
---
ma!!~!~~~~: 


MAN/HEP/93/4 

M ultiquadric Radial Basis Functions 
for Representing Muitidilllensional 

High Energy Physics Data 

John Allison 

University of Manchester 


Physics Department, Manchester M13 9PLF-~MI , 

'I p~l \' 1::1::)May 17, 1993 

Abstract 

We examine how basis functions can be used to represent multidimensional data and 
argue that radial basis functions are a natural choice. Of all the possible radial basis 
functions, multiquadrics, counter-intuitively, turn out to be supremely suitable for repre­
senting high energy physics event densities, and probably many other forms of scientific 
data, because they fulfill the physicists' requirements of sensible non-erratic behaviour 
and follow significant variations in a smooth and faithful way. The stochastic nature of 
high energy physics data often gives rise to unwelcome statistical fluctuations; our algo­
rithm can be used to smooth these out. The smoothed function is much easier to visualise 
than the original scattered events. A suite of Fortran subroutines has been written in the 
framework of current high energy physics data analysis systems, HBOOK [1] and PAW 
[2]. 
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1 Introduction 

The motivation for this work arose from a desire to represent and visualise multidimensional 
stochastic high energy physics data. These are random events drawn from an unknown but 
interesting parent probability distribution, often directly related to a differential cross-section. 
The multidimensional space can either be real space, as in the case of an angular distribution, 
or an abstract space, e.g., of momentum, sphericity, effective mass etc. 

A particular problem in high energy physics is that the events are usually sparse because the 
interaction cross-sections are so small; even theory produces sparse and random events because 
it can only be compared with experiment by simulating the performance of a very complicated 
detector by computationally intensive Monte Carlo methods. 

High energy physicists have become used to analysing their data with the versatile analysis 
packages, HBOOK [1] and PAW [2], written and supported by the CERN Application Systems 
Group, but at the time of the start of this work, they could, at most, fit and visualise in 2 
dimensions; fitting in more dimensions was always possible with a user defined function but the 
results could not be visualised. Also the usual techniques for dealing with the stochastic nature 
of the data, namely histogramming and smoothing, were available only in 1 and 2 dimensions. 

The stochastic nature of the data introduces statistical fluctuations that become increasingly 
troublesome as the dimensionality increases. Even high statistics data can look sparse in 3 and 
more dimensions because the space is so "large". E.g., simple histogramming techniques require 
a very large number of bins, none of which accrue more than a few events and many of which 
are empty. In particular, statistical fluctuations spoil attempts at visualisation. Even advanced 
visualisation packages like AVS [3] are not comfortable with stochastic data. 

In October 1990 the Manchester High Energy Physics Group received support from Hewlett­
Packard for a project to develop "Visualisation Tools in High Energy Physics", so, in collabo­
ration with CERN, we set about trying to improve the situation. Some 3-D visualisation tools 
were developed, and these have been described elsewhere [4], but it soon became apparent that 
the missing link was an algorithm for smoothing the data in preparation for visualisation, and 
this led to the work described here. Position papers have also appeared [5], [6]. 

2 The Problem of Deducing the Parent Distribution 

When the data are sparse the deduction of the parent distribution is problematic. We are 
faced not with interpolating or fitting conventional measurements of a function (as, e.g., in 
meteorology, where one measures, say, the temperature at various locations) but with trying to 
deduce the parent distribution of sparse random events. An often used and simple, unbiased 
estimate is the event density given by histogram bin contents but, as mentioned above, this is 
often plagued by statistical fluctuations, all the more so in higher dimensions. It is like looking 
at a very, very grainy photograph and trying to see the picture underneath. 

One thing in the physicist's favour is that the parent distribution can often be assumed to • 
be "smooth". If the picture is very grainy, what other assumption can one make? We require 
a smooth representation which contains all significant information without introducing biases. 
Also, the representation should not introduce nonsense. E.g., if the data are really so sparse 
that nothing better than a straight line is needed, then something close to a straight line it 
should be; erratic polynomial divergences should be avoided. As we shall see the multiquadric 
function satisfies this requirement. 

So we attempt to represent the parent distribution by an analytic function which is a linear 
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combination of basis functions. The coefficients of the basis functions become parameters of a 
maximum likelihood fit. We would like the number of basis functions not to grow significantly 
with the number of dimensions. This is not true, e.g., of polynomial or B-spline representations 
for which the number of basis functions grows exponentially. As we shall see, it is an attractive 
feature of radial basis functions that their choice can be closely related to the distribution of 
the data so that their number is determined primarily by the statistical significance of the data, 
not by the number of dimensions. 

It is 	our proposition that a representation consisting of multiquadric radial basis functions 
satisfies the following desirable criterion par excellence: 

• 	 smooth (following statistically significant variations where necessary in a non-abrupt way, 
continuous to all orders, .and behaving close-to-linearly elsewhere). 

