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Abstract 
A model for the proton structure function (SF) including various features expected 

from the theory - both of perturbative QCDand non-perturbative (Regge) theory - is 
constructed. Good agreement whith data on deep inelastic scattering and photoproduction 
data is in the case when the non-perturbative component of the Pomeron is governed by 
a "maxinal" behaviour, i.e. the one growing like 10g2(8). 



1 - Introduction 

The recent experimental data from HERA opened a new area in the study of proton 
structure function (SF) F2(z,Q2). The ava.i.lable data now cover a wide kinematic range 
linking the perturbative and non-perturbative regimes expected in QeD. 

In fact, the H1 [1] and ZEUS [2] collaboration, present results for F2 at very small-~ 
(z < 10-3 ) which offer the opportunity to probe the perturbative role of the Pomeron 
which is expected to govern the small-~ and large-Q2 behaviour of F2 • The results [3,4] of 
these collaborations for the total ('YP) cross section (0"l:' )at high energy (Vi ~ 200 GeV ) 
lead to a similar situation because in this energy range, it is the so called non-perturbative 
Pomeron which, as expected from Regge theory, is the dominant contribution. 

The nature of the Pomeron remains among the unsolved problems of QeD. It became 
popular [5] to treat the Pomeron as a dual object, "soft" or "hard" depending on the 
kinematical region considered. 

The link between deep inelastic scattering (DIS) and elastic hadron scattering has 
been studied in a number of papers (see e.g [5-8]). Donnachie-Landshoff used [7) their 
model of the Pomeron with the intercept 0(0) (0(0) I'V 1.08) fitted earlier to the hadronic 
reactions to describe the small-Q2 behaviour of the structure function. By introducing in 
a phenomenological way some Q2 dependence in the Pomeron intercept, and combining 
it with the generalized eikonal model, in Ref.[S] good agreement with the data has been 
obtained in a wide range of Q2 . 

In this paper we combine the small-Q2 behaviour of the Pomeron with its Q2 evolu
tion deduced from the Gribov-Lipatov-Altarelli-Parisi (GLAP) equations. Following the 
Lopez and Indurain arguments [9] we investigate the large-Q2 behaviour of SF closed to 
z = 0 and z = 1, keeping in the GLAP equations the leading contributions. In the low 
Q2 domain, we assume that the behaviour of SF is governed by non-perturbative contri
bution, consequently, only this contributions have to be extented to Q2=0. The small-Q2 
parametrization of SF is deduced from results on 'YP and hadronic cross sections. Various 
models for the non-perturbative Pomeron contribution will be tested. 

In section 2 we present our model and the derivation of the main formulae to be used 
in what follows. In section 3 we confront the model against the experimental data and 
present some conclusions. 

2 - The model 

Following the ideas presented in the introduction, we write the structure function F2 
as a sum of two terms: 

D _ D npert + D pert
L'2 - L'2 L'2, (1) 

where the first term, F;pert , corresponds to the non-perturbative part of the structure 
ertfunction, typical of the small-Q2 behaviour and the second one, F: , to the perturbative 

large-Q2 evolution. In what follows, F;pert will be connected with Regge behaviour and 
in particular it will be chosen to describe 0"7~ [10,11], while F:ert will be derived from the 
asymptotically large-Q2 solutions of GLAP equations [12,13]. 
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As it is well known [14] the total 'YP photoproduction cross section can be described 
by the exchange of a Pomeron and a Reggeon term : 

ul:, =u(Pome,.on) +u(Regge~) . (2) 

We extend this form to include deep inelastic scattering by assuming that the Pomeron 
is related to the sea and ,gluon (singlet) distribution, dominating the smaU-:c behaviour, 
while the reggeons are related to the valence quark (nonsinglet) distribution, important at 
large-:c. 

Now, each term F; ( i = pert, npert) of F2 can be written as a sum [6] : 

(3) 

where P(:c, Q2) is the singlet distribution mainly responsible for the smaU-:c behaviour of 
F2, and V(:c, Q2) the non singlet distribution responsible for the large-:c behaviour. 

2.1 Determination of F:ert 

Both contributions in F:ert are defined at moderatly large value of Q2 = Q~, where 
perturbative hypothesis are expected to be valid, and then evolved via GLAP equations. 
We chose Q~ 5 GeV2 in agreement with the often used value [15]. 

