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Abstract: We study here equilibrium deformations of rotating nuclei within a 
selfconsistent semiclassical cranking approach using the SkM* Skyrme effective 
interaction. The different axial rotational configurations, i.e. where the rotation 
axis is parallel or perpendicular to the symmetry axis, are studied as well as 
the Jacobi bifurcation into triaxial rotational equilibrium shapes. Finally the 
validity of the concept of a rotating liquid drop which has been widely used for 

. the determination of average shapes of rotating nuclei is assessed by comparison 
with our microscopic results. 

It has been known for a very long time that composite rotating objects at 
equilibrium experience various shape transitions upon increasing their angular 
velocities [1]. This is also the case for finite quantal objects like atomic nu
clei, as studied extensively in Ref. [2] within the Liquid Drop Model (LDM). 
Further refinements of the standard LDM approach have dealt with situa
tions where the nuclear shape is creviced or with the cases of quasi-molecular 
configurations [3,4]. On the other hand, semi-quantal calculations using the 
cranking or routhian approximation have been tackling the same problem 
either in a microscopic-macroscopic type of approach [5] or in a Hartree-Fock
Bogolyubov framework using rather realistic parametrizations of the effective 
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nucleon-nucleon force [6]. 

In the present work we will use a purely microscopic approach to study the bulk 
shape properties of rotating nuclei. Beyond the display of rotational properties 
associated with a given effective force, we aim at assessing the validity of 
more phenomenological approaches. To be specific, we want to test LDM-like 
calculations as well as macroscopic-microscopic calculations using the latter 
as a baseline for their energy evaluations within a Strutinsky framework. Two 
questions should indeed be raised about the use of the LDM in such a context: 
i) are there selfconsistent effects affecting in a significant fashion the density 
profiles as functions of the angular velocity, ii) more generally is the concept 
of a rotating liquid drop supported at all by microscopic calculations starting 
from a two-body effective force? 

Our theoretical approach may be outlined as follows. We start from an effective 
interaction of the Skyrme type, whose capacity to describe static and low
energy dynamical properties is well established since many years [7]. More 
specifically, we will use here the SkM* parametrization [8]. Rotating nuclei 
will be described within the well-known semi-quantal cranking approximation 
which consists in minimizing the so-called routhian R : 

6(R) = 6 < H - w· (l + s) > (1) 

where H is the effective nuclear Hamiltonian and l (8 resp.) the total orbital 
(spin resp.) angular momentum. Instead of determining the quantal variational 
solution of eq. (1), we rather consider its semiclassical approximation (where 
semiclassical is to be understood ala Wigner) within the so-called Extended 
Thomas-Fermi (ETF) approach [9], as described in a previous paper [10], 
hereafter referred to as I. 

In I, explicit functional expressions for all the various densities entering the 
routhian density associated to a Skyrme force [11] have been derived in terms 
of the local (spin-scalar) density p(r). To evaluate the latter at equilibrium, 
one should minimize the variational quantity of eq. (1) for a given value of 
w within a restricted set of densities p(r) which will be specified below. It 
is worth noting however, that we rather require here that the total angular 
momentum has a given value Iii 

1 
In = IIwll < w . (l +s) > (2) 

This leads to performing many variational calculations corresponding to an 
adequate scanning of w values in order to get the desired value of I. In what 
follows we have satisfied the eq. (2) with an accuracy better than 5 . 10-3 . 
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For the densities p(r) we have chosen the family of modified Fermi functions 
given by (q standing for each one of the two charge states) : 

(3) 


where the function lq (r) is the distance from a generating surface as discussed 
in ref. [12]. 

As for the deformation space we will only consider in the present work, axial 
and triaxial ellipsoidal shapes, precluding thus a priori a realistic description 
of large deformations. For each charge state, we have thus considered four 
monopole parameters (POq, lXq, Iq and a radius parameter) plus two deforma
tion parameters. To keep contact, at least for moderate deformations, with 
usual shape parametrizations, we have labelled somewhat arbitrarily, our el
Ii psoidal shapes by the standard quadrupole parameters f3 and I equating the 
semi-axis lengthes of the ellipsoids with the comparable lengthes of a standard 
quadrupole drop. Taking into account the conservation of the neutron and pro
ton numbers and varying separately the monopole parameters of both charge 
states while imposing the same deformation to the 'two charge distributions, 
we are left with eight independent variational parameters. 