• 	 no-nonsense (no uncontrolled, unnecessary or erratic departures from the data). 

• 	 unbiased (following statistically significant variations faithfully but ignoring insignificant 
ones). 

• 	 economical (the number of basis functions determined primarily by the statistical signifi­
cance of the data and not by the number of dimensions). 

Also, it would be good to choose a representation which ensures the function, like the parent 
probability distribution, is always positive. This possibility is also considered. 

3 	 Radial Basis Functions as the Natural Extension to 
Higher Dimensions 

In one dimension a common choice of representation is a polynomial or, better, a combination 
of well-behaved smooth piecewise-polynomial basis functions such as B-splines (a simple poly­
nomial tends to be difficult to control over the full range of the data). However, polynomials 
and B-splines become expensive in more than one dimension. In a polynomial expansion, cross 
terms have to be included, leading to an exponential increase in the number of parameters. 
Multidimensional B-splines can be defined indeed they are used extensively in surface and 
volume representation and visualisation, including scientific visualisation - but only on a (usu­
ally rectangular) grid of knots, so again, the number of parameters increases, dramatically. If 
the data demanded it, this might not be so bad, but usually, in high energy physics, there are 
empty regions of space, the more so the higher the dimensionality. In one dimension we can 
easily ensure that the range is matched to the data and therefore that the space is not empty, 
but in higher dimensions the parent function is often only interesting because of correlations 
which ensure that a large part of the space is empty. In fact, very often, the data are con­

"centrated in a small region and it is the shape of this region that is interesting. Under these 
circumstances the basis functions which cover the empty part are, in a sense, wasted. We need 
a representation which is economical with parameters and only responds to information where 
there is some. 

The solution to this problem is to use radial basis functions <pi(r). They are functions only 
of the "distance" r = Ilx - XiII of a point x from a "centre" Xi' We need centres Xi only where 
there are significant data. X and xi represent coordinates in multidimensional Cartesian space 
and IIx - XiII means "the square root of the sum of squares of the components of x - x/', i.e., 
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s(X) 

the distance in the multidimensional space. By choosing the Xj only where needed, i.e., where 
there are statistically significant variations, we find that the number required to represent the 
data increases hardly at all with the number of dimensions but is determined primarily by the 
statistical significance of the data. This is extremely economical. 

In Sections 4-6 we explain how one can construct an arbitrary function out of radial basis 
functions in a satisfying way and motivate the choice of the multiquadric function in particular. 
We argue that there is a natural extension to higher dimensions. 

4 A Simple Example of a Radial Basis Function 

Let us re-write a familiar pro,blem in 1 dimension in a form which will naturally extend to 
higher dimensions. 

Consider the linear interpolation of data consisting of function values /j defined at points 
x j. This is normally written 

j=1, ... ,n-1 (1) 

where Xj, j = 1, ... , n are an ordered set. However, it could equally well be written 

n 

s(x) = L ajlx - xjl, j = 1, ... , n (2) 
j=l 

where Ix - xjl is our simple radial basis function. We choose to introduce </>j(r), to make the 
radial nature explicit, so it can be written 

n 

j = 1, ... , n (3)s(x) = E aj</>j(lI x - Xjll), 
j=l 

where </>j(r) = r in this case for all j. (Note that in 1 dimension Ix - Xjl and Ilx - Xjll are one 
and the same, but we use the latter so that the formalism extends to higher dimensions.) 

It is easy to solve for aj. Ixi has the property that its slope changes from -1 to +1 as 
x increases through zero, so the coefficients aj are equal to half the change of slope when x 
increases through Xj. Thus 

. _ 0 5 { /j+1 - /j _ /j - /j-1 }a, - . , 2:::;j:::;n-1. (4)
Xj+1 - Xj Xj - Xj-1 

a1 and an are determined as follows:­

n-1 
/n = s(xn) = L: aj(xn Xj), (5) 

j=l 

I.e., 

/n - Ej;;;i aj(Xn Xj) 
(6)

Xn - Xl 

Similarly 
/1 Ej;;;i aj(Xj - xd 

an = -------=------- (7)
Xn - Xl 
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linear multiquadric 
6.; = 0.0 6.j = 0.2 6.j = 0.5 6.­3 1.0 6.j = 5.0 

1 1 2 1.583 1.583 1.633 1.700 1.745 -104.6 
2 3 6 0.000 0.000 0.156 0.571 2.129 771.2 
3 4 8 -2.000 -2.000 -2.463 -3.395 -6.369 -1060.1 
4 6 4 1.500 1.500 1.880 2.756 5.518 752.9 
5 7 5 0.083 0.083 -0.120 -0.590 -2.055 -354.7 

Table 1: Data for Figures 1 and 2. 

