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Abstract 

The recent small-a: data on the proton structure function (SF) of the NM, HI 

and ZEUS Collaborations are analysed in the framework of various phenomenolog
ical parametrizations for the singlet component of the SF. The logarithmic slopes 

of .the SF with respect to inQ2 and ina: are calculated and shown as functions 

of Q2 and a:. Transition regions between different regimes - characteristic of the 
perturbative and non-perturbative QCD - are discussed. 
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1. Introduction . 

The recent publication of the experimental results by the NM [1], HI [2], and 

ZEUS [3] Collaborations, opened a new, small-x, area in the study of the proton 

structure function (SF) F2(X, Q2), where maybe for the first time the contributions 

from the valence quarks (non-singlet SF) can be neglected. This situation, in a way, 

is reminescent of that in hadronic reactions, where the relative contribution from 

the secondary reggeons beyond the S P S enery region (i.e. around vs Te V) has 

become negligible (smaller than the total cross-section error bars).* 
The penetration into the sm~-x region by experimentalists was preceeded and 

accompanied by an intense theoretical work, concentrated mainly around perturba

tive QCD calculations of the SF as well as on the estimation of possible shadowing 

corrections, required by unitarity. 

Recently, the small-x behaviour of the SF at small Q2, outside the perturbative 

QCD domain, was investigated in [4]. 

A new and important feature of the small-x data [1-3] is the onset [4,5] of the 

Pomeron-dominated Regge behaviour (with an apparent logarithmic rise in x ~ !f 
near Q2 5 GeV2 ), first observed by NMC [1]. An important message from 

HERA is the acceleration of this rise as Q2 increases (the increase of the local sl~pe 
d£;in2(~/~2) with Q2). The latter effect, generally speaking, is in agreement with 

the predictions [6] based on the Gribov-Lipatov-Altarelli-Parisi (GLAP) evolution 

equation [7], but the range of applicability of these predicitons has not yet been 

settled. It should be noted that the ZEUS data [3] are below those from HI [2], 

however this may be partly attributed to different normalisations. To anticipate the 

forthcoming presentation, we mention here that the results of the G LAP evolution 

favour [6] the latter. 

We ignore for the time being the valence quark contribution by limiting our 

analysis to the small-x (x < 0.1) region therefore we have not included the large

x data, which, certainly would require the inclusion of non-singlet SF. With the 

large amount of the experimental data , and the existing theoretical prescriptions 

available (see e.g.[8]), it would require rather technical work. 

In the present paper we first discuss the results of the QCD evolution applied 

to the small-x HERA data. We then analyse (Secs.3 and 4) the new data by means 

of several empirical parametrizations inspired both by non-perturbative (Regge) and 

* This ratio, however, depends on t (moreover, the determination of the real 

part of the scattering amplitude even at t = 0 requires the knowledge of its t

dependence ). 

In a similar way, in deep inelastic scattering, the x and Q2 -dependence are 

correlated, and the variation in x of the relative importance of valence quark con
tribution depends on Q2 considered. 
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perturbative QCD (evolution equation) approaches; contrary to Sec.2, we leave the 

(lnQ2 )-dependent parameters free and fit them to the data. The small Q2 limit 

receives a special treatment in Sec.5. 

2. QeD-Analysis of the HERA data 

In a recent paper [6], the Q2 -dependence of the proton structure function 

in the kinematical region of HERA was calculated in a parameter-free way from 

an input fitted to the NMC data. The result of the evolution was compared to 

the then available preliminary data of the HI collaboration. Thereafter, the ZEUS 

data, covering nearly the same kinematical region were published, offering one more 

opportunity to test and discuss the results of the theoretical predictions. 

We reproduce briefly the arguments and the main results of paper [6]. Its 

virtue is that the evolution can be calculated analytically with the result given 

explicitely (see below, Eq.(2)). 

