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Abstract 
The Lie algebra of the classical group SU(2) is constructed from two quon 

algebras for which the deformation parameter is a common root of unity. This 
construction leads to (i) a (not very well-known) polar decomposition of the 
generators J_ and J+ of the SU(2) Lie algebra and to (il) an alternative to 
the {J2 , J3 } quantization scheme, viz., the {J2 , Ur } quantization scheme. The 
key ideas for developing the Wigner-Racah algebra of the group SU(2) in the 
{J2 , Ur } scheme are given. In particular, some properties of the coupling and 
recoupling coefficients as well as the Wigner-Eckart theorem in the {J2 , Ur } 

scheme are briefly discussed. 

Paper to appear in the Proceedings of the International Conference Quantum 
Groups, Deformations and Contractions (Istanbul, Turkey, 17 - 24 September 
1997). The Proceedings of the Conference will be published in the Turkish Journal 
of Physics. 



1 Motivations and Introduction 

In recent years, intermediate statistics and deformed statistics were the object of 
considerable interest [1-19]. The use of deformed oscillator algebras proved to be 
useful in parastatistics, anyonic statistics and deformed statistics. In particular, 
one- and two-parameter deformations of the Bose-Einstein statistics (more precisely, 
deformations of the relevant second quantization formalism) were studied by several 
authors [6-19]. A common characteristics of most of these studies is that it is 
possible to obtain a Bose-Einstein condensation of a free gas of bosons in D = 2 
and 3 dimensions. However, in D 3 dimensions, the q-deformed Bose-Einstein 
(B-E) temperature is generally greater than the classical (corresponding to q = 1) 
B-E temperature. In the specific case of 4He super-fluid in phase II, the usual q­
deformations, i.e., the ala Biedenharn [20] and ala Macfarlane [21] q-deformations, 
yield the following inequality : 

(TB-E)q*l > (TB-E)q=l > (TB-E)exp 

so that we do not gain anything when passing from q = 1 to q #- 1. On the other 
hand, by using a ala Rideau [22,23] deformation, it is feasible to lower the critical 
temperature (TB-E)q*l due to the occurrence of a second parameter 1/~ in addition to 
the deformation parameter q. This result corresponds to the model Ml introduced 
in ref.[19]. For this model, we can obtain couples (1/~, q) for which (TB-E)q*l is in 
agreement with the experimental value (TB-E)exp rv 2.17 K. However, as a drawback, 
the model Ml depends on two parameters. Although it is possible to find a physical 
interpretation (in terms of the chemical potential) of the deformation parameter q, 
there is up to now no satisfying interpretation of the phenomenological parameter 

I 
1/0· 

The just mentioned difficulty to interpret the parameter 1/~ was the starting point 
of an investigation of alternative deformations of the second quantization formalism. 
More specifically, we investigated the ala Arik and Coon [24] deformation but in 
the case where q is a root of unity. (In the original work by Arik and Coon, the 
deformation parameter q is a real number: The reality of q ensures that the creation 
and annihilation operators are connected via Hermitean conjugation.) Thus, we 
arrived at the conclusion that it is necessary to simultaneously consider two quon 
algebras Aq and Aq in order to obtain a convenient framework for obtaining B-E 
condensation of quons. 

As a first by-product, we were naturally left to the definition and study of op­
erators, referred to as k-fermion operators, that interpolate between boson and 
fermion operators. These new operators arise through the consideration of two non­
commuting quon algebras Aq and Aq for which q = exp(21ri/k) with kEN \ {O, I}. 
The case k 2 corresponds to fermions and the limiting case k --+ 00 to bosons. 
Generalized coherent states (connected to k-fermionic states) and super-coherent 
states (involving a k-fermionic sector and a purely bosonic sector) were examined. 
In addition, the operators in the k-fermionic algebra were used to find realizations 
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of the Dirac quantum phase operator and of the Woo Fairlie-Fletcher-Zachos algebra 
[25]. All these matters were discussed in Bregenz (at the Symposium Symmetries 
in Science X), Dubna (at the VIII International Conference on Symmetry Methods 
in Physics) and Istanbul (at the International Workshop Quantum Groups, Defor­
mations and Contractions) and shall be reported elsewhere [26,27]. 

In the present paper, we would like to deal with a second by-product of our quon 
approach. Here, instead of considering two non-commuting quon algebras Aq and 
Aq, we shall consider two realizations of two commuting quon algebras corresponding 
to the same root of unity q = exp(27ri/k) with kEN \ {O, 1}. We shall see how to 
construct (in Section 2) the Lie algebra of SU(2) from these two quon algebras; how 
to obtain (in Section 3) an alternative to the {J2 , Jz} scheme of SU(2) ; and how 
to develop (in Section 4) the Wigner-Racah algebra of SU(2) in this new scheme. 
In a last section (Section 5), we shall indicate some perspectives and briefly discuss 
some open problems. 