An alternative and more elegant way of determining aj is given in the next section. 
The data of Table 1 are illustrated in Figure 1. The individual basis functions are shown 

dotted. Notice that although interpolation is not normally defined outside the range of the data 
the value of the function there is uniquely determined by the above procedure and is shown by 
the dot-dashed line in the Figure. It turns out that these "asymptotic slopes" are equal and 
opposite:­

ds I ds I n-- -- -'E a - (8)
dx :1:<:1:1 - dx :I:>:l:n - j==l J' 

This property is called biharmonic. A special case is when the first and last points are zero. 
Then 

n n 

'E aj = 0 and 'EajXj = 0 (9) 
j==l j==l 

and the asymptotic values and slopes are zero. Many distributions in high energy physics 
have similar asymptotic properties and the above gives us hope that radial basis functions can 
accommodate such behaviour in a well understood way. 

Of course linear interpolation is not adequate for us. It is certainly "no-nonsense" - it has. 
simple straight lines between the data - but the resulting curve is far from smooth; it changes 
slope abruptly at the centres Xj. To address this problem we consider changing the form of 
t/>;(r). Powell [7] has studied various possibilities, but we argue for a particular one in the next 
section. 

The Multiquadric Function 

A simple way of smoothing linear interpolation's sharp changes of slope is to round the corners 
by substituting the multiquadric 

t/>j(r) Jr2 +6.j. (10) 

t/>j(r) has the same asymptotic behaviour as r, but is smooth and is infinitely differentiable. It 
retains a no-nonsense behaviour. 6.j is a scale parameter which controls the smoothness of the 
function; in fact 6.j is the radius of curvature at r = O. 

The curve 
n 

s(x) 'E ajt/>j(llx - Xjll) (11) 
j=l 
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Figure 1: Linear interpolation expressed as a linear combination of radial basis functions <Pj ( II z - Z j II) 
with <pj(r) == r, i.e., <pj(llz - zjlD == Iz - zjl in this case, of data from Table 1. The individual basis 
functions, weighted by the coefficients aj, are shown dashed and labeled <P1, etc. (0.2 = 0, so <P2 is 
absent.) Linear interpolation is not normally defined outside the range of the data but our prescription 
gives a well defined value, shown dot-dashed, which turns out to be useful - see text. 

(which we call our general multiquadric expansion) will pass through the data if aj are the 
solutions of the simultaneous equations 

s{XIe) L 
n 

aj4>j{llxle - xjll) = fie, k 1, ... ,no (12) 
j=1 

(These equations could also be used, for ilj = 0 for all j, to solve the simple linear case in 
Section 4 above.) Figure 2 shows curves for our example for various values of ~j; the resulting 
values of aj are tabulated in Table 1. For a reasonable range of ~j (for any given curve the 
~j are all the same) the curves can be said to be satisfactory, i.e., sensible (no-nonsense) and 
smooth, for we have no knowledge of the function between the data except that we as physicists 
expect it to be smooth. The extreme values of il j , namely 0 and 5, are not satisfactory ­
there is evidence of impending numerical instability at ~j 5 - but any value of ~j which 
corresponds roughly to the spacing of the data seems to be alright.1 

Note that because 4>j(r) f'V r asymptotically, the biharmonic property (Equation 8) and the 
conditions for smooth approach to zero (Equation 9) apply to multiquadric functions; they will 

1 Detailed study shows that problems can arise if aj for different j are different but only slightly so. A "beat" 
effect can occur. We recommend that either aj are the same for all j or that values are significantly different, 
e.g., by a factor of 2. This lends itself to our approach of using histogram bin sizes to determine aj. 
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Figure 2: (a) Multiquadric interpolation of data from Table 1 for various values of Ilj • Il.j is different 
for different curves but the same for all j for each curve. (Later examples have Il.j which may depend 

on j.) (b) The curve and its component basis functions <pj(r) == <pj(llz -Zj II), where <pj(r) = Jr2 +Il.;, 
weighted by the coefficients aj, for Il.j = 0.5 for all j. 

be able to represent distributions which approach zero asymptotically, like many in high energy 
physics, without difficulty. It would be possible to constrain the parameters to ensure such 
behaviour. but we have found it neither easy nor necessary to do this. 

This shows that multiquadric radial basis functions are ideal for no-nonsense, smooth inter­
polation. To have basis functions which are a minimum at their centre, however, is somewhat 
counter-intuitive.2 Multiquadrics increase indefinitely away from their centres but in a well un­
derstood way. A drawback, however, is that they have infinite extent, so in our simple approach 
computation is not localised and in a fit the coefficients aj become highly correlated. 

Finally, one property of the multiquadric, namely that the curvature has a single maximum 
at r = 0, suggests an algorithm for choosing centres. We simply search the data for "significant 
variations" (which, incidentally, is often where the function is interesting to the physicist) and 
place centres there; this is discussed in Section 7.1. 

TIle Extension to Higher Dimensions 

The extension to higher dimensions is straightforward and natural. In fact, except for the 
interpretation of x, which is now a vector in multidimensional space, the equations 10-12 apply 
unchanged. 

