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1. Introduction 

In the framework of an alternative parametrisation for the theory of complex spectra 

(Kibler 1975, Kibler and Katriel 1990, Kibler and Partensky 1991), Kibler and Katriel 

(1990) have conjectured a formula, viz, 

-l[N-(N+1)-8(8+1)]6- (1)
2 2 2 

giving the average Coulomb energy Eav [ntN] for the states, with a fixed value of the spin 

8, which arise from an atomic configuration ntN of N equivalent electrons in a shell nt. 

In equation (1), the parameters Ii and .6. are defined through 

(2) 

corresponding to the singlet (8 =80 = 0) and triplet (8 80 1) states for the case 

N = 2. A formula equivalent to (1) and (2) has been derived independently (Karwowski 

and Bancewicz 1987). The approach used by Karwowski and Bancewicz (1987) (see also 

Diercksen and Karwowski 1987 and Karwowski, Valdemoro and Lain 1989) to obtain 

their formula is based on the method of moments. 

It is the aim of this short paper to give a straightforward proof of (1) by making use 

of fractional-parentage coefficients and of an unusual sum rule satisfied by isoscalar fac

tors for a chain of compact groups. Indeed, we work out (in § 2) an extension of formula 

(1), valid in the general case of a spin-independent two-body interaction, and then spe

cialise it to the case of the Coulomb interaction. The relevant material (Racah's lemma 

and orthogonality-completeness property for Clebsch-Gordan coefficients or isoscalar fac

tors) concerned with the group-theoretical approach of § 2 is relegated in the appendix 

(§3). 
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2. Average energies 

In the Russell-Saunders coupling (or LS-coupling), the state vectors' of the electronic 

configuration nlN (for atoms and ions) may be written as 

(3) 

Most of the symbols in (3) have their usual meaning. Let us simply precise that [f] 

stands for a Young pattern, with two columns (say of lengths CPl and CP2 with CPl ~ C(2), 

which characterises the orbital part of qt. The spin part of q, may be described by the 

Young pattern [cp] = [CPl CP2], with two rows of lengths CPl and CP2, which turns out to be 

the transposed pattern [i] of [fl. The pattern [cp] is (unambiguously) connected with 

the number of electrons N and the total spin S via 

CPl + CP2 == N CPl - CP2 == 28. (4) 

Finally, the symbol a in (3) collectively denotes the remaining labels that are necessary 

for a single-valued enumeration of the (allowed) atomic state vectors of the configuration 

nlN. 

The vectors q; are expressed in a basis adapted to the following chain of groups 

(5) 

Each of the vectors (3) spans the antisymmetric irreducible representation class (IRe) 

{IN} of the unitary group U41.+2. The Young patterns [I] and [cp] characterise IRC's 

of the groups U21.+l and U2 for the orbital and spin parts of q" respectively. The 

quantum numbers Land 8 refer to IRe's of the subgroups S03 and SU2 of U2l+ l and 

U2 , respectively. Finally, the projections ML and Ms indicate in turn IRe's of the 

subgroups 802 and Ul of 803 and 8U2 , respectively. 
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For a given configuration niN, the total number of the vectors (3) allowed by the 

Pauli principle coincides with the dimension of the IRe {IN} of the group U4l+ 2 . It is 

thus given by dim {IN} = C.1';+2 in terms of binomial coefficients. Among these C.i:+2 

state vectors, we select the ones having a fixed value S of the spin. Obviously, the 

number of vectors \II with S fixed is nothing but the product Nf(2S +1), where Nf is 

the dimension of the IRe [I] of U2l+ 1 and 2S +1 may be visualised as the dimension 

Nt.p of the IRe [cp] of U2 • 

In the present paper, we are interested in the average energy 

where V is a spin-independent two-body Hamiltonian 

N 

V = L: Vij with Vij == Vij(rij). (7) 
j>i=l 

Equation (6) gives the average of V over the Nf(2S + 1) state vectors (3) having a 

fixed spin S. In equation (7), the sum on i and j is to be extended over the N(N -1)/2 

two-electron interactions Vij ; furthermore, Vij depends only on the distance rij between 

the electrons i and j. 