A Quon Approach to SU(2) 

We start with two commuting quon algebras Ai {ai-, ai+, N i}, with i = 1 and 2, 
for which the generators satisfy 

(1) 

w here the deformation parameter 

q with kEN\{O,l} (2)expC:) 

(the same for At and A2 ) is a root of unity. As constraint relations, compatible with 
(1) and (2), we take the nilpotency conditions 

(3) 

Grassmannian realizations of eqs.(1) and (3) are obtainable from ref.[26]. In this 
work, we take the representations of At and A2 defined by 
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N1lnt) = nllnl), N21n2) = n21n2) 

on a Fock space :F {ln ln2) = Int)® In2): nl,n2 = 0,1,···,k-1} of finite 
dimension (dim :F k2 

). We use here the notation 

1 qX
[z]q = 1 for Z E R 

-q 

so that [n]q 1 + q + ... + qn-l for n E N*. 
We now define the two following linear operators 

and 

w here the real parameter tPr is taken in the form 

tPr 7r(k - l)r with r E R 

and the q-deformed factorial is defined by 

The action of Ur on :F is easily found to satisfy 

and 
Urlk -1,0) = exp(itPr) 10,k -1) (5) 

while for H we have 
Hln ln2) = Jnl(n2 + 1)ln ln2) (6) 

By using the Schwinger trick 

j = ~ (nl +n2), m = ~ (nl -n2) =} Inln2) = Ii m,j -m) = lim) 

we can rewrite eqs.(4) and (5) as 

Urljm} [1- 5(m,j)] Ij,m + 1} + 5(m,j)exp(itPr) Ij,-j} 

Similarly, eq.(6) can be rewritten 

Hljm} = J(j + m)(j - m + l)ljm} 
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Furthermore, we have 

U:lim) = [1 6(m, -i)] Ii, m - 1) +6(m, -i)exp (-i¢r) Iii) 

where Ur t stands for the adjoint of Ur • For a fixed value of k, we take 

2i k - 1 with kEN \ {O, I} 

We can thus have i ~,1, ~, .... The case i = 0 corresponds to the limiting 
situation where k ~ 00. 

It is obvious that the operator H is Hermitean and the operator Ur is unitary. 
The action of Ur on :F is cyclic. As a further property of Ur , we have 

that reflects the cyclical character of Ur • 

Let us introduce the three operators 

J =UtH (7)- r 

and 

(8) 


It is immediate to check that the action on the state lim) of the operators defined 
by eqs.(7) and (8) is given by 

J±lim) = V(i 1= m)(i ± m + l)li,m ± 1) 

and 

J3 lim) = mlim) 

Consequently, we have the commutation relations 

which correspond to the Lie algebra of the group 8U(2). As a result, the non­
deformed Lie algebra su(2) is obtained from two q-deformed oscillator algebras. 

To close this section, it is interesting to note that we can generate the infinite 
dimensional Lie algebra Woo from the generators of Al and A2 • Indeed, by putting 

and 
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we can prove that 

[Tm,TnJ = -2isin C:m X n) Tm+n (9) 

w here we use the abbreviations 

and 

Equation (9) shows that the operators Tl span the algebra Woo introduced by Fairlie, 
Fletcher and Zachos [25]. This result parallels a similar result obtained in ref.[26] in 
the study of k-fermions and of the Dirac quantum phase operator. 

A New Basis for SU(2) 

At this stage, it is important to establish a link with the work by Levy-Leblond [28]. 
The decomposition (7), in terms of Hand Ur , coincides with the polar decomposi­
tion, described in ref.[28], of the shift operators J+ and J_ of the Lie algebra su(2). 
This is easily seen by taking the matrix elements of Ur and H and by comparing 
these elements to the ones of the operators T and JT in [28]. This yields H JT; 
furthermore, by identifying the arbitrary phase 'P of [28] to </Jr = 27rj1' = 7r(k - 1)1', 
we obtain that Ur turns out to be identical to the operator T of [28]. Equation (7) 
constitutes an important original result of ref.[28]. 