2Initially we tried bell-shaped functions, such as the Gaussian, in an effort to mimic B-splines, but found 
it was difficult to ensure no-nonsense behaviour. The multiquadric is, in a sense, the simplest of all possible 
curves, having a single point of maximum curvature. 

·1 

·1 
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l·D Multiquadric Interpolation 

Figure 3: 2-dimensional multi quadric interpolation of 10 data at locations and of values indicated on 
the contour plot on the left. The scale parameter fl.; was 0.5 for all component basis functions. A 
surface representation is shown on the right. The interpolation is smooth and sensible, at least where 
the data are plentiful. (In our applications we always ensure the data are plentiful everywhere in the 
region of interest. ) 

The curvature is given by the Laplacian \72 of appropriate dimension. E.g., in 2 dimensions, 

(13) 


In particular the multidimensional multiquadric has a single maximum of the Laplacian at 
r = 0, namely \72<p,(r = 0) = Njll." where N is the number of dimensions. 

Figure 3 illustrates a 2-dimensional interpolation. Note how smooth and sensible the inter­
polation is, at least where the data are plentiful. (In a.ll our cases we ensure data are available 
over the whole, always rectangular region so that the representation is faithful, smooth and 
sensible everywhere of interest.) 

Although so far we have studied the problem of interpolation, we are usua.lly more interested 
in performing a maximum likelihood fit, a situation we will now discuss. 

Maximum Likelihood Fitting 

As discussed in the Introduction, in high energy physics we are concerned with deducing the 
parent distribution of random events. There are two methods open to us - (a) estimating the 
distribution by histogramming, i.e., using histogram bin contents as data with a known error 
distribution or (b) simply maximising the likelihood of the events. In both cases it is matter 
of fitting rather than interpolating. 

The key issue is finding a good form for the multiquadric expansion. This involves making 
a good choice of centres ie, and scale parameters ll.,; as we argue below, the simple properties 
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of the multiquadric suggest a natural method. We then optimise the coefficients aj with the 
most appropriate maximum likelihood method. 

7.1 Finding the Form of the Multiquadric Expansion 

The choice of centres is an important step in our method. We seek coordinates where there are 
significant variations - in practical terms, where there are significantly non-zero values of the 
discrete Laplacian (as noted earlier, multiquadrics have a maximal Laplacian at their centres). 
We employ a special strategy for the edges. 

7.1.1 Finding Significant Variations 

To find significant variations we make a histogram of the data (Le., sort them into bins). If the 
contents (or height) of bin l are hI. then in one dimension, the discrete Laplacian, in units of 
inverse bin size, is 

(14) 

and its variance is 
Var{LI.) = Var{hl.+1 ) +4Var{hI.) +Var{ hl.-1 ), (15) 

where Var{ hI.) is the variance on hI., etc.3 Its significance, in standard deviations, assuming the 
Gaussian approximation, is 

(16) 
VVar(LI.) 

It is simple to write an algorithm to search for bins with, say, SI. > 3.4 We put I:1j equal to the 
bin size of the bin at which a significant variation is found. 5 If none are found in any region, 
the data are rebinned in larger bins and the search continued, avoiding overlaps on the scale of 
I:1 j • (If very high values of SI. are found the data should first be binned in smaller bins.) 

The above easily extends to 2 and more dimensions. E.g., in 2 dimensions the Laplacian is, 
in an obvious notation, 

(17) 


with similar expressions for Var(Lkl.) and SkI.. 

7.1.2 Edge Strategy 

The above only finds centres inside the data region since LI. is only defined up to the next-to­
edge bins. As noted in Section 4 the value of a sum of radial basis functions outside the range 
of the centres is uniquely determined; in effect all the degrees of freedom are used up fitting the 
value within the range. So we must add extra radial basis function centres at the extremities. 

unweighted events, Var(hl } =hl ; if hl =0 we put Var(hl} = 1. For weighted events Var(hL) is the sum 
of the squares of the weights of events of events contributing to bin t. In this case, or when errors have been 
otherwise specified, we adopt a different but consistent algorithm for the variance of empty bins, as described 
in Appendix B. 

4With a very large number of bins, this lower limit should be increased to avoid accidental statistical 
fluctuations. We use Sl > 1.2v1IiN, where N is the number of bins, which, to an adequate approximation, is 
just enough to make it unlikely that a statistical fluctuation of this magnitude will occur. In addition, in our 
Fortran suite, the user can control the sensitivity of this selection. 

SIn our Fortran suite we allow the user to scale all the l:lj by a smoothness parameter within reason. 



· " 

10 7 MAXIMUM LIKELIHOOD FITTING 

We proceed as follows. At the corners of this rectangular region, i.e., where all coordinates 
are at their extremes,6 basis functions with small 8.j are assigned, effectively with tPj(r) r = 

II x - x j II, where x j are the corners in this case. This defines the extremes and allows freedom 
for the function to approach them in a smooth and sensible way. 