According to I, the total Skyrme Hamiltonian expectation value associated 
with a solution which is not even with respect to time-reversal, can be written 
as 

E =JH!~(p) Jlr + ~I(p)W2 (4) 

where H!~ is the semiclassical Skyrme hamiltonian density associated with 
a time-even solution (see I) and I(p) is given as an integral of a quantity 
involving only p [13]. Whereas I(p) as seen in eq. (4) is clearly identified 
as the dynamical moment of inertia I(2), it has been shown [13] that in our 
approach, this moment is identical to the kinematic moment defined as : 

I(t) = II < 1 + 8 > II (5)
Ilwll 

This result is not trivial since in eqs. (4,5) one has to take into account the 
w-dependence of the many-body wawefunctions which are solutions of the 
variational problem and hence such a w-dependence for p. One therefore gets 
the equilibrium solutions at a given value of the angular momentum Iii by 
minimizing the laboratory energy E given in eq. (4). The numerical evaluation 
of this energy has been made upon using, after minor modifications, an ETF 

3 

./ 



triaxial code written by J. Libert [14]. As a matter of fact, the first (and 
nunlerically most iInportant) term in eq. (4), has been evaluated to order four 
in Ii whereas the rotational energy term involving the moment of inertia I(p) 
has been evaluated as in paper I to second order only. 

vVe will first discuss our results in the small w-regime which could be named 
the Newton's regime in reference to the well-known axial oblate terrestrial-like 
solutions which are classically expected there. On Figure 1, the laboratory en
ergy E is plotted for 56Ni (at I = 40), 90Zr (at I = 40 and 50) and 208Pb 
(at I = 60), as a function of the axial deformation parameter f3 defining the 
ellipsoidal shape (as usual, f3 takes here a negative value for oblate shapes). 
One finds that indeed the lowest equilibrium solutions are oblate and have 
coinciding symmetry and rotation axis. However other local equilibrium solu
tions (higher in energy) are found on the prolate side (f3 > 0) in which case the 
symmetry and rotation axis are perpendicular. It is important to realize that, 
the angular momentum being fixed in such curves, the w-values are changing 
with j3, since 

Ih I((3) w((3) (6) 

One finds in fact that w((3) varies almost linearly near the spherical point as 
a function of j3. Indeed as we will see below, a reasonably good representation 
at small deformations of I considered as a function of (3, is provided by the 
rigid body formula which indeed exhibits there a linear dependence in (3 (see 
e.g. ref. [15]. 

For a nucleus whose charge and mass numbers are below some critical val
ues, one reaches upon increasing w, a point where triaxial ellipsoidal shapes 
correspond to the lowest solutions in energy. The advent of such a transition, 
dub.bed as the Jacobi bifurcation point is displayed for 90Zr in Figure 2 where 
the (j3,,) parameters of its most stable equilibrium solutions are reported as 
functions of I. With the convention for the ,-aiIgle given in ref. [16], a solution 
with, = 60° corresponds to axial oblate parallel rotations whereas, = 0° 
refers to axial prolate perpendicular rotations. In between, we are considering 
rotations whose axis is the principal axis of the ellipsoid with the shortest 
semi-axis length. It is seen on Figure 2 that the Jacobi bifurcation occurs in 
90Zr between I = 50 and I = 55. Then up to I = 60, the equilibrium solution 
relnains close to I ~ 600, while the laboratory energy surface is rather flat 
in the vicinity of the axial oblate edge. Suddenly for I ~ 63, the equilibrium 
solution moves away very rapidly with I, towards a perpendicular prolate type 
of rotation (see Figure 2). Ultimately for even higher values of I, one would 
reach a point of fission instability which we are unable to describe presently 
within our very limited shape parametrization space as above discussed. 
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A striking way of presenting this rather sudden transition from oblate parallel 
rotations with {3 ~ 0.3 to prolate perpendicular rotations with {3 ~ 0.6 (or 
higher), is to use a standard I/h2 over nw plot where as usual 

dE nw= (7)
dI 

One gets indeed on Figure 3 a very nice back bending pattern, with the some
what peculiar character though, of being purely semiclassical in nature (very 
nutch similar to what was found earlier, see Figure 4 of ref. [16]). It corresponds 
roughly to a band transition from a low deformation (low I) to a large defor
mation (large I) which is in fact in our case not at all stabilized, due to the 
fission instability. Indeed, around I = 60, the equilibrium solution increases 
its angular momentum by an increase of its moment of inertia (through its 
deformation) while keeping its angular velocity roughly constant. 

