
I I 

McGill 93-27 
July 1993 

THE POMERON AND ODDERON TO ORDER o:!t 

J.R. CUDELL and B.U. NGUYEN 

Physic, Depaf'tment, McGill Univef',ity, 3600 Univer,ity Street, Montreal, P.Q.H3A !TB, Canada 

ABSTRACT 

We calculate the pomeron and odderon contributions to hadronic scattering to 
order a!. We show that the structure of the hadronic form factors provides a 
natural mechanism through which the odderon gets suppressed at t=o whereas 
it dominates the elastic cross section at large t. We also demonstrate that the 
inclusion of nonperturba.tive effects through a modification of the gluon propagator 
accelerates greatly the convergence of the log, expansion, although not enough to 
provide agreement with the data. 

It is by now a well-known fact that leading-log 8 resummation1 cannot account 
for diffractive scattering. Taken at face value, the result of such resummation suffers 
from the following drawbacks: 
• Its leading contribution to the hadronic amplitude goes like sl+2.6Sa., i.e. for any 
reasonable value of 0:., it grows much faster than the data, which behave2 like sl.08• 

• At nonzero t, the differential elastic cross section has the wrong shape: its logarith­
mic slope at t = 0 is infinite and its curvature is too big. 

Hence, although the perturbative answer is infrared finite, it does not seem pos­
sible to use it to describe the very-small-t region. As high-t data are very scarce, and 
as the small-z region is only now being probed at HERA, it is not known whether the 
perturbative resummation techniques apply anywhere. One is thus led to the semantic 
distinction of a "soft pomeron", which describes the data at low momentum transfers, 
and a "hard pomeron", which is supposed to arise once a. is small enough and 8 is big 
enough. Even then, the situation is still unclear, as one must match these two QCD 
regimes in a somewhat arbitrary way. Several attempts have been made: one can use 
the soft pomeron as an initial condition for the hard pomerons, or mix the partonic 
random walk of a dual parton model and that of the BFKL pomeron4 , or continue 
the hard pomeron to the soft region by including gluon seH-recombination', or try 
various other unitarization schemes. All of these models have appealing features, but 
their variety implies that no one knows what the answer should be. 

One is thus in search of a theoretical method that will shed some light on these 
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problems. We want here to consider a class of corrections6 which can be derived 
from theory, and which point to the infrared region as the source of the problems: 
namely, we shall include the gluon self-energy diagrams. In the usual analysis1•7 , these 
diagrams, which involve gluonic loops built on each of the gluon propagators, are sub­
leading, and either neglected, or included as terms in a running coupling constant. 
However, one can do much better than these leading-logs arguments, as parts of 
these diagrams have now been resummed by nonperturbative methods: solutions to 
the Dyson-Schwinger equations for the gluon propagator have been calculated by a 
variety of techniques8•9 •1o• Since the work of Landshoff and N achtmann11, it has been 
known that such corrections, when used in two-gluon exchange, provide a factorizing 
pomeron amplitude, and a finite slope for the differential elastic cross section. We 
shall examine their effect to order a:. 

Let us first remind the reader of the perturbative calculation of two-gluon ex­
change. We shall follow the work of Gunion and Soper12, who have shown how to 
calculate the lowest-order colour-singlet exchange between hadrons, i. e. two-gluon 
exchange, assuming that the hadrons are made of their valence quarks only. 

In the high-s limit, the two incoming hadrons are living on the light-cone, i. e. at 
fixed :1:_ or :1:+. These two directions then alternatively play the role of time in the 
definition of the wavefunctions 1/1. Transforming the remaining free + or - component 
to momentum space, hadrons are described by a wavefunction 1/1({J3j}, {rj}), with J3j 
the longitudinal momentum fraction of quark i and r; its impact parameter in the 
center-of-momentum frame of the hadron. This wavefunction is a priori unknown. 
One can then show, in the eikonal approximation, that multi-gluon exchange takes 
the following form 12: 

Aoo = -2is f db e-i,u[. II l dPj f drj)[ II l dPl f ds,] 
)=1.n, 0 1=1,n, 0 

X "1/1(,Bi, r;)12 1,p(,B" ;')12 (ezp (-i21ra.~ L ~i~iV(ii - i j ») - 1) (1) 
'sJ e=1,8 

with V(i) = - Jdz+dz- LlF(Z+, z-, i). Eq. (1) implicitly assumes an ordering of the 
vertices in the + and - directions. 