For 2 and higher dimensions we have also to allow freedom for the function to fit the data 
as it approaches the edges or faces. We have found that it is satisfactory to assign centres 
where the first differential perpendicular to the edge/face is significant, using the same sort of 
significance test as above. This is not wholly general, since it may not provide freedom where the 
slope is small but the height is large, but it takes advantage of the fact that most distributions 
in practice approach zero at least along some of the edges/faces and the biharmonic property 
(Section 4) assures that small slopes on opposite edges/faces are accommodated. Thus only 
significantly non-zero slopes need the extra degrees of freedom provided by extra centres. This 
appears to be economical and effective; in particular it appears to lead to fits which show no 
bias. 

7.2 Optimising the Coefficients O'.j 

Once the centres Xj and scale parameters 8.j have been chosen we optimise the coefficients 
aj by a maximum likelihood fit. We discuss two methods, one which uses an intermediate 
histogram and one which directly maximises the likelihood of events. 

7.2.1 Using an Intermediate Histogram 

An unbiased and also the simplest way of estimating the parent distribution is to histogram 
the events. The bin heights hl are a direct measure of the parent distribution but are subject 
to statistical fluctuations. If the events are unweighted (the usual case), hl has a Poisson 
distribution and our required multiquadric expansion is obtained by maximising the Poisson 
likelihood 

£ =£(aj) = II Pl (18) 
bins,l 

where 

(19) 


and ILl - ILl(x; aj) is the expected mean value of hl, given by the value of our multiquadric 
expansion at the bin centre. Since ILl must be positive (it is a probability distribution) it is 
better to use the exponential of the multiquadric expansion [8]. Details are given in Appendix 
A. 

If the events are weighted or if errors are otherwise determined, hl may be assumed to have 
a Gaussian distribution (with variance equal to the sums of the squares of the weights if not 
otherwise supplied) and details are given in Appendix B. 

Figure 4 shows two examples one low statistics, one high -' of histograms fitted by 
choosing basis function centres as described above and making a Poisson Likelihood fit as 
described in Appendix A. The arrows (JJ,) indicate the position of the centres. The fits are 
faithful to the data (remember we have made no assumptions about the parent distribution). 
Note that better fits, i.e., lower X2, can be obtained by reducing the cut on Sl at the expense 
of following more of what might only be statistical fluctuations. Conversely, smoother fits can 

this language the "corners" of a I-dimensional range are simply the ends of the range. 
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Figure 4: Two examples of I-dimensional histograms with superimposed multiquadric fits. The left 
shows a barely significant peak in a low-statistics sample where our method has made an unbiased fit 
with 7 centres (shown by Jj.s) with X2 134 for 93 degrees of freedom. (IT we believed, e.g., that there 
was a Breit-Wigner resonance in the data we would, of course, fit that instead. But this illustrates 
that our multiquadric fit finds the significant variations without introducing biases.) The right is a 
high-statistics weighted histogram requiring 17 centres with X2 = 114 for 83 degrees of freedom. 

be obtained by increasing the cut at the expense of missing significant features. In our Fortran 
suite the user has control of the sensitivity of this selection. 

Figure 5 shows an example of a 2-dimensional fit; (left) a histogram of the original data and 
(right) a surface representation of the multiquadric fit. Visually the fit is smooth and faithful. 
A numerical inspection shows that departures of data from the fit are randomly distributed, 
i.e., there are no apparent biases at any value of the sensitivity or smoothness parameters. 
Reasonable X2s are obtained even for very smooth, low sensitivity, few parameter fits. Very 
good X2s can be obtained by increasing the sensitivity as mentioned above. 

Finally, Figure 6 shows an example of a 3-dimensional smoothed event density rendered 
with AVS [3]. It shows an isosurface (the 3-D equivalent of a contour) and a cut plane with 
contours. 

7.2.2 Maximising the Likelihood of Events 

The best method for unweighted events, in principle, once the basis function centres have been 
chosen, is to maximise the likelihood of the events themselves. Again we use the exponential 
of the multiquadric expansion and define a normalised probability distribution 

P =pea;; aj) = .!.e" (20) 
v 
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Figure 5: Left, a 2-dimensional histogram of the original data and right, a surface representation of a 
79-parameter multiquadric fit. The X2 was 2027 for 1521 degrees offreedom. Note that a better X2 can 
be obtained by increasing the sensitivity of the selection of basis function centres, which introduces 
more parameters, and/or by scaling the fl.;. E.g., with 141 parameters the X2 was 1819 for 1459 
degrees of freedom and with 447 parameters the X2 was 1281 for 1153 degrees of freedom. Yet in all 
cases the fits show no bias and certainly satisfy a visual criterion of smoothness and faithfulness. 

where 
11. 