The starting point was a Regge-type model for the structure function 

. (1) 

to be evolved in Q2. The form (1) has been choosen by an observation that the 
small-x behaviour of the NMC data at Q2 = 5 GeV2 is the same as that of the 

hadronic total cross sections at high energies (remember that x ~ Q2 /8 here; for 

more details see [5]). From this similarity it was conjectured [5] that the singlet 

SF in the above kinematical region is Regge-behaved and is dominated by a dipole 

Pomeron contribution. The onset of Regge behaviour (and Pomeron dominance) in 

the SF is a disputable problem, but the above choice seems to be justified for the 

following reasons: 

1. The kinematical region (x ,....., 10-2 , Q2 = 5 GeV2) satisfies the requirements 

of both: Bjorken scaling (v and Q2 large), and Regge behaviour (v» Q2); 

2. The "Pomeron" in (1) has the same (and reasonable) intercept a(O) ~ 
1.1 [1,4] as in hadronic reactions. 

This, however does not mean that in [5] the Regge domain has been found 

unambiguously. Morever, we are aware that the relation between the Regge be

haviour for real and virtual particles is a very delicate problem (see [4] and Sec.5 

of the present paper). 

In [5], the NMC data have been refitted with the replacement of the "super

critical" Pomeron xa(O)-l by a dipole (1). From the resulting fit the values of f 

in (1) was found to be f = 0.15 ± 0.05 [5] , while a (slight) x-dependence of A 
(neglected in [6]) was found to persist down to lowest :v-values. 
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Starting from the input Eq.(I), in [6] the Q2-evolution was calculated by 

means of the GLAP equation with the result 

(2) 

where 
in(Q2 / A2) 

(3)e= in in(Q~/A2)' 

In [6] the values A = 0.3, € = 0.1, Q~ = 5 GeV2 and A = 0.2 GeV were used. 

Consistency with (1) was provided by the condition that 

(4) 

Prediction (2) agrees with the HI data (see Fig. 1). Note that the x- range 

of the NMC data does not match that of HERA. To fill the gap, the small-x ex

trapolation of the "Pomeron" contribution was assumed to be valid at fixed Q2 = 5 

GeV2 • 

There is very little (practically - no) freedom for any further changes in, the 

calculations within the framework of [6]; the value of Q~ does not affect the results 

(so, one can set Q~ 5 GeV2 without any loss of generality), while the corridor 

resulting from the variation of the QCD scale parameter A is negligible. 

An important limitation of the approach [6] is the simple form of the large-x 

behaviour of the SF (remember that the integration in the GLAP equation extends 

to x=I). The choice of the imput (1) in [6] was based on its link with the Pomeron 

in hadronic reactions and simplicity that made possible to calculate the evolution 

analytically. 

The results of the evolution, certainly depends on the choice of the input. 

Better agreement with the data (at the cost of an extra free parameter) is expected 

with a "supercritical dipole" Pomeron model (see [9] and references therein) to be 

used instead of (1) (see next section, Fig.4). 

In Fig.2 we present also fits of the asymptotic expression resulting from the 

GLAP evolution equation (see e.g. [8] and references therein) 

16Nee On(~), b /
b .(, w = lINe 3 2nf/3 (5) 

with 

to the HERA data. The values of the fitted parameters are 

ao = -3.25, al = 2.32, a2 = -4.40. 
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Fig. 2 may indicate that the HERA data are not (yet?) in the regime of the 

asymptotic (small :v) solution of the GLAP equation (the relevant fit with A( Q2) == 
Q-2 is even worse). Such a conclusion however can be drawn only from an analysis 

including nonasymptotic terms too (see [8]). 

In an attempt to understand better the limitations of various theoretical ap

proaches, we have performed an independent phenomenological analysis of the data, 

to be presented in the forthcoming sections. 

3. Empirical Analysis of the Data 

Here we try as far as possible to avoid "theoretical bias" in the analysis of 

the regularities suggested by the data. To this end, we perform a phenomenological 

fit of the available small-x data [1-3] with several parametrizations for the singlet 

component of the proton structure function (we make no difference between the 

gluon and see quark SF). The x dependence in our formulae 

F2(:e, Q2) e a ,(Q2) [1 + e a2 (Q2) In( ~ ) +ea3(Q2) ln2(~ )] , (6) 

F2(:e, Q2) = eat (Q2) [1 + e",(Q') lna3(Q')( ~)] , (7) 

(8) 

is quite general; it is suggested by various combinations of non-perturbative (Regge

type) and perturbative (QeD evolution) approaches (for more details and motiva

tion see below). 