, The eikonal formula for the scattering of two hadrons hI and h2 containing nl and 
n2 valence quarks via the exchange of two gluons is obtained by expanding Eq. (1) 
to order a!. The end result depends only on the transverse components of the gluon 
momenta ka and kb: 

8a2 f ~ ~ dA~ h'" h" ~ h ~ h.... ~ A2 = is--n1n 2 dkadkb .... ~ [t"11(a) - t"21 (ka, kb)][t"12(a) - t"22(ka,kb)] (2)g dkadk" 

with a the total momentum transfer and with the quark-quark exchange amplitude: 

dA~ _ ,"(2)(~ _ L _ L_) 1 1 
~ .... - 0 L.l. ~G "'6.... X -~-:---- (3)

dkad1c" (k; + D'a) (k: + D'b) 



We have introduced two gluon squared masses (Ta and (Tb, which for now can be 
considered as infrared regulators. £1 and £2 are two form factors which ensure that 
the process is infrared finite: when gluons have large wavelengths, they average out the 
colour of the hadron, and hence effectively decouple. The form factors are calculated 
to be: 

(4) 

and 
£2(ka, kb) = I dMei,•.~.+i'.'~1 (5) 

with 1=I k. The natural integration measure dM is defined as: 

(6) 
j=l,n" j J 

The same model applied to 1-hadron elastic scattering leads to the identification 
of £1 with the Dirac elastic form factor Fl. £1 is thus measured directly so that we 
know its form from experiment 13. 

The form of £2 is more arbitrary as the only firm property that can be established 
from Eq. (5) is the cancellation of the infrared divergences as ka or kb --. 0, i.e. 
£1 ~ £2. We choose £2 to vary according to a functional form guaranteeing infrared 
finiteness: 

(7) 

The appropriate values of f are f = 2 in the pion case and f = 1 in the proton case, 
corresponding to a wavefunction peaked at {3 = 1/2, and {3 = 1/3 respectively. 

Two-gluon exchange sets the scale correctly: the pp cross section from Eq. (2) is 
calculated to be 76a! mb, which for a. "J 0.5 - 1 is of the right order of magnitude. 
Furthermore, the quark counting rule can be reproduced, but only if we assume that 
the £1 - £2 factors are not too different when going from the proton to the pion. If 
we use Eq. (7) with f=2 for pions and f=1 for protons, it turns out that the ratio 
(Tytr/ (Typ = 0.65 is close to the experimental number 0.62. Let us point out however 
that this is very sensitive to our choice of form factor6 

, in particular to such quantities 
as the pion electric radius. In perturbative QeD, the quark counting rule would then 
be only an accident, and the factorizability of the pomeron exchange14 would be lost. 
The main problem comes from the elastic differential cross section. Its shape comes 
out wrong: instead of an exponential, it has too much curvature, and its logarithmic 
slope at the origin turns out to be infinite. 

These problems can be cured by a regulation of the infrared region, coming from a 
su bclass of diagrams (the gluon self-energy) which are resummed via nonperturbative 
methods (the DS equations). Although these diagrams are supposedly sub-leading 
log s, their inclusion certainly changes the leading-log answer. In order to see that 
it makes sense to modify only the gluon propagator, we observe that the infrared 



regulators of Eq. (3) can be treated as the squared masses that enter the K8.llen­
Lehmann representation for the propagator: 

D(q2) = (00 dtT p(tT). (8)Jo q2 - tT +If 

One can then repeat the perturbative calculation by commuting the tT and k integrals. 
One obtains the same results (2, 3), which then need to be convoluted with the 
Killen-Lehmann densities P(tTl), P(tT2). This reconstructs the propagators, and the 
1/(k2 + tT) then becomes -D(_k2) because of Eq. (8). We shall see that this property 
of the amplitude is encountered again at the next order of perturbation theory. Note 
that as far as gauge invariance is concerned, the replacement of the gluon propagator 
by a nonperturbative counterpart while keeping the quark propagators perturbative 
does not violate the Ward-Slavnov-Taylor identities, for gluon exchange diagrams. 

