; denotes 8L/dq*, where L is the Lagrangian). That
is, the transformation of ¢* does not depend on the Lagange multipliers or on
. This is clearly satisfied for constrained llamiltonian systems, by virtue of
{5.4). Then an mvariant path integral construction would involve an action,
measure and class of paths for which the following four properties hold under
this transformation:

1) The action S changes at the most by a surface term of the form

t"

65 = [ Fulpi 0]’ (5.9)
That ié, it should not depend on the Lagrange multipliers, or on €°.
2} The class of paths, C, is invariant.
5.

3) The path integral (5.7) is independent of the choice of gauge conditions

A* 3
=

1) The combination of the measure and the gauge-fixing weight factor trans-
formn under a symmetry transformation according to

D" Ag[z"] - D22 Ag [24] . (5.10)
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where G [24] = G[z4 + 6.z4].

In addition to these four properties characterizing the invariance of the path
integral (5.7) we will also need to assume the following:

5) Integrals of the form (5.7) weighted by functions of p; and ¢* on the final
surface are equal to corresponding, appropriately ordered operators acting
on ¥(g'"). That is, for given F(pi,¢'),

/C DA F (pi(t"),¢'(t") 8 (¢'(t") - ¢) Aclz?] 8[G(24)] exp (iS[z4])

=F (—ig%,q"') ¥(q'") (5.11)

for some deducible operator acting on the right-hand side.

Criterion (1) is clearly satisfied for constrained Hamiltonian systems. Per-
haps the most important condition is (2), which concerns the domains of in-
tegration of the integral. From (5.5), it implies that the Lagrange multipliers,
and in particular the lapse function, must be integrated over an infinite range.
Criteria (3) and (4) may be shown to be properties of the BFV path inte-
gral construction [9,11], and (5) may be shown to be true in a time-slicing
implementation of the path integral. We will not devote any further space to
discussing whether or not particular implementations of the sum-over-histories
satisfy these criteria. This is discussed in detail in Ref.[9]. It suffices to state
that they may be shown to be satisfied by standard implementations. The
important point is that the above set of criteria is the minimal set that any
implementation must satisfy if it is to satisfy the constraints.

Turn now to the derivation of the constraints from (5.7). Translate the
integration variables in (5.7) by a symmetry transformation for which ¢%(t) is
nonvanishing only in a neighborhood of t”. The overall integral is unchanged
because we are merely changing the variables of integration. The class of paths
is unchanged because it is invariant. The action changes according to (5.9) with
only the surface term at t = t” contributing because ¢®(t') = 0. The change in
measure and gauge-fixing machinery consists of no more than a change of gauge
conditions. The integral with translated integrand therefore takes the form

W)= [[De4 5 () + 681) ~ o) Aol HGE)

x exp (i(S[z*] + 65[z4])) . (5.12)
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llsing the assumed indcpendence of gauge-fixing condition, G¥ may be replaced
by G in (5.12). Then subtracting (5.7) from (5.12), using (5.8) and (5.9), and
expanding to first order in €, we have

0= /C’D:A (") 6 (¢(t) - 0") Aale?] 61G7(24)] exp (iS[4])

< ) [P @) - BN | )
q

And using (5.11), we may pull the term in square brackets outside the intergal,
ter dedice that

[Fa(pin @) ~ fi(Bi, i )pi] ¥(q') = 0 (5.14)
where , .
“ N ¢ N
Pi=ig  d=a (5.15)

and we have dropped the double primes for convenience. This is the main
result - a differential operator identity for ¥(q') satisfied as a consequence of a
path integral satisfying invariance properties (1)-(5). Finally, computing (5.14)
for the case of constrained Hamiltonian systems, by comparing (5.8) and (5.9)
with (5.4) and (5.6), we readily derive the constraints of the Dirac quantization
procedure:

(i §)¥(¢') = 0 (5.16)

In particular, for the case of general relativity for closed cosmologies, these
constraints are the Wheeler-DeWitt equation and the momentum constraints.

We have seen, thercfore, that the path integral expression for the wave
function for the universe will satisfy the Wheeler-DeWitt equation and the
momentum constraints, provided that the integral is constructed in an invariant
mnanner.