S == sex; eli) = L eli</>i(lIx - XiiI) (11) 
i=1 

as before and 

(21) 

where the integral extends over a range which includes the data and in which the probability 
distribution is expected to apply. The likelihood must contain a factor, namely the Poisson 
probability, that N events are observed where v are expected (this is known as the Extended 
Likelihood Method- see, e.g., Barlow [9], [10]): 

(22) 

where 

and (23) 

We estimate eli by maximising 

(24) 
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Figure 6: An isosurface and a cut plane of a 3-D smoothed event density rendered with AVS [3]. 
26102 high energy physics events were analysed to extract 3 characteristics per event to assign each 
event to a point in a 3-D space. The resulting event density was fitted to a 500 parameter multiquadric 
expansion to produce the smoothed event density. 

where we have omitted terms independent of OJ. See Appendix C for further details. 
The algorithm to choose the basis function centres x j and scale parameters !l..j can still use 

histogramming techniques even when the fit itself, as in this case, does not use bins, because 
the method is not very sensitive to the choice of Xj and !l..j. The disadvantage of the likelihood 
method is that it is computationally demanding. 

Fortran Implementation 

In collaboration with the Application Systems Group of the Computing and Networking Divi­
sion at CERN, Geneva, we have implemented the histogram algorithms - Poisson likelihood 
and Least Squares, Section 7.2.1 - in up to 3 dimensions within the packages HBOOK [1] and 
PAW [2]. Maximising the likelihood of events proved to be computationally too demanding for 
practical use but may be implemented later. 
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We quote an extract from the HBOOK documentation in Appendix D to indicate the scope 
of the work. Facilities in PAW have been extended to allow visualisation of the smoothed 
function. Also a simple PAW to AVS [3] interface has been written. For further details write 
to the Computer Librarian, CERN, Geneva 23, for the appropriate writeup. The s9ftware is 
available free in Europe to all institutes having connections with CERN, and worldwide to all 
high energy physics institutes. 

9 Summary 

We have constructed a smoothing algorithm for multidimensional data based on multiquadric 
radial basis functions. It is economical and unbiased and lends itself particularly well to finding 
the parent probability distribution of random events, as is often required in high energy physics. 
A Fortran suite has been written. 
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Appendices 

A Poisson Likelihood Fitting to a Histogram 

The probability of finding hl unweighted events in bin l when the expected number is ILL is the 
Poisson probability 

ILhle-l'l 
Pl =Pl(hl ; ILL) = l hi. (19) 

l· 

To estimate aj we maximise with respect to aj the likelihood 

C =C(aj) = n Pl (18) 
bins,l 

or, equivalently, the log likelihood 

InC = L In Pl = L {hl In ILL - ILL} (25) 
bins,l bins,l 

where we have omitted terms independent of aj. 
We could try 

ILL = Sl == S(Zl; aj) = L 
n 

aj4>j(IIZl - Zjll) (11) 
j=l 

which is our straightforward general multiquadric expansion and 4>j is our multiquadric radial 
basis function, 

4>j(r) =Jr2 + ~1' (10) 

In this case aj are the solutions of the non-linear simultaneous equations 

8lnC {hl}-- = L - - 1 4>j(ll zl - zjll) = O. (26)
8aj l Sl 

An attractive proposition, which we adopt and which introduces no additional numerical 
difficulties (since the above is already non-linear), is fitting the exponential of our general 
multiquadric expansion. It is attractive because it is always positive, like the desired parent 
distribution, which for unweighted events is a probability distribution or cross-section. The 
starting values can be obtained by a least squares fit to the logarithm of the bin heights. If 

(27) 

where V is a constant, then 

InC = L lnPl = L {hlsl - Ve$l} (28) 
bins,l bins,l 

(again omitting terms independent of aj) and aj are the solutions of the non-linear simultaneous 
equations 

8lnC $

-8- = L {hl - Ve t} 4>j(ll zl - Zjll) = O. (29)
aj l 
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B UNCONSTRAINED LEAST SQUARES FITTING TO A HISTOGRAM 

To obtain a solution we make a Taylor expansion about an approximate solution a~O): 

where in this case 

(30) 


(31) 

By what is essentially a multidimensional version of Newton's method, a better solution a~l) is 
given by 

which can be written in matrix form 
A5a=B (33) 

where 

Ajle LVe ill
(0) 

<pj(II Xt 
i 

- xjll)<pIe(lIxi Xlell), 

B·3 L {hi ­
(O)}Ve lll <Pj(IIXi - Xjll) and 

t 

5a·3 
(1)aj (0)- aj (34) 

and we can iterate to convergence. The covariance matrix for the solution a is A-I (see, e.g, 
Barlow [9], section 5.3.4). V is chosen so that 

(35) 

where N is the number of events, as required in Section 7.2.2 and Appendix C, which dictates 
that V 5x, the bin size or "volume". 