Since the sea and gluons content of the proton is closely related to the Pomeron, one 
must impose, in its input distribution at Q2 = Q~ , the steep behaviour (in :c-.\) predicted 
by the Lipatov equation [13] as x goes to O. Then, the small-x behaviour of the Pomeron 
at Q2 Q~ is given by : 

xppert(x, Q~) ---i Ap x-6p • (4)
:1:--+0 

Following [16], we choose to work in the pure gluon sector of QeD since it is the gluons 
which are expected to drive the small-x behaviour and use the relevant GLAP evolution 
equation for gluons similarly to the method using in [17] : 

(5) 

with 

log Q2/A2) 
s = log ( log Q~/A2 . 

By writting the running coupling constant in the leading order approximation : 

2 411" 
as ( Q ) = /30 log (Q2 / A2) , 

with /30 = (lINe - 2Nf )/3 , and choosing A = 200 MeV, Nc = 3 and N f =4, then the gg 
kernel is given by : 
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(6) 

Following [18], we now evalu~te the integral in (5) with (4) and compare the result with 
the relevant derivative in 8. In this way we obtain the evolution with 8 of the coefficient 
Ap in (4) : 

with: 

where q, is the logarithmic derivative of the Euler gamma function, and 'Y is the Euler's 
constant. The evolution of the 6p parameter cannot be obtained in this way since it is the 
eigenvalue of the kernel Pgg • We shall find it from fits to the data. 

Even though the Pomeron dominates the small-z region, its contribution at inter
mediate and large x is still non-negligible. This will be taken into account by relevant 
multipliers by which (4) becomes: 

(8) 

where, the last two factors in Eq.(8) reflect respectively the contribution in the intermediate 
and large-x region. 

For the valence term, which is increasingly important for x close to 1, we can write 
this non singlet distribution at Q2 = Q5 : 

xvpert(x, Q~) ---+ Av(1 x)J3". (9)
x-+1 

The relevant GLAP equation is : 

d (x v 
pert 

(x, Q2)) = 11 dy p (.:) v pert( Q2) 
. d x 2 qq Y y, , (10) 

s x Y Y 

where using the same evolution variable and parameters as in Eq.(5) the qq kernel is : 

p ( ) == 20I ( 1 + Z2 ) ~ 6(,1 (11)
qqZ /30 1 Z ++2 

with 0, = (N; -1) /2Nc • By proceeding in the similar way as a.bove we find the evolution 
of f3v and Av : 

A ( ) - A (pa) r(/3v + 1)e 
v s - v r(/3v(s) + 1) 

4C,
f3v (s) == f3v + f30 s , 
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where: 

To take into account the small-z contribution for the valence quark distribution we 
include phenomenological multipliers (l..S above) whereafter the non-singlet distribution 
becomes: 

zvpert(z Q2) = A ePtl r(J3v + 1) z-611 (1 + h 'i + h z)(1 - z)f3v (tl) (12) 
, v r (J3v (8) + 1) 0 v .., 1 , 

where (1 + hovz + h1z) and z-6. (.;v < 0) are introduced to describe respectively the 
intermediate z-region and the flavor Regge behaviour for small-z. 

2.2 Small-Q2 contribution and extention to Q2 = o. 
We now consider the small-Q2 behaviour of F2 and the possible extension to Q2 = o. 

A major problem is that one does not know exactly the transition region between the 
perturbative and non-perturbative dynamics. The lowest value of Q2 from which evolution 
starts can only be guessed (we have assumed Q5 = 5 GeV2 but alternative value are not 
excluded). The interpolation between the two regimes is a challenge for the ~heory. 

As a guide, we choose F2 to be compatible with the photoproduction total cross-section 
"YP 

O'tot • 

We also impose the requirement of gauge invariance that the structure function F2 
vanishes like Q2 as Q2 -+ O. Correspondingly, to fulfill the above requirement, we extend at 
least in an approximative way, the analytical expressions (8) and (12) of F:ert by changing 
the exponential factors into a power behaviour (see also [7]). The modified pe~turbative 
components of the structure function (8) and (12) thus become: 

(13) 

(14) 

where we have "frozen" the infrared divergence in the evolution by using: 

log(Q2 + Q~)/2A2)
t I og ( log Q~/A2 . 