Solutions of the Dyson-Schwinger equation for the gluon propagator have been 
found, solutions which are either harder than a pole15 , D "J 1/k\ or softer8 ,9,10. As 
the l/k" solutions do not have a Lehmann representation, we do not know how to 
use them in diffractive calculations. We thus assume that the other solutions, which 
do not have poles for q2 ~ 0, are those which are relevant for diffractive scattering. 
These solutions have been derived in various gauges. In the following, we shall work 
in the Feynman gauge, but consider only gauge-invariant sets of diagrams, so that 
the dependence on the propagators comes from the different approximations made by 
the authors of references 8, 9 and 10. 

Although the asymptotic forms agree with perturbative QCD at large k2 , there 
is a wide disagreement as to the details of their behaviour near k2 = O. We limit 
ourselves here to the study of three propagators8 ,9,10, which represent the whole range 
of behaviours at the origin which can be implemented in the calculation (assuming 
that the propagator does not change sign for q2 < 0.) 

The Habel-Konnig-Reusch-Stingl-Wigard propagator9 vanishes at the origin. Its 
form has been suggested by a consistency argument in the Landau gauge, and agrees 
with that derived by Zwanziger16 based on considerations related to the Gribov hori­
zon. In the axial gauge, CornwalllO has derived a gauge-invariant set of diagrams 
defining a gluon mass. Although one might worry about simply putting this mass 
into an explicitly gauge dependent object, it enables us to consider the possibility of 
a propagator finite at the origin. Notice that in the axial gauge, a theorem due to 
Baker, Ball and Zachariasen15 implies that the gauge-dependent propagator is infinite 
at the origin. Solutions have been found by D.A. Ross and one of us8

, which behave 
like a fractional power of k2 near k2 = O. 

Each of the above propagators contains an intrinsic scale 1'0: a simple dimensional 
argument leads to the conclusion that a modification of the infrared region means that 
the gluon propagator must be written D(q2) = (l/JL~) V(q2/JL~) with V a function 
without a single pole at the origin. As QCD is a scale-free theory, the scale JLo 
cannot be determined directly from Dyson-Schwinger equations, and must thus be 
determined through comparison with some dimensionful quantity. We shall assume 
from now on that two-gluon exchange gives the bulk of the cross sections, and that 



higher orders contribute to the .,-dependence of the result: two-gluon exchange should 
then give us a total cross section of the order of 22 mb and a logarithmic slope at the 
origin of the order of 10 GeV-2. 

We show in Figure 1 the dependence of ~ (a) and B(O) (b) on the scale Po 
entering the propagator. As a growing Po makes the propagator smaller, it is not 
surprising that the total cross section goes down with the propagator scale, as shown 
in Figure 1a. It is less obvious however that for po "" 0.3 - 1.0 GeV, one gets a large 
suppression factor, and thus each propagator can give a good starting value for the 
total cross section, of the order of 20 mb. The logarithmic slope of the elastic cross 
section, shown in figure 1b, also gets cured by the introduction of Po, and numbers 
of the order of 10 GeV-2 can be achieved for scales of the same order. 

We thus see at this order that nonperturbative effects are non-negligible. The in­
clusion of modified propagators in the calculation provides appreciable improvements, 
and the improved order a! constitutes a good starting point for an expansion in log s. 
Let us now see to which extent these improvements carryover to higher orders. 
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Figure 1: Two-gluon exchange results for three nonperturbative gluon propagators, Cornwall (plain 
curve), Habel-Konnig-Reusch-Stingl-Wigard (dashed curve), and eudeD-Ross (dot-dashed curve). 
The horizontal axis gives the nonperturbative scale entering the propagator. (a) shows the total 
proton-proton cross section, which scales like a!, (b) gives the logarithmic slope at t=o of the 
elastic cross section 



To calculate three-gluon exchange, we must first notice that the colour algebra 
involves terms like Tr(AaA"Ae)Tr(AatAbtAet) with 0/, b' , d some combination of eI, b, 
c. Using the fact that Tr(AaAbAc) = 2(ifabc + dabc ), we recognize that the amplitude 
contains two terms, one proportional to fabcfabc and one proportional to dabcda/x:. 
When we calculate qq scattering instead of qq, the first term flips sign while the 
second remains the same. As antiquarks and quarks couple to gluons with opposite 
signs, the first term contributes to the pomeron, while the second gives the lowest­
order odderon. 