B Unconstrained Least Squares Fitting to a Histogram 

If a histogram has bins l with contents (heights) hi with Gaussian errors O"i, we can use the 
method of least squares to estimate the parameters aj' We have to use this for histograms 
accumulated from weighted events or data whose errors are otherwise supplied because we do 
not know the distribution of hi and can only assume the Central Limit Theorem which tells 
us that the distribution will be Gaussian for many contributing events or measurements. If 
the number of weighted events contributing to each bin is large enough, say more than 10, the 
Gaussian approximation will be adequate. Even when this is not true, we have little alternative 
but to use the extreme Gaussian approximation 

O"i = { 	 J.iar(hi) hi =I 0 (36)
Var ht = 0 

where Var(ht ) is the sum of the squares of the weights in bin l arid Var is the overall mean 
variance. The equation for hi = 0 is somewhat arbitrary but assures that scaled unweighted 
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histograms are treated correctly in this extreme Gaussian approximation (for un-scaled un­
weighted events, for which Var(ht ) = ht and Var = 1, it gives Var(ht ) = 1 when ht = 0; 
normally we use it only to provide starting values for the Poisson likelihood fit described in 
Appendix A). 

The parent distribution can no longer assumed to be always positive so we use our straight­
forward general multiquadric expansion, not its exponential. Thus least squares solution is 
given by the minimum of 

2 = 2( .) _X -X a J -
" 
L 

(ht ­ st) 2 
' (37) 

bins,t (it 

where 
n 

St = s(Xt; ai) = L ai¢i(IIXt ­ xiII) (11) 
i=1 

and 

¢i(r) = Jr2 +dj. (10) 

again. Thus ai are given by the solution of the simultaneous equations 

(38) 

These can be written in matrix form 
Aa B (39) 

where 

and (40) 

The covariance matrix for the solution a is A-I (see, e.g, Barlow [9], section 6.6). 

C U nbinned Maximum Likelihood of Events 

Maximising the likelihood of the (unweighted) events themselves without binning gives, in prin­
ciple, the best estimate of ai- Assuming the basis function centres xi and range parameters di 
have already been chosen, we maximise the extended log likelihood (see Barlow [9], section 5.4 
and [10]): 

(24) 

which was derived in Section 7.2.2, where 

(21) 

and, as before, 

Si = S(Xii ai) = L 
n 

aj¢i(llxi - XiiI) and 

i=1 
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As before we need 
8In£ { 	 } 8v -	 = L:4>j(llxi - :tjll) -- (41)
80.j i 	 80.j 

where 

f 8e$ f8v 
80.' dx = e.t4>i(lIx - Xjll)dx 	 (42)

80.j 3 

and 

(43) 

The o.j are obtained by iterating 
A50. = B (44) 

where 

f e$4>j(llx ­ Xjll)4>k(llx ­ Xkll)dx, 

B·3 {~"',(II:I), :I),II)} ­ f e'''',(II:I) ­ :l)jll)d:l) and 

(1) 	 (0)
50.'3 o.j - o.j . 	 (45) 

The covariance matrix for the solution 0. is A-I. 

D 	 Fortran Implementation - Extract of HBOOK [1] 
Documentation 

This is an extract from the BBOOK [1] documentation about the Fortran subroutine BQUAD 
which implements our algorithms. Visualisation procedures in PAW [2] have been extended to 
accommodate the smoothed function. Also a simple PAW to AVS [3] interface has been written. 
For further details write to the Computer Librarian, CERN, Geneva 23, for the appropriate 
writeup. The software is available free in Europe to all institutes having connections with 
CERN, and worldwide to all high energy physics institutes. 

CALL HQUAD (ID,CHOPT,MODE,SENSIT,SMOOTH,NSIG*,CHISQ*,NDF*, 
FMIN*,FMAX*,IERR*) 

Action: fit multiquadric radial basis functions to the bin contents of a 
histogram or the event density of an ntuple. 
(For ntuples this is currently limited to "simple" ones, i.e., with 1,2 or 3 
variables; all events are used - no selection mechanism is implemented. Thus 
the recommended practice at the moment is to create a "simple" ntuple and 
fill it from your 'master" ntuple with the NTUPLE/LOOP command and anI 

appropriate SELECT.FOR function.) 


Input 	parameters: 

ID histogram or ntuple ID. 

CHOPTQ character variable containing option characters: 
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o or 1: replace original histogram by smoothed. 
2: 	do not replace original histogram but store values of smoothed 

function and its parameters. (The fitted function is regenerated 
from the values or the parameters with the FUNC option in 
HISTOGRAM/PLOT for histograms or with NTUPLE/DRAW for ntuples.) 

V: verbose. 
MODE mode of operation 

3, 	find significant points and perform unconstrained fit. If 
the histogram or ntuple is unweighted perform a Poisson likelihood 
fit, otherwise a least squares fit (see MODE = 4). 

4, 	force an unconstrained least squares fit in all cases. 
(This is a linear least squares problem and therefore the most 
efficient possible since it allows a single step calculation of the 
best fit and covariances. But note it assumes Gaussian errors, 
even for low statistics, including the error on zero being 1.) 