It is important to be precise about which invariance it is that leads to the
constraints. It is sometimes claimed that the Wheeler-DeWitt equation is the
guantum mechanical expression of diffeomorphism invariance, in the same way
that the Gauss law constraint in canonically quantized gauge theories is the
quantwin expression of gange invariance. This is not quite true. The symmetry
nsed to derive the contraints was the symmetry of the Hamiltonian form of the
artion, (5.4), (5.5). On the lapse function N this symmetry transformation has
the form, § N = ¢ 4+ ---. Compare this to four-dimensional diffeomorphisms,
dex’ = —g# which on the lapse function have the form §¢ N = EN + ---. The
transformations coincide if one makes the identification of parameters, € = N§.
To derive the constraints, it is important that the symmetry transformation is
parametrized in such a way that (5.8) and (5.9) do not depend on the Lagrange
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multpliers (otherwise we could not make the step from (5.13) to (5.14)). This is
true of the parametrization in terms of ¢, but is not true of the parametrization
in terms of £&. The symmetry associated with the Wheeler-DeWitt equation,
therefore, is not four-dimensional diffeomorphism invariance, but is the closely
related syminetry of the Hamiltonian form of the action, in which ¢ and not £
is the freely specifiable parameter.

This subtle distinction has the following consequence. One might have
thought that one could obtain a solution to the Wheeler-DeWitt equation by
integrating the lapse function over a half-infinite range, N > 0. This is, after
all, a diffeomorphism-invariant range. However, as we have just pointed out,
the relevant symmetry is not diffeomorphisms, but is the symmetry associated
with the Hamiltonian form of the action. N > 0 is not an invariant range
under this symmetry, since § N = € + - .- may map positive lapse to negative
lapse. This symmetry is slightly larger (and therefore more restrictive) than
the diffeomorphisms, and the only invariant range is —oco < N < +00.

The above derivation can also be carried out for a path integral of Euclidean
signature. One finds that the Wheeler-DeWitt equation is the same, irrespective
of whether one takes a Euclidean or Lorentzian theory as the starting point [9].

For the special case of minisuperspace models, a derivation of the Wheeler-
DeWitt equation paying particular attention to the measure and operator or-
dering may be carried out [12]. Other discussions of the connection between
the path integral and the constraints may be found in Ref.[13]. The case of
global symmetries of field theory (e.g. Lorentz or de Sitter invariance) and
their associated constraints on the wave functions was discussed in Ref.[14].

6. Complex Contours

N we turn to the second question, that of choosing suitable complex
contours. For definiteness, we will concentrate on the path integral for the no-
boundary wave function, although much of what follows is quite general. As
stated earlier, the Euclidean Einstein action is not bounded from below, so the
path integral will not converge if one integrates over real Euclidean metrics.
To obtain convergence it is necessary to integrate along some complex contour
in the space of complex four-metrics and matter fields. It is, therefore, rather
misleading to refer to the expression (4.1) as a “Euclidean” path integral. One
should from the very beginning think of it as a compler integral representation
of the wave function.

10
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How do we choose a suitable complex contour? Numierous proposals for
the contour have been made over the years. Perhaps the best known is the
conformal rotation of Gibbons, Ilawking and Perry [15]. This involves writ-
ing the four-metric as g,, = Q%§,,, where g,, is a fiducial metric fixed by
some suitable condition, such as R(§) = 0 (for the asymptotically flat case)
or (7)) = 4A (for the closed case). The integral over §2 is then rotated to lie
parallel to the imaginary axis, and one can argue that the resulting integral
will converge. The main problem with this proposal is that not all metrics can
be conformally transformed to one satisfying the fiducial condition, so certain
netrics are being missed out. And in general, there appears to be no entirely
satisfactory proposal for defining a suitable complex contour, for the case of
closed cosmologies considered here. For this reasou, it seems sensible to em-
bark on a general search for suitable complex contours with which to define the
no-boundary wave function.

It is sometimes suggested that the indefiniteness of the Euclidean action for
gravity means that the theory is sick, and that in integrating along a complex
contour one is pretending to cure the incurable. This is not necessarily the
case. The indefiniteness of the gravitational action is intimately related to the
fact that general relativity is an example of a parametrized theory — a theory
i which- the physical time is included amongst the basic dynamical variables.
By way of example, consider a much simpler parametrized system, namely the
relativistic point particle. It’s Lorentzian action may be written

S[X*] = /dr {*Qgﬁ + (—)‘1—;—)3 - Nmz] (6.1)

Here 7 is the parameter time, the physical time is X°, N is a Lagrange multi-
phier, and a dot denotes a derivative with respect to 7. The object commonly
called the Euclidean action, I, is obtained by letting 7 = —i¥ and I = —iS.
One thus obtains,

IX*] = /d? [-—(—)-(TVO—)—? + (—)—();:,)—2 +Nm2] (6.2)

(where with a slight abuse of notation, a dot now denotes a derivative with
respect to 7). This action is indefinite, but it is clear that one needs only to
let X® — iX? to obtain a positive definite action. It is therefore necessary to
perform {wo rotations to achieve a postive definite action, one of the unphysical
parameter time 7, one of the physical time X°.