Bjorken scaling violation in these expressions enters through the Q2 depen

dence of the fitted parameters (see also [10]): 

where e = e(Q2) is the typical perturbative QeD variable given by Eq.(3). 

In this way we hope to test various parametrizations for the small-z depen

dence of F2, by leaving the Q2 dependence quite general (polynomial dependence 

on the "perturbative QeD variable" in [in(Q2 / A2 
)]). 

By concentrating on the small-x behaviour only, we neglect the factors of the 

type (1 - x)'" responsable for the large-x behaviour of the SF. 

Let us now make a few comments on the small-:v dependence, as defined by 

Eqs.(6)-(8) and on the resulting fits, presented by the Fig.3 and Table 1. 

Parametrization (6) is obviously an attempt to reproduce the data by a 

Froissaron-like model, quite successfull in describing hadron diffraction. It fails 
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however to follow the rapid rise of the slope with Q2 * . 
To clarify this point further, we have fitted the data of [1-3] by Eq.(7). The 

results are shown in Figs.3. 

The "Froissart-like" parametrization (7) does follow the rapid rise seen at 

HERA but at the cost of a the dramatic increase of the power of the logarithm 

a3 (Q2), starting at 2 and reaching 3.5 at Q2, == 1000 Ge y2, (see Fig A ). 

The use of (8) gives excellent fits to the data (see Fig.3) and it is another 

argument favouring the interpretation of the HERA-effect as a manifestation of the 

Q2 evolution, in agreement with the perturbative QCD calculations. 

Note that there is one exception in the otherwise perfect fit to all of the data 

from [1-3], namely the data point at Q2 == 480 Gey2 which is definitely off the 

overall fits. If further measurements will confirm this data point, it could mean a 

deviation from a smooth and coherent picture resulting from the above fit. 

Quite instructive is FigA, where the Q2-dependence of the powers a2 and a4 

in Eq.(8) are shown. One can see that the parameter a2 rv 0.02 at Q2 == 5 Gey2, 

in accord with the condition (4), while the value of a4(5 Gey2) == 0.37 although 

small, is an indication that the data may prefer a "supercritical" dipole Pomeron 

as an input instead of (1). 

Another interesting feature in the behaviour of the parameters a, as it follows 

from our fits and is exhibited in Fig.4, is their saturation when Q2 increases. 

Apart from the conventional definition of the slope of the structure function 

B _ dlnF2(x, Q2) 
1 - dlnQ2 ' 

measuring scaling violation, we introduced also 

B2 == _ dlnF2(x, Q2) 
dlnx 

as a measure of the deviation from the Froissart bound. They are calculated from 

Eq.(8), with the parameters fitted to the data and are exibited in Fig. 5 both for 

fixed x and fixed Q2. These figures demonstrate once more the violent rise of F2 

both in x and in Q2 (the HERA effect). 

4. The "NMC-Parametrization" Revisited 

The empirical parametrization of the proton structure function [1] 

(9) 

* Another reason why the fitted curve (6) follows the NMC, rather than the 

HERA data is the large number of the data points and the relative smallnes of the 

error bars of NMC. 
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where 

Q2) = A( ) [In(Q2/ A2)]B(X) [1 + C(~)]f( ~, z In(Q~/A2) Q2' 

Qo = 20 GeV2, A 250 MeV 

A(~) = (1- ~t2 [a3 +a4(1-~) + a5(1 -~? + a6(1 - z)3 +'a7(1- ~)4] , 

b3
B(~) = bl +b2~ + (z +b )' C(~)

4 

was successfull in fitting the NMC data and it served in [5] as a basic ar~ument 

supporting the Pomeron dominance in that region. 

This parametrization was originally intented to cover the kinematical range 

of NMC, BCDMS and SLAC data (for relevant references, see [1]). Nevertheless, it 

is of a certain interest to refit (9) with the HERA data points included, using the 

same ~ = 0.1 upper limit as we did throughout this work. 

The results are shown in Fig.6 with the values of the fitted parameters pre

sented in Table 2. The agreement with the data is quite good. 