Let us first consider this odd contribution. As da/x: is a commuting object, we can 
apply the QED formalism'. This means that the answer will not contain any log s 
factor. Expanding Eq. (1) to order a!, and carrying out the required colour traces, 
we obtain no odderon contribution in p1f' scattering whereas pp scattering gives: 

with £1 and £2 the two form factors encountered previously in Eqs. (4, 5), and 

(10) 


with k =F l =F m. 
The third form factor £3 corresponds to diagrams where one gluon gets attached 

to each quark. As was the case for two-gluon exchange, formula (9) is infrared conver­
gent. This is due to the fact that £3 reduces to £2 when one of its momenta vanishes: 
£3(0, h", he) =£2(kb, he) and similar conditions when hb -+ 0, he -+ o. 

We shall use a parametrization of £3 based on the previous one for £2, see Eq. (7): 

The fact that f = 1 for the proton implies that when the three quarks are scattered by 
the same amount in transverse space, if they have the same longitudinal momentum, 
they must recombine into a proton. Thus £3(h, h, h) = 1. As already pointed outl7, 

this property means that the e; term of Eq. (9) dominates the elastic amplitude at 
high-t: configurations for which the three quarks are scattered by the same amount 
are not affected by the sharp t-dependence coming from £1 or £2. 

Notice that £3 is present (at this order) only for 0 = -1 contributions. Although 
the odderon is dominant at high-t, it is suppressed at sma.ll t, because of the structure 
of its form factor £1 - 3£2 + 2£3. In pertubative QeD the odderon contribution to 
the amplitude at t = 0 is about 18% of the two-gluon exchange amplitude. 

Thus at this order, the amplitude is purely real, and contains three form factors. 
These are the only three possible form factors that occur at any order in pp scattering. 
We notice that the amplitude takes a form that involves only propagators, so that 
we are allowed to replace 1j(k2 + 0') by a nonperturbative estimate D(k2) in Eq. (9), 



using Eq. (8). The inclusion of nonperturbative propagators does not modify the ratio 
of the odderon contribution to the two-gluon exchange one: both get suppressed by 
roughly the same factor, and we recover again a number of the order of 20%. 

We can now turn to the C-even exchanges. As we have seen, the first contribution 
to these comes from the anticommuting part of the colour algebra of three-gluon 
exchange. This generates log, terms which are absent in QED. A careful application 
of Eq. (1), taking ordering in the :z:+ and :z:- directions, leads to the counterpart of 
Eq. (9). For pp scattering, we get: 

12 3' ~ ~ 1 1 1 (2).... .... .... ....I ~ 
A" = 	2"£l..&,log, dkadk"dkc ~ ~ ~ 5 (ka + Ie" + kc - 6.) 


1r ka
2 + tJ'a k"2 + tJ'" kc2 + tJ'c 


X [~Ft'n' - ~(g!,g!, +g:'g:') +n'(g!, +g!") +g!'g!" +(hl .... h2)] (12) 

~ ~ ~ ~ ~ ~ 	 ~ ~ ~ 

where ~1 = £l(ka + k" + kc), ga = £2(ka, k" + kc) and gc = £2(kc, ka + k,,). 
It is interesting that once again, the structure of the answer allows the use of 

nonperturbative propagators, via the integration of the 1/(k2 + 0') with a Kiillen­
Lehmann density, as explained in the two-gluon case, see Eq. (8). 

In order to compute the full order a! contributions to the pomeron, we need to add 
the H and Y diagrams, where the triple-gluon vertex comes in. Although the Soper­
Gunion formalism does not explicitly include these, it is not very hard to convince 
oneself that the form factors are the same as in two-gluon exchange, so that we get: 

(13) 

with £1 and £2 the form factors introduced in Eqs. (4,5). Notice that, once more, 
assuming the existence of a Kiillen-Lehmann density for the gluon propagator enables 
us to change 1/(k2 + tJ') into D(k2 ). 