In fact, generally for parametrized theories, one would expect that a
bounded Euclidean action could be obtained by identifying the internal time
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parameter and then rotating it. The Euclidean action for gravity is analagous
to the action (6.2), and is also unbounded - in the direction of rapidly varying
confornal factors. And what the conformal rotation is doing is regarding the
conformal factor as the physical time, and rotating it. But the conformal factor
is not really the true internal time of general relativity. Indeed, the problem of
identifying this internal time — the so-called problem of time — remains one of
the oustanding problems of canonical general relativity [7]. It is because we do
not know exactly what to rotate (but we know we need to rotate something)
that is seems reasonable to look for general complex contours. Of course, we
have not proved anything here. We have merely stressed that the indefiniteness
of the action is not a sickness, and that the need for complex contours is not
artifical. These things are just aspects of parametrized theories generally.

It is also worth pointing out that the contour would still be an issue even
if the action for gravity were bounded from below. The contour issue is not
really about convergence, which is in fact quite easy to achieve by choosing
suitable complex contours. Rather, the point is that there are many complex
contours leading to solutions to the Wheeler-DeWitt equation, each of which
may be regarded, mathematically at least, as candidate wave functions for the
universe. The real issue is to identify those contours which lead to physically
interesting wave functions.

The situation may again be compared to that of the relativistic point parti-
cle. It has many two-point functions one may be interested in, e.g. Wightman,
Feynman, advanced, retarded. All such two-point functions may be given by
tlhie same utegral representation,

e.'p(xll_xl)

———— 6.
T (6.3)

G(xII,XI) —_ /d4p
The various types of two-point function are obtained by appropriate choice
of the contour in the py plane. This is fixed by the boundary conditions of
the problem. The integral (6.3) is analogous to the integral (4.1) for quantum
cosmology. But none of the boundary condition proposals that have been made
so far in quantum cosmology seem to fix a particular contour. It therefore seems
reasonable to ask what restrictions one should put on the contour in order to
obtain physically interesting wave functions.
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7. Five Criteria

We now consider five criteria which naturally suggest themselves as rea-
sonable restrictions on a contour defining the wave function of the universe, and
how they might be satisfied [16]. ‘They are:

(1) The integral along the contour should converge.

As we have stated, this requires that the contour be complex. It is generally
quite easy to find complex contours along which the integral converges. For
example, in a variety of simple minisuperspace models, the path integral readily
reduces to a single integration over the lapse, and one may integrate along the
conlours of steepest descent [17].

(2) The wave function generated should satisfy the Wheeler-DeWitt equatlon
and the momentum constraints, (3.6).

This criterion imposes restrictions on the end-points of the contour of integra-
tion. It implies, in particular, that the contour for the lapse function N must
be invariant, in the sense discussed above. Invariance may be achieved by tak-
ing a contour which is infinite in length, and may lie anywhere in the complex
plane, consistent with convergence. Another possibility for the lapse is to have
a closed contour. This is not strictly invariant under the Hamiltonian symmetry
discussed above, in that it is shifted in the complex plane; but it is invariant in
the sense that the shifted contour is equivalent to the original one by Cauchy
distortion.

These first two criteria are mathematical, and any contour satisfying them
defines an admissable wave function for the universe. But we need further
criteria to single out wave functions making sensible physical predlctlons We
therefore impose the following three requirements.

(3) The wave function should predict classical spacetime on scales large com-
pared to the Planck length.