It is interesting to note that the parameter -al =("Pomeron intercept" *-1) in 

Eq.(9) assumes the value 0.28 (instead of 0.101 in [1]). 

Since the Pomeron intercept should be Q2-independent**, the increasing value 

of lall in Eq.(9) mimics the power behaviour, required by Q2 evolution, as argued 

in [6] (see also the reference [7] in that paper). For this reason, any conclusion 

even though numerically consistent - that the HERA results confirm (or approach 

to) the "Lipatov hard Pomeron" (for the derivation - but not applicability! - of this 

Pomeron see e.g. [11] and earlier references therein) is conceptually superficious. 

What remains yet to be settled are the details of the transition from one (e.g. 

Regge) regime to another one ( LLA, DLA approximations of the perturbative 

QCD and possible non-perturbative corrections due to saturation in the partonic 

density etc.). 

Attempting to clarify this point, and searching for further links between the 

behaviour of the hadronic reactions and the deep inelastic scattering, in the spirit 
of [5] ,we have replaced the "supercritical Pomeron" in (9) by a logarithmic ZBl 

expanSIon: 

(10) 

* The quotation mark indicates that the standard notion of the Pomeron (and 

its intercept) cannot be used here since at HERA (typically Q2 102 Ge V2), thet'V 

condition Q2 << v is not safe any more. 
** Regge behaviour, and the Pomeron intercept, in particular, do not depend on 

the masses or virtualities of the external particles. 
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where the logarithms at small Q2 may be interpreted (with the above reservation) 

as a series of multipole Pomerons. 

The resulting fits are shown in Fig.6 in comparison with the fits of the preceed

ing formula (9); the values of the fitted parameters are quoted in Table 2. Contrary 

to the case of parametrization (6), here the logarithms in ~ do follow the rise of F2 

from NMC to HERA. 

Notably, the parameters El, E2 from the present fit differ form those obtaind 

from relevant fits to hadron-hadron reactions [9]. However this is understandable 

as explained above. 

5. Small-Q2 limit of the SF 

The small-Q2 region is definitively outside the range of the perturbative QCD. 

Little is known about this region, apart from the requirement imposed by gauge 

invariance that F2 should vanish linearly with Q2 as Q2 tends to zero. The 

parametrizations discussed above are inapplicable in the small Q2 -limit and they 

do not allow for a smooth transition between the virtual and real photon scattering, 

for which interesting data have been obtained at HERA [12]. 
This problem has a long history (see e.g. [13]). A recent treatment can be 

found in [4], where a smooth transition between the deep inelastic scattering and 

real photon total cross sections is suggested on the basis of a simple but efficient 

model for the Pomeron being a simple Regge pole with an intercept slightly above 

1 (1.08), such that unitarity practically will be never violated. 

Below we propose our version of a (partial) solution of this problem. It is 

based on the concept of a dipole Pomeron that is selfconsistent from the point of 

view of the s channel unitarity (for more arguments see [5] and earlier references 

therein). 

Our singlet SF, corresponding to a dipole Pomeron (1), but consistent with 

the requirement of gauge invariance that it vanishes as Q2 -+ 0, has the form 

where M is the proton mass and a is an other free parameter (for its physical 

interpretation see e.g. [4]). 
In the limit of Q2 -+ 0 we get for the real photon total cross section 

(12) 

The resulting fits are shown in Fig.7 with the following values of the fitted 
parameters: 

A = 0.475 E = 0.057 a = 0.713 GeV2
• 
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Both solutions - ours and that of [4] - are limited to small values of Q2 rv 5 

Ge V2 • The extension of this interpolation to large values of Q2 is an important but 

difficult problem for the theorists. 

6. Conclusions 

To avoid possible uncontrolled effects resulting from the multiple rescattering 

in the nuclear targets, in the present analysis we have used only data on the proton 

structure functions, although the available data on nuclear targets (e.g. deuteron 

[1]) could provide further valuable information on the small-x behaviour of the 

structure functions. 

It is worth noting that apart from the conventional definition of the slope B 1 , 

we have introduced in our analysis the slope B2 with respect to .fnx. 