MODE = 0 	is equivalent to MODE = 3. 
SENSIT 	 a sensitivity parameter. It controls the sensitivity to statistical 

fluctuations (see Remarks). 
SENSIT = O. is equivalent to SENSIT = 1. 

SMOOTH 	 a smoothness parameter. It controls the (radius of) curvature of the 
multiquadric basis functions. 
SMOOTH = O. is equivalent to SMOOTH = 1. 

Output parameters: 

NSIG no. of significant points or centres found, i.e., no. of basis 


functions used. 
CHISQ chi-sq~ared (see Remarks). 
NDF no. of degrees of freedom. 
FMIN minimum function value. 
FMAX maximum function value. 
IERR error flag, 0 if all's OK. (Hopefully helpful error messages are 

printed where possible.) 

Remark: 

o 	 Empty bins are taken into account. (Poisson statistics are used for the 
unweighted case.) 

o 	 The multiquadric basis functions are SQRT(R**2+D**2}, where R is 
the radial distance from its "centre", and D is a scale 
parameter and also the curvature at the f'centre'). 'fCentres", also 
referred to as ffsignificant points'), are located at points where the 
2nd differential or Laplacian of event density is statistically 
significant. 

o 	 The data must be statistically independent, i.e., events (weighted or 
unweighted) drawn randomly from a parent probability distribution or 
differential cross-section, e.g., you cannot further smooth a previously 
smoothed distribution. 
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o 	 For histograms, the chi-squared (CHISQ) is that of the fit to the 
original histogram assuming Gaussian errors on the original histogram 
even for low statistics, including the error on zero being 1. It is 
calculated like this even for a Poisson likelihood fit; in that case the 
maximum likelihood may not correspond to the minimum chi-squared, but 
CHISQ can still be used, with NDF (the no. of degrees of freedom), as a 
goodness-of-fit estimator. For ntuples, an internally generated and 
temporary histogram is used to calculate CHISQ in the same way. 
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List of Figures 

1 Linear interpolation expressed as a linear combination of radial basis functions rP; ( II z ­
z;11) with rP;(r) == r, i.e., rP;(lIz - z;ID == Iz ­ z;1 in this case, of data from Table 1. 
The individual basis functions, weighted by the coefficients a;, are shown dashed and 
labeled rPl, etc. (a2 = 0, so rP2 is absent.) Linear interpolation is not normally defined 

. outside the range of the data but our prescription gives a well defined value, shown 
dot-dashed, which turns out to be useful ­ see text. ................. 6 

2 (a) Multiquadric interpolation of data from Table 1 for various values of 6.;. 6.; is 
different for different curves but the same for all j for each curve. (Later examples 
have 6.; which may depend on j.) (b) The curve and its component basis functions 

rP;(r) == rP;(lIz - z;ll), where rP;(r) = Jr2+6.;, weighted by the coefficients a;, for 
6.; = 0.5 for all j. ................................... 7 

3 2-dimensional multiquadric interpolation of 10 data at locations and of values indicated 
on the contour plot on the left. The scale parameter 6.; was 0.5 for all component 
basis functions. A surface representation is shown on the right. The interpolation is 
smooth and sensible, at least where the data are plentiful. (In our applications we 
always ensure the data are plentiful everywhere in the region of interest.) . . . . . .. 8 

4 Two examples of I-dimensional histograms with superimposed multiquadric fits. The 
left shows a barely significant peak in a low-statistics sample where our method has 
made an unbiased fit with 7 centres (shown by JJ.s) with X2 = 134 for 93 degrees of 
freedom. (If we believed, e.g., that there was a Breit-Wigner resonance in the data we 
would, of course, fit that instead. But this illustrates that our multiquadric fit finds 
the significant variations without introducing biases.) The right is a high-statistics 
weighted histogram requiring 17 centres with X2 = 114 for 83 degrees of freedom. . .. 11 

5 Left, a 2-dimensional histogram of the original data and right, a surface representation 
of a 79-parameter multiquadric fit. The X2 was 2027 for 1521 degrees of freedom. 
Note that a better X2 can be obtained by increasing the sensitivity of the selection of 
basis function centres, which introduces more parameters, and/or by scaling the 6.;. 
E.g., with 141 parameters the X2 was 1819 for 1459 degrees of freedom and with 447 
parameters the X2 was 1281 for 1153 degrees of freedom. Yet in all cases the fits show 
no bias and certainly satisfy a visual criterion of smoothness and faithfulness. 12 

6 An isosurface and a cut plane of a 3-D smoothed event density rendered with AVS 
[3]. 26102 high energy physics events were analysed to extract 3 characteristics per 
event defining a point in a 3-D space. The event density was fitted to a 500 parameter 
multiquadric expansion to produce the smoothed event density. . . . . . . . . . . .. 13 
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