(‘lassical spacetime is a manifest property of the late universe, but a property of
only very special quantum states. There are a number of conditions that need
to be satisfied beflore one can say classical spacetime is a prediction. For the
purposes of the present analysis, the most important one is that the histories are
highly correlated according to classical laws. There are, of course, many wave
functions which lead to classical correlations (e.g. Ref.[18]). However, classical
correlations are most commonly signaled in quantum cosmology when the wave
function is well-approximated by a certain type of semi-classical approximation.
A typical form corresponding to classical spacetime and quantum matter is:

ki, #] % Y Aplhij]exp (iSp [hi]) ¥y [4, 35) (7.1)
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ITere, S, is a classical action obeying the Lorentzian Hamiltonian-Jacobi equa-
tion for gravity coupled to the expectation value of matter fields. For this
approximation to be valid, S, must vary much more rapidly with h;; than the
prefactor A, or t,. The wave function (7.1) is then strongly peaked about the
ensemble of classical spacetimes §, defined by the integral curves of S, [18].
The 1, [4, §p) are the associated states of the matter field in these spacetime
backgrounds. They should be normalizable in the variables ¢(x) on a spacelike
surface of g, [19). Mathematically, a semiclassical approximation to ¥o of the
form (7.1) arises when, in a steepest-descents approximation to the functional
integral the dominating saddle-points are complez. The integral will frequently
have many saddle-points, and for that reason we have included the sum over
the discrete label p. The number of saddle-points supplying the dominant con-
tribution to the integral, however, is typically very small so p runs over only a
very small number of discrete values (one or two in simple examples) [20]. For
each p, the prefactor A, is of the form e~ '"Awxp where Awkp is the usual
WKB prefactor. Because the dominating saddle-points are generally complex,
the prefactor also includes the factor e~/r, where Ig is the real part of the
complex action.

The question of whether a no-boundary proposal predicts classical space-
time is the question of whether the contour passes through the appropriate com-
plex saddle-points to make an approximation like (7.1) valid when the universe
is large. No general statement is available concerning the explicit restrictions
this criterion places on the contour, but it turns out to be straightforward to
apply it in simple models.

(4) A closely related requirement is the reproduction of familiar quantum field
theory for matter when spacetime is approximately classical.

This is connected with the matter fluctuations in the steepest-descents approx-
imation about the complex saddle-points. More precisely, it is the question of
whether the wave functions 1y, [@, §p] in (7.1) correctly describe quantum field
theory in the spacetime §,. The way in which this could fail to be the case is
as follows. Because we are allowing all possible complex metrics in the path
integral, it is possible to end up with saddle-points for which /g < 0 (as well
as “usual” ones with ,/g > 0). The action for matter fluctuations about such
saddle-points will be negative definite. In the semi-classical approximation the
matter wave functions are of the form, ¢, & e"’::, where I¢! is the matter
action of the classical solution satisfying the appropriate boundary conditions.
Because I¢! < 0 at saddle-points with /g < 0, the matter wave functions will
not be normalizable, and not belong to the Hilbert space of matter states. This
implies that the contour should not be dominated by saddle-points with /g < 0.

(5) To the extent that wormholes makes the cosmological constant dependent
on initial conditions, the wave function should predict its vanishing.
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Recent work by Hawking [21], Coleman [22], Giddings and Strominger [23]
and others has shown that if non-trivial “wormhole” topologies are included
in the sum-over-histories (4.1) then the coupling constants of the effective low
cnergy theory accessible Lo us may depend as much on the initial conditions
of the universe as they do on the form of the fundamental Lagrangian. In
particular wormholes may provide a mechanism for making the cosmological
constant vanish, A reasonable restriction on a no boundary proposal is that it
predict this. We measure the cosmological constant only through the evolution
of the universe itself, that is, through the dynamics of the classical spacetime
of the late universe. A wave function of the universe predicts a distribution of
cosmological constants when it predicts a family of classical spacetimes, each
obeying Einstein's equation, but with different possible cosmological constant
terms, A. That is, a semiclassical approximation of the form

Wiy, 0= [ ah T Al hislexp (S, (A, b D Vo [bin]  (72)
P

llere, Sy is the classical action for gravity with cosmological constant A coupled
to expectation values of matter fields in the state 4p. Roughly speaking, in
the effective theory, the integral over metrics in Eq.(4.1) contributes the few
terms in (7.2) labeled by different values of p, while the sum over manifolds
becomes the sum over A. The distribution of the cosmological constant implied
by Ap[A,hij] is thus closely connected with the semiclassical approximation
and therefore with the contour of integration of a no-boundary proposal. In
particular, the prediction of vanishing cosmological constant depends on the
contour being dominated by saddle-points for which Ig, the real part of the
complex action, is negative, and of the form Ig ~ —7{-. For then one gets
weight factors of the form exp (1) in A,. Ilowever, this will not be the case
i the contour is dominated by the saddle-points for which /g < 0, for then
Ip ~ +% Again, therefore, we deduce that tlie contour must not be dominated
by a saddle-point for which (/g < 0.