The complete oder a! formalism thus leads to a hadronic amplitude that has the 
following form: 

A("t) = A2 {i [1 + log, (Eo +£l't + O(t2»)] + !odd(t)} (14) 

I t is of course tempting to see in this a first-order Taylor expansion in log, of a 
pomeron pole, plus a zeroth-order term from an odderon pole. There would then be a 
one-to-one mapping between the Regge picture of the pomeron and this calculation. 
As BFKL have shown1 

, life is not so simple, and higher-order terms spoil the analogy. 
Hence in the following the terms "pomeron intercept» or "slope" must not be taken 
literally. As we shall now see, all the problems of the BFKL formalism18 are already 
present at this low order. It is thus worth examining them in the context of the 
simple equations we have gathered in this paper, rather than obscuring the issues by 
resumming. 
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At this order, the normalization of the cross section, A2 , comes from twcrgluon 
exchange, Eq. (2); the coefficient of log 8, £0, is the ratio of two to three gluon ex­
change, Eqs. (2, 12). The odd contribution comes of course from Eq. (9). Finally, the 
a' contribution comes from Eq. (13) and from the Taylor expansion of Eq. (12). 

The ma.in problem here is that the pomeron intercept is much too la.rge: 1 +Eo = 
2.850... One can 01 course lower it by using a smaller value of a., or equivalently 
by letting the coupling constant run. This can reduce the value of the intercept to 
1 +£0 ~ 2.32. Another obvious problem is the fact that, although the expression (13) 

~ ~ 

is finite for ll. ~ 0, it does not lead to a finite value for a': the integrands at ll. = 0 
look like (£1 - £2)/ k4, and we thus have a logarithmically divergent a'. 

As we have already mentioned, we can easily accommodate nonperturbative prop­
agators in the expression given for the hadronic amplitude. Provided that the prop­
agators have the usual analytic properties embodied by the Ka.nen-Lehmann density, 
the prescription is simply to replace 1/(k2 +C1) by the nonperturbative prescription 
for the propagator, D(k2 ). 
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Figure 2: Order a! results for the three nonperturbative gluon propagators of Figure 1. Our 
convention for the curves is the same as in Figure 6. Po is the nonperturbative scale entering the 
propagator. All graphs scale like a •. (a) shows the ratio at t=O of the coefficient of the log 8 term 
to the two-gluon exchange term; (b) the ratio at t=O of the coefficient of the t log , term to the 
two-gluon exchange term. 
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Figure 2 shows the result of the use of the propagators of refs. 8, 9 and 10, as 
a function of the nonperturbative scale p.o. Figure 2a shows that Eo can in principle 
get as low as 0.35. For values of Po favoured by our previous discussion on two­
gluon exchange, we see that we get values of the order of 2 for the intercept: it thus 
seems impossible to get acceptable numbers both for two and three-gluon exchange. 
Another way to look at this is to allow a. to vary: for values around 0.1, one would 
indeed get an intercept compatible with data, but that would mean that although 
rising at the correct rate, the pomeron cross section would be much too low. 

Figure 2b shows that the pomeron slope becomes finite once the infrared region 
is smoothed out. Values compatible with 0.25 GeV can again be achieved, but again 
for values of p.o or a. that would suppress two-gluon exchange. 

Hence there is no "golden propagator". The three propagators we have tried have 
met with some success, but none of them gives us a perfect fit: one cannot accommo­
date a sizeable two-gluon exchange amplitude together with a slowly rising third-order 
amplitude. At third order, the Cornwall propagator gives the most promising results. 
One has to point out however that this is mainly due to the fact that the a. used is 
appreciably smaller than in the case of the two other propagators. 

To conclude, we have shown in this paper that the Soper-Gunion formalism can 
be extended to include three-gluon effects, and that the proton possesses three form 
factors, in the valence quark approximation. The structure of these form factors 
naturally suppresses the odderon at small t and makes it leading at high-to 

We have demonstrated that the infrared region is important in leading log 8 cal­
culations. Although the perturbative answer is infrared finite, the dominant region 
of k 2 remains small until t is as large as 10 GeV. The perturbative calculation can 
be easily recast in a form which allows for a modification of the gluon propagator, 
provided that there exists a Kiillen-Lehmann density: the complete third-order result 
then depends only on the t-channel propagators. The use of recent solutions to the 
Dyson-Schwinger equation, combined with the simple idea that it is enough to modify 
the gluon propagator at small momentum transferll , is not sufficient to diminish the 
value of the pomeron intercept to bring it in agreement with data. These nonpertur­
bative effects nevertheless ca.n change the answer by large factors, of the order of 3, 
and must certainly be ta.ken into account before using the leading-log 8 formalism in 
the diffractive region. 
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