It may appear that the above discussed results are rather similar, at least qual
itatively, with those obtained in the rotating LDM [2,16]. It remains however 
to check the validity of the latter model: i) are LDM energies good representa
tions of semiclassical ones? ii) if so, are the LDM parameters w-dependent ? 
vVe will devote the last part of this paper to provide answers to these questions: 
To do so, we have performed self-consistent semiclassical calculations for 33 
different nuclei within and far out the {3-stability valley, sampling roughly the 
whole chart of nuclides between the neutron and proton drip lines, excepting 
only very light nuclei where the LDM validity is dubious. The nuclei which 
have been considered are : 

36,40,44,48,50Ca ~6Ni 90Zr loo,104,108,110,114,118,122,126,130,132Sn 140Ce 168Yb 1860s, , , , , , , 
186,190,192,196,200,204,206,208,212,216Pb, 230Th, 240pU and 252Cf. 

vVe will merely discuss here the strong interaction part of the LDM energies 
written with usual notation {with 1== (N - Z)/A) as 

(8) 

For that, on has to remove from the first term in the r.h.s. of eq. (4), the 
Coulomb (direct and exchange) energies even though they are of course in
cluded in our variational calculations and play indeed a crucial role for the 
symlnetryenergy properties discussed below through Hartree-Fock-like neutron
proton self-consistent effects. 

To disentangle genuine variations of the LDlVI parameters with w from purely 
geometrical deformation effects, we have first constrained all the nuclei to 
be spherical. Self-consistent semiclassical calculations have been performed 
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at seven liw-values ranging from 0 to 1.2 MeV by steps of 0.2 MeV. First, 
one notices (see Table 1 for some selected nuclei) a significant variation of 
the bulk part of the nuclear energy with w at least for large enough values 
of w. This fact leads immediately to the conclusion that if the LDM is of 
any relevance in the rotating case, its parameters ~hould vary to some extent 
with the angular velocity. There exists a large difference in the variations of 
the ETF energies from light nuclei (e.g. 40Ca) to heavy nuclei (e.g. 208Pb). 
However these variations are found to be of the same order of magnitude 
when multiplying them by A5/3, i.e. considering these variations as functions 
of the angular momenta rather than of the angular velocities. 

We have performed for all w-values, a least-square fit of our calculated energies 
by the LDM formula given in eq. (8). The results are displayed in Table 2. 
It is first to be noted that the overall quality of the fit is nearly constant for 
the whole range of w values, with a mean quadratic deviation of about 500 
keV. Therefore within this error bar the validity of the LDM seems assessed, 
at least for spherical shapes. Upon increasing w now, both the volume and 
volume symmetry energies change in the direction of a supplementary binding. 
The surface and surface symmetry energy terms, on the contrary, vary in 
the opposite direction. It is probable that the size 'of the sample used here 
does not permit to pin down with a large accuracy the relative variations of 
all four LDM parameters. Their consistent variations with w however, seems 
to indicate that their binding or anti-binding characters and probably their 
absolute magnitudes up to ~ 0.1 % should be correct. 

To give an idea of the error made when considering the LDM parameters as 
constant with respect to w, it may be sufficient to stress that to change the 
208Pb binding energy by 1 MeV, one has to vary av by -0.03 %, ay ky by 
0.38 %, as by 0.17 % and asks by -1.59 %. This, of course, puts in proper 
perspective the rather high percentages obtained for the w-variations of the 
symmetry LDM terms. 