The most important lessons from our analysis are: 

1. The complicated interplay of the x and Q2 dependence of the SF is not yet 

completely understood. Apart form various phenomenological approaches, there 

are at least two complementary theoretical concepts that may be used as guides: 

one is the evolution equation and is based on perturbative QeD, the other is the 

Regge theory. The latter provides us also with a link to the hadronic processes. 

The most difficult problem remains the applicability (specific kinematical regions) 

of these approaches or - alternatively - their interface or unifications. 

2. Irrespective of the details in the observed small-x behaviour of the SF, 

the slow-down of their further rise is inevitable as a consequence of the expected 

saturation of the partonic density. Although this new change of regime is not yet 

visible in the HERA data, they do not rule it out either. 

3. A better account for the large-x domain in the input SF may improve the re

sults of the evolution. The price one has to pay is that the relevant parametrizations 

do not remain simple any more, and the solution can be found only numerically. 

4. The resulting parametrizations can be used as a guide in further studies of 

the transition effects between perturbative and non-perturbative QeD. 

We thank A.Kotikov for usefull discussions. L. J. thanks LP.N.L. for hospi
tality a.nd support. 
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Eq.(6) Eq.(7) Eq.(8) 
Cl,O -1.354 -1.112 -1.114 
Cl,l -1.515 0.133 -0.218 
Cl,2 -3.139 -0.69 -0.53 
C2,O -:2.462 -4.626 0.0565 
C2,l 3.272 -9.99 0.251 
C2,2 -10.00 -2.765 0.137 
C3,O -5.060 2.0 -5.623 
C3,l 8.935 6.934 -3.527 
C3,2 -5.352 -2.65 8.188 
C4,O - - 0.366 
C4,l - - 1.473 
C4,2 - - 0.510-6 

Table 1 

Va]ues of the parameters obtained from the fits of Eqs.(6)-{8) to the HERA 

[2,3] and NMC [1] data. 

Eq.(9) Eq.(lO) 
a1 == -0.2842 €2 == 0.28315 

a2 4.470 3.673 
a3 0.5323 0.2790 
a4 -0.4650 -0.3775 
a5 5.951 6.069 
a6 -10.308 -10.290 
a7 4.441 4.393 
b1 0.3307 0.3325 
b2 -3.478 -3.437 
b3 0.0179 0.0176 
b4 0.0174 0.0169 
C1 -1.927 -1.909 

Table 2 

Values of the parameters obtained from the fits to the HERA [2,3] and NMC [1] 

data with the "NMC parametrization" using Eq.(9) and its modification, Eq.(10). 

We have simplified the parametrization by setting C2 == C3 == C4 == 0.0 in both cases 

and €1 == 0 in the second case without affecting the resulting fits. 
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Figure captions 

Figure 1. Proton singlet SF, Eq.(2) calculated from the GLAP evolution 
equation (see text) plot ted (a) versus Q2 and (b) versus z, shown with the small x 

data. In (b), the NM C data [1] are shown at Q2 = 5 Ge V2, while higher Q2 data 

correspond to HI [2] (hollow triangles) and ZEUS [3] ( full dots). 

Figure 2. Asymptotic solution Eq.(5) of the GLAP equation confronted to 

the HERA data. 

Figure 3. Fits to the small-x data of the phenomenological parametrizations 

of Sec.3; dashed, dotted and solid lines correspond to Eqs.(6), (7), (8), respectively. 

In figs. (a) and (b) hollow triangles correspond to the HI data [2], and full dots to 

the ZEUS data [3]. The values of the fitted parameters are quoted in Table 1. 

Figure 4. Q2 dependence of the powers a2 and a4 in Eq.(8). 

Figure 5. Logarithmic slopes Bl = dlnit.~~~Q2) (top of the figure) and B2 = 

- dfn~~~x;Q2) (bottom of the figure), as functions of x and Q2 calculated from Eq.(8) 

Figure 6. Fits of Eq.(9) to the data with a "supercritical Pomeron" (solid 

line) and of Eq.(lO) with "multipole pomerons" (dashed line): (a,b) SF versus x, 

(b,c) SF versus Q2. In (a) and (b) hollow triangles correspond to the HI data' [2], 

and full dots to the ZEUS data [3]. 

Figure 7. Small-Q2 fits to the SF Eq.(II). 
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