The ~ i functions for i = p, v are defined as : 

(15) 


wh~re the parameters bi can be related to the radius of the i parton form factor of the 
proton. 
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In formulae (13-15) the coefficients Bi and bi in (13-15) as well as the t-dependence 
1311(t) in (14) are expressed in terms of hi and Ai in (8) and (12) by requiring respectively 
a smooth join between the two forms at Q2 = Qa. 

Such an extension is quite acceptable in the small-Q2 region but it is certainly not 
for Q2 =0 since it provides a "Lipatov" behaviour for the total cross-section which has not 
been confirmed by the data (see e.g [7,11]). To fit the observed behaviour of 0'7:" , we 
thus assume th~t the behaviour at Q2=O is completely yielded by the non-perturbative 
contribution F;pt:rt in Eq.(l). 

Thus for small and vanishing Q2, F2 in Eq.( 1) becomes : 

__Q_a__] V"ptrrt p. npert + [ Q2 ] Vpert p. pert 
(16)[ Q2 +Qa 2 Q2 +Qa 2, 

where the Vi is an adjustable parameter to provide the smooth interpolation between the 
two regimes. 

According to the additivity of various Regge contributions, as discussed in the intro
duction, we write F;pert as a sum of two terms: 

p,npert p. npert p. npert 
2 2 Pomeron + 2 Reggeon , (17) 

where the fulfilment of the above requirements is implied. 
Two different type of Pomeron will be used: 

i) a "Froissart" like Pomeron : 

F2~::ron = (C3 + c2L + cIL2)(1- z)blog (1 + Q2
Q
: ~) , (18) 

where L = log «Q2(I/x - 1) + mJ.v.) , mN being the proton mass; in this first case two 

options will be considered, that of a maximal (as L2) and a moderate (as L, Cl = 0) growth 

[11], and, 

ii) a supercritical Pomeron [10] : 


F. npert _ d ( Q2 ) l+e -e(l (19)2Pomeron - 1 Q2 + da x 

with e > O. The secondary Reggeon term is chosen as (with bR < 0), 

D npert _ ( Q2 ) 1+6R -6R (1 )f3R (20)L'2Reggeon - aR Q2 + a~ x - x . 

From the definition of the total cross section 0'itt : 

(21) 


we thus have for the two above models of the Pomeron : 
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(22) 


and 

(23) 

3 - Results and conclusions. 

The model of the proton structure function F2 presented in the preceding sections 
was fitted in a wide kinematical range to a large number of experimental data on deep 
inelastic scattering from NMC [19], SLAC [20], BCDMS [21], H1 [1] and ZEUS [2], as well 
as those on photoproduction total cross-section 0'7:' from O.D Cadwell et ale [22], H1 [3], 
ZEUS [4]. 

To find the best choice, the fits were done separately for various models of the small-Q2 
component of the Pomeron presented in 2.2. 

The fitting procedure proceeded in two step. First, we have fitted the parameters of 
the formulae (22) and (23) to the total cross-section (o}cit ) data. Then the remaining free 
parameters in F2 , (Eq. 15) were fitted to the data on deep inelastic scattering.. The values 
of the parameters are presented in Table 1. One observation from these fits, shown in 
Figs.1 and Fig.2 is that, in agreement with the previous analyses of Ref. [15] , the small-Q2 
behaviour of the SF has little influence on its large-Q2 behaviour. 

The next observation (see Fig.3) is that the small-ro and large-Q2 behaviour seems to 
be controlled by the so called "Lipatov Pomeron" (called also by Lopez and Indurain [9] 
the "singulariy of anomalous dimension"). This is pronounced as shown in Fig.4 where 
the respective role of the Pomeron contribution and the valence contribution is illustrated. 
The fitted value of op was found close to 0.42 (see Table 1), which is in agreement with 
others works [15,23]. 

Our main conclusion is that two components of the Pomeron seems to be visible : 
one " moderate" , fitting the ,-p total cross-section and the 10w-Q2 data of SLAC, NMC, 
and BCDMS data, but inconsistent with the steep rise seen at HERA at small-ro, and the 
other one, the QCD-inspired "Lipatov Pomeron", in agreement with the HERA increases 
of F2 but implying a non realistic large-s rise of o}:' . However, if we believe that there 
is one Pomeron, one way out is to introduce a Q2-dependent of this intercept as done in 
Ref.[8]. 

The small-Q2 behaviour of the structure function itself is informative in helping to 
resolve the long-standing problem of "how fast do cross sections rise"? The best fit to 
the total cross section (Fig.5) and low-Q2 structure function (Fig.6) is achieved with a 
Froissaron-like Pomeron (i.e giving rise like log2{s)) rather than a slower (like log(s)) or 
faster (SE) rise of energy, as founded in hadronic reactions [11]. 