It remains now to check if what is fitted in the above as a surface term, varies 
indeed with the deformation as the surface of an ellipsoid. To achieve that, 
one has to substract from the nuclear energy the total volume contribution 
(i.e. with the symmetry term included) deduced from the previous fit. Similar 
checks could also be performed for the total Coulomb energy (disregarding a 
possible difference in the deformation dependence of the direct and exchange 
terms) and for the moment of inertia (or equivalently for the rotational kinetic 
energy). Due to the above discussed w-variation of the LDM parameters, this 
is not a completely unambiguous task to accomplish. Indeed keeping contact 
with the approach of ref. [2] (dictated by the fact that the total angular mo
mentum is a good quantum number), we have performed the above checks for 
given values of Iii. This implies thus to consider for different f3-values differ
ent w-values, and thence somewhat different LD:NI parameters. We will only 
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discuss here a typical example, namely the lowest axial deformation curves 
of 90Zr for both oblate and prolate shapes at I = 50. On the oblate side for 
{3 = 0.3 for instance, the surface shape factor Bs of ref. [2] is underestimated 
by ~ 0.3 % in the LDM approach, whereas the Coulomb shape factor Be is 
overestimated by ~ 0.2 % and the rotational shape factor BR is underesti
mated by a larger amount, namely by ~ 2.5 %. O'n the prolate side now and 
for the same value of {3, the sign of the discrepancies are identical to what was 
obtained on the oblate 'side with slightly lower absolute values, namely 0.2 %, 
0.2 % and 1.7%. All these discrepancies are steadily increasing (in absolute 
value) upon increasing the deformation. 

To conclude, we will simply state first that our microscopic results are qual
itatively consistent with the LDM results of Cohen, Plasil and Swiatecki [2]. 
In that respect, we had already estimated in I the level of accuracy of the 
Rigid Body ansatz for the moments of inertia. In the present work we have 
demonstrated that for small angular velocities and small deformations the 
LDM ansatz is roughly accurate as compared to our results. The latter stem
ming from an effective force which has proven its realistic character, constitute 
indeed a satisfactory microscopic reference. \Vhenever a high degree of accu
racy is needed or 'at large {3 and/or w values, one should not escape to per
form a more refined description than the liquid drop model one. The prese~t 
approach is certainly a candidate for such a description being both micro
scopically founded and reasonably tractable. However in its present form, it 
is very limited for large deformations. We are presently improving the shape 
variational space of our densities so as to allow an adequate description of the 
fission instability region. 
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Table 1 
Nuclear energies (in MeV) calculated in our selfconsistent approach to be compared 
with Liquid Drop Model energies for various nuclei as functions of the angular 
velocity given by the energy nw (in MeV). 

nw 0.0 0.4 0.8 1.2 

40Ca -419.93 -419.94 -419.99 -420.04 

90Zr -1029.11 -1029.40 -1029.42 -1029.80 

-1623.39 -1623.60 -1624.09 -1624.84 

208Pb -2421.71 -2422.13 -2423.36 -2425.15 
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Table 2 

Variation of various Liquid Drop 1-lodel parameters (in MeV) defined in the text, 

as functions of the angular velocity given by the energy nw (in MeV). The mean 

quadratic deviation of the fitted energies (in MeV) are also displayed. 


nw 0.0 . 0.2 0.4 0.6 0.8 1.0 1.2 


av -15.477 -15.477 -15.486 -15.489 -15.496 -15.502 -15.520 

-0.06 -0.12 -0.14 -0.19 -0.22 -0.34 

-av~v 28.129 28.112 28.072 28.038 27.860 27.694 27.675 

-0.06 -0.20 -0.32 -0.96 -1.55 -1.61 

as 17.056 17.057 17.087 17.100 17.124 17.138 17.208 

0.00 0.18 0.25 0.40 0.48 0.89 

-as~s -39.962 -39.837 -39.463 -39.293 -38.520 -37.538 -37.250 

0.31 1.25 1.67 3.61 6.07 6.79 

v< dE2 > 0.55 0.54 0.57 0.51 0.51 0.55 0.47 

Figure captions 

FIGURE 1 

Deformation energies (in MeV) relative to the energies at sphericity for various 
nuclei and various values Th of the angular momentum. 

FIGURE 2 

Evolution in the (/3, "y) plane of equilibrium solutions of 90Zr as functions of 
the angular mOlnentum parameter I. 
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FIGURE 3 

Calculated ETF moment of inertia JETF (in 112 MeV-I) of 90Zr as a function 
of the rotational energy I1w (in MeV). 
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