It is easy to prove that the Casimir operator 

commutes with Ur for any value of 1'. (Note that the commutator [Ur, Us] is dif­
ferent from zero for l' # s.) Therefore, for fixed 1', the commuting set {J2 ,Ur } 

provides us with an alternative to the familiar commuting set {J2
, J3 } of angular 

momentum theory. The (complete) set of commuting operators {J2 
, Ur } can be 

easily diagonalized. This leads to the following result. 
Result : The spectra of the operators Ur and J2 are given by 

(10) 

where 

I1.)0·1' - 1 L
j 

qam Il·m) (11) 
, - y'2j + 1 m=-j 

with the range of values 

0=-j1',-j1'+l,···,-j1'+2j, 2jEN 
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The parameter q in eqs.(10) and (11) is 

27ri ) (12)q = exp ( 2j + 1 

(cf. eq.(2) with k == 2j 1 for kEN \ {O, I} and k --7 00 for j = 0). 
It is important to note that in eqs.(10) and (11) the label a goes, by step of 1, 

from - jT to - jT + 2j. (It is only for T = 1 that a goes, by step of 1, from - j to j.) 
The inter-basis expansion coefficients 

(J'mIJ'a'T) == 1 qam 
, ~2j + 1 

(with m -j, -j+ 1"" ,j and a = -jT, -jT 1"", -jT + 2j) in eq.(II) define a 
unitary transformation that allows to pass from the well-known orthonormal stan­
dard basis {Ijm) : 2j E N, m == -j, -j+1"" ,j} of the space:F to the orthonormal 
non-standard basis Br == {Ija; T) : 2j EN, a = -jT, -jT + 1" .. , -jT + 2j}. Then, 
the expansion 

1 -jr+2j 

Ijm) ~ q-am IJ'a' T)
~2j + 1 a~jr ' 

with 

m == -j, -j + 1"" ,j, 2j E N 

is the inverse of eq.(ll). 
We thus foresee that it is possible to develop the Wigner-Racah algebra (WRa) 

of the group SU(2) in the {J2,Ur } scheme. This furnishes an alternative to the 
WRa of SU(2) in the SU(2) :J U(l) basis corresponding to the {J2 ,J3 } scheme. 

A New Approach to the Wigner-Racah Alge­
bra of SU(2) 

In this section, we give the basic ingredients for the WRa of SU(2) in the {J2, Ur } 

scheme. The Clebsch-Gordan coefficients (CGc's) adapted to the {J2 , Ur } scheme 
are defined from the SU(2) :J U(l) CGc's adapted to the {J2 ,J3 } scheme. The 
adaptation to the {J2 ,Ur } scheme afforded by eq.(II) is transferred to SU(2) ir­
reducible tensor operators. This yields the Wigner-Eckart theorem in the {J2 

, Ur } 

scheme. 
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4.1 	 Coupling and Recoupling Coefficients in the {J2 
, Ur } 

Scheme 

The CGc's or coupling coefficients (j1j2a1 a2lja; r) in the {J2, Ur} scheme are simple 
linear combinations of the SU(2) :J U(l) CGc's. In fact, we have 

where q, q1 and q2 are given by eq.(12) in terms of j, j1 and j2, respectively. The 
symmetry properties of the coupling coefficients (j1j2a1a2Ija; r) cannot be expressed 
in a simple way (except the symmetry under the interchange jla1 f-+ j2(2)' Let us 
introduce the fr symbol via 

(13) 

where the star indicates the complex conjugation. Its value is multiplied by the 
factor (_1)j1+.12+;3 when its two last columns are interchanged. However, the inter­
change of two other columns cannot be described by a simple symmetry property. 
Nevertheless, the fr symbol is of central importance for the Wigner-Eckart theorem 
in the {J2,Ur } scheme (see eq.(17) below). 

Following ref.[29], we define a more symmetrical symbol, namely the fr symbol, 
through 

h) 	 A..1 

03 = V(2jl + 1)(2j2 + 1)(2j3 + 1) ml~jl m2~. m.~. 
X q-Ot1m1q-Ot2m2q-Ot3m3 ( jl 32 j3) 	 (14) 

1 	 2 3 ml m2 m3 

where the parameters qi are given by eq.(12) with q =qi and j =ji for i = 1,2,3. 
The 3 - jm symbol on the right-hand side of eq.(14) is an ordinary Wigner symbol 
for the group SU(2) in the SU(2):JU(1) basis. As a matter of fact, it is possible to 
pass from the fr symbol to the fr symbol and vice versa by means of a metric tensor. 
The fr symbol is more symmetrical than the fr symbol. The J,. symbol exhibits the 
same symmetry properties under permutations of its columns as the 3 - jm Wigner 
symbol: Its value is multiplied by (_1);1+.12+j3 under an odd permutation and does 
not change under an even permutation. In addition, the orthogonality properties of 
the highly symmetrical fr symbol easily follow from the corresponding properties of 
the 3 - jm Wigner symbol. Thus, we have 

(15) 
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1~: ~:) fr (~~ ~: ~ir= 2j3 + 1Ll(Olj,0j20j3)5(j~,h)5(Q~, Q3) 

(16) 
where ~(0Ii1®i2®i3) = 1 or 0 according to as the Kronecker product (id®(i2)®(i3) 
contains or does not contain the identity irreducible representation (0) of SU(2). 
Observe that the real number r is the same for all the Ir symbols occurring in 
eqs.(15) and (16). 