These then, are the conditions it seems reasonable to impose on the con-
tour, and how they might be satisfied. Many interesting results have come out
of a study of these criteria, but it is perhaps useful to focus some of these results
mto concise statements:

a) Contours yielding physically interesting wave functions are readily found
in a variety of simple (minisuperspace) models {17].

b) 'T'he no-boundary proposal, as it currently stands, does not define a unigque
wave function of the universe. The proposal to sum over a given class of
manifolds does not fix the contour. Even after applying the above criteria
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there is residual ambiguity, and so there are a number of wave functions
laying rightful claim to be called the no-boundary wave function.

¢) Any boundary condition proposal in quantum cosmology, in path integral
form, must specify a choice of contour.

8. Lorentzian Contours

The indefiniteness of the Euclidean action has prompted a number of au-
thors to suggest that one should never go to the Euclidean version of the theory
in the first place, but always remain in the Lorentzian sector. That is, one
should find a way of defining the Lorentzian path integral over real Lorentzian
fields [24]. In connection with such proposals, we offer the following remarks.

(1) From the perspective of the present work, Lorentzian contours are possible
choices amongst the set of all possible complex contours, and one must ask
whether or not they satisfy the five criteria set forth above. Convergence
is not a difficulty because a real Lorentzian contour can always be pushed
off the real Lorentzian axis into the space of complex metrics in such a
way that exponentially rapid convergence is obtained. Similarly, satisfying
the constraints is straightforward. Criteria (3)-(5) however, concerning the
nature of the dominating saddle-points, are not obviously satisfied, and it
would be necessary to check these in particular models.

(11) The description “Lorentzian” does not fix the contour uniquely. The action,
and hence the integand of the path integral has a singularity at \/g = 0,
which lies on the real Lorentzian axis. Contours passing either side of the
singularity could each be regarded as Lorentzian yet will be inequivalent.
The above criteria, however, may resolve this ambiguity.

(iii) Lorentzian contours are sometimes proposed on the grounds that the clas-
sical spacetime we live in is a real Lorentzian geometry. However, this fact
is not directly related Lo the nature of the contour, but rather, depends on
the nature of the dominating saddle-points. As discussed above, classical
spacetime is predicted when (amongst other conditions), the chosen con-
tour may be distorted into a steepest descent contour dominated by a com-
plex saddle-point for which the imaginary part of the action varies much
more rapidly than the real part. Clearly there could be many complex,
non-Loreutzian contours for which this is true. On the other hand, fixing
the contour to be Lorentzian does not guaruutee that it will be dominated
by the correct saddle-points. One could say that a Lorentzian contour is
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neither a necessary nor sufficient condition for the prediction of classical
spacetime.

Finally, we remark that there exist alternative suggestions for dealing with
the indefiniteness of the Euclidean action, which do not involve a general study
of complex contours. There is, for example, the observation of Deser and Nico-
lai, in the context of supergravity, that it is formally possible to transform the
action to quadratic form, and so explicitly identify what it is that one needs
lo rotate to obtain a positive action [25]. Another intriguing suggestion is that
of Greensite and Halpern, whicli involves replacing the factor of e~/ with the
<olution to a certain Fokker-Planck equation [26].

9. Summary

We have reviewed recent work on the definition of the path integral in quan-
tum cosmology, and its connections with the Wheeler-DeWitt equation. This
work is part of a continuing effort to make path-integral quantum cosmology
more precise. There is much more that can be done in this program.

The derivation of the constaints considered here was formal, in that little
or no attention was paid to the details of the measure, regularization, opera-
tor ordering efc. For quantum meclhanical-type systems (e.g. minisuperspace
models) these issues are readily dealt with [12]. For field theories, however,
they are likely to be highly non-trivial. It would be interesting, for example, to
understand how the derivation of the constraints is affected by the presence of
anomalies. It would also be interesting and useful to construct not just single-
surface amplitudes like wave functions, but more complicated amplitudes such
as the decoherence functional[2]. Finally, as stated at the beginning of this talk,
the difficulties of quantum gravity cast a dark shadow over much of quantum
cosmology. It would therefore be particularly interesting to somehow incorpo-
rate string theory into quantum cosmology in a useful way.
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