In conclusion we have introduced a simple two-components model for the Pomeron, 
one component responsible for the small-Q2 the other one for the large-Q2 behaviour of 
the structure function. A large kinematical domain of F2 and (}"itt is well described by 
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our model. But evidently the complicated interplay of z and Q2 dependence of SF is not 
completely understood. In the same way, the evolution of the Pomeron behaviour in the 
small-Q2 to large-Q2 deep inelastic process remains a debated problem. 

We wish to thank X. Artru for enlightning discussions, and a critical reading of the 
manuscript. 
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Figures Captions 

Fig.l.a,b. Comparison between the measurement of F2 obtained from NMC [19] (closed 
points), SLAC [20] (squared dots), and BCDMS [21] (triangulated dots) and our 
parametrizations of stucture function. The continous, dotted, and dashed curves cor
respond to F2 calculed with the common Ffert and respectively with the contribution 
F;pert param,"'trized as Eq.(18), Eq.(18) with Cl 0 (see the text), and Eq(19). 

Fig.2. With the same definitions as for Fig.l.a,b the curves show the description of 
HI [1] and ZEUS [2] measurements of F2 • 

Fig.3. The structure function from HI [1] (triangulated dots), ZEUS [2] (closed points) 
and NMC [19] (opened points), 'with the same tree parametrizations as for Fig.l. 

Fig.4. Behaviour of the singlet and non-singlet distribution of F2 at Q2 = 15 GeV2 with 
the same data defined in Fig.3. 
The continuous line shows the description of the data defined in Fig.3. with our best 
parametrization (with F;pert taken as Eq.(18)). The dashed (dotted) curve, discribe the 
behaviour of the singlet (non-singlet) contribution of F2 

Fig.5. Total cross section as a function of the iP center of mass energy W,. with results 
from O.D. Caldwell [22] (closed points) , HI [3] (opened square), ZEUS [4] (closed square 
and star). The dotted, continuous and dashed curves are obtained respectively from the 
parametrizations of Eq.(23), Eq.(22), and Eq.(22) with Cl = 0 (see the text). 

Fig.6. The structure function from NMC [19] at Q2 5 Ge V2 , with the same 
parametrizations as for Fig.l 
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(a) (b) I (c) 
Cl 
C2 
C3 
c2 

0 

aR 
CR 
a~ 

5.20 10 ·4 

2.93 10-2 

' 0.220 
0.428 

2.48 10-2 

-0.442 
8.85 10-4 

0.0 
5.07 10-2 

0.347 
0.662 
0.829 

-0.488 
0.389 

0.192 
8.08 10-2 

0.346 
0.159 

-0.4525 
2.75 10-2 

d l 

€ 

cPo 
aR 
CR 
a2 

0 

b 
{3R 

0.104 
0.105 

1.39 
1.62 

0.867 
0.301 

d2 
{3R 

vnpert 2.59 1.71 2.36 vnpert 

(a) (b) (c) 
Ap 4.40 10- l 3.53 10-l 4.20 10-l 

'cp 0.408 0.438 0.432 
€p 3.99 0.45 0.328 
{3p 5.561 6.69 5.538 
Av 0.808 0.991 1.01 
tSv -0.253 -0.11 -0.28 
ho -1.19 -2.00 -1.23 
hI 5.12 6.43 4.52 
{3v 3.50 3.80 3.56 

v pert 0.382 1.40 0.523 

Table 1 

Value of parameters of F2(z, Q2) obtained from fits to the data with Eq.(16). 


The upper part of the table lists parameters involved in the small-Q2 contribution 
(F;pert ) of F2 (parametrized as Eq. (17) ), for the three different small-Q2 behaviour of 
the Pomeron :(a) for Eq.(18), (b) for Eq.(18) (with CI = 0) and (c) for Eq.(19). 
The lower part lists parameters involved in the large-Q2 contribution (F:ert ) of F2 , 
parametrized with Eq.(8) and Eq.(12), for the three previously small-Q2 parametrizations. 
The first seven parameters listed in the table are fixed from a fit to the total 'YP photo
production cross section [3], [4], [22], and all others parameters are fitted to the all deep 
inelastic data [1], [2], [19], [20] , [21]. 
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