The values of the SU(2) CGc's in the {J2
, Ur} scheme as well as of the Ir and 

Ir coefficients are not necessarily real numbers. For instance, we have the following 
property under complex conjugation 

Ir (i1 i2 i3)* = (_1)il+h+ia Ir (il i2 i3)
al a2 a3 al a2 a3 

Hence, the value of the Ir coefficient is real if il +i2 +i3 is even and pure imaginary 
if il +i2 +i3 is odd. Then, the behavior of the Jr symbol under complex conjugation 
is completely different as the one of the ordinary 3 - im Wigner symbol. 

Finally, it is worth to mention that the recoupling coefficients of the group SU(2) 
can be expressed in terms of coupling coefficients of SU(2) in the {J2 , Ur } scheme. 
For example, the 9 - i symbol can be expressed in terms Jr symbols by replacing, 
in its decomposition in terms of 3 - im symbols, the 3 - im symbols by Jr symbols. 
On the other hand, the decomposition of the 6 - j symbol in terms of Jr symbols 
requires the introduction of six metric tensors corresponding to the six arguments 
of the 6 - i symbol. These matters may be developed by following the approach 
initiated in refs. [29-32]. 

4.2 Wigner-Eckart Theorem in the {J2 , Ur } Scheme 

From the spherical components TJk) (with q = -k, -k + 1,··" k) of an SU(2) 
irreducible tensor operator T(k), we define the 2k + 1 components 

T(k>(r) _ 1 ~ qa.mTm(k) 
a. - J2k + 1 m~k 

with 

a = -kr, -kr + 1,··" -kr + 2k, 2k E N 

In the {J2
, Ur } scheme, the Wigner-Eckart theorem reads 

(T,j,Q,; rIT~k)(r) IT2j2Q2; r} (T,j,IIT(k) IIT2j2) fr (~~ ~: !) (17) 

where (TlilIIT(k)IIT2i2) denotes an ordinary reduced matrix element. Such an ele­
ment is basis-independent. Therefore, it does not depend on the labels al, a2 and 
a. On the contrary, the Ir coefficient in eq.(17), defined by eq.(13), depends on the 
labels aI, a2 and a. 
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5 Concluding Remarks 

In this paper, we have developed a quon approach to the Lie algebra of the classical 
(not quantum!) group SU(2). Such an approach leads to the polar decomposition 
of the generators J+ and J_ of SU(2), a decomposition originally introduced by 
Levy-Leblond [28]. 

The familiar {J2
, J3 } quantization scheme with the (usual) standard spherical 

basis {Ijm) : 2j E N, m = -j, -j + 1"" ,j}, corresponding to the canonical 
chain of groups SU(2)::> U(l), is thus replaced by the {J2

, Ur } quantization scheme 
with a (new) basis, namely, the non-standard basis Br = {ljex;1') : 2j E N, ex = 
-j1', -j1' + 1,,·, ,-j1' + 2j}. We have given the premises of the construction of 
the Wigner-Racah algebra of the group SU(2) in the Br basis. Of course, there 
exists an infinity of Br bases due to the fact that l' E R. The case l' = 1 probably 
deserves a special attention. We shall give elsewhere a complete development of the 
Wigner-Racah algebra of SU(2) in the Bl basis. In particular, the calculation and 
the properties, including Regge symmetry properties, of the coupling coefficients 
(11 and fl symbols and CGc's in the {J2

, U1 } scheme) shall be the object of a 
forthcoming paper. 

As a further interesting step, it would be interesting to find realizations of the 
Br basis (i) on the sphere S2 for j integer and (ii) on the Fock-Bargmann spaces 
(of entire analytical functions) in 1 and 2 dimensions for j integer or half of an 
odd integer. In this respect, the problem of finding a differential realization of the 
operator Ur on S2 and of expressing its eigenfunctions 

1 l 
[Yr]la (B, <p) = -;::::::;= L qaml'lm(B, <p ) (18) 

m=-l 

with 

ex = -i1', -i1' + 1, ... , -i1' + 2i, i E N 

as special functions is very appealing. (In eq.(18), l'lm denotes a spherical harmonic.) 
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