Invariance of V under the rotation group SOa and the spin group SU2 ensures that 

(6) can be rewritten as 

(8) 

The next step is to introduce coefficients of fractional parentage in order to calculate 
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the matrix elements of V in (8). This leads 	to (Racah 1943) 

a'L'S' LoSo 

(9) 

Following Racah (1949, 1951) and Neudatchin and Smirnov (1968), the two-particle coef

ficient of fractional parentage (iN {liN- 2,i2) == (iN-2 ,i21} iN)* in (9) can be developed 

as 

(iNaLS{liN- 2a' L' S', i 2 LoSo) = In f'n I. 
nl 

(iN[f]aL{liN- 2 [f']a' L' ,i2[fo]Lo) (10) 

(sN [I] 8{lsN -2 [i']S', s2 [io ]80 ) 

where s == 1/2. In equation (10), the IRC's [f], [f'] and [fo] refer to the group U2l+ 1 • 

However, the symbols nl, n I' and n 10 denote the dimensions of [f], [f'] and [fo] as consid

ered as IRC's of the permutation groups SN, SN-2 and S2, respectively. From a group

theoretical viewpoint, the fractional-parentage coefficient (iNaLS{liN-2a, L' S', i2 LoSo) 

is identical to the isoscalar factor ({I N- 2 }a'L'S' + {12}LoSol{IN}aLS) for the chain 

U4l+2 ~ S03 ® SU2 (Racah 1951). Equation (10) then corresponds to the factorization 

(see Racah 1949, 1951) 

({IN-2}a'L'S' + {12}LoSol{lN}aLS) = ({IN-2}[f'Hf'] + {12}[fo][Jo]/{lN}[fHJD 

([f']a'L' + [fo]Lo I[f]aL) 

([f']S' + [10] So I[1]8) 
(11) 

in 	terms of isoscalar factors for the chains U4l+2 ~ U2l+1 ® U2, U2l+1 ~ 803 and 
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U2 ~ SU2 • Indeed, the correspondence between (10) and (11) yields 

O({lN-2 }[!,][j'] + {l2Hfo][joll{lN}[f][j]) = Jnf.nf
nf 

([f']a'L' + [fo]Lo\[f]aL) = ceN [f]aL{llN - 2[f']a'L',l2[fo]Lo) (12) 

([]']S' + [io]Sol[]]8) = (sN[]]8{lsN- 2 []']8',s2[io]80 ). 

In equations (10) and (12), it is clear that nfo 1 for both IRe's [fo] = [2] and [fo] = [11] 

of S2. In the case [fo] [2] only even values Lo = 0,2,· .. ,21 are admissible and 8 0 

while for [fo] [11] we have La 1,3", . ,21 - 1 and 8 0 = 1. Furthermore in view of 

(12), the spin part (sN[]]8{ls N - 2 [J']8', s2[]0]So)of the fractional-parentage coefficient 

(10) is trivial in the atomic case since the isoscalar factor ([]']8' + []0]80 1[]]8) for the 

chain U2 :J SU2 is unity for the allowed values of 8' and 8 0 • By combining equations 

(8) to (12), we obtain 

An important step is now to effectuate the summations over aL and a'L' in (13). This 

may be easily done by using the orthogonality-completeness relation (22) (see appendix) 

applied to the (orbital) isoscalar factors for the chain U2l+ 1 ~ 803 • We thus get 

~N(N-l) L L L 
5' La So (14) 

, [ n f' 1 ) 2 2~([f]l[f] ® faD - N (2Lo + 1 (nl Lo80 lV12 1nl Lo80 ).
nf fa 

By introducing in (14) the average energy 

2Sa+lEav[n02] = 1 "(2L + 1) ( n2L 8 IV; I n2L 8 ) .c, N L..J a n.c, a a 12 n.c, 0 0 (15) 
fo Lo 
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for the configuration nl2 , we finally arrive at 

L L 

or [1'] 8 0 or [to]8 1 

(16) 
280 +1 Eav[nl2] il([f]l[f'] ® [fo]) nf' . 

nf 

Equation (16) provides us with a closed form expression for the N-electron average 

energy 28+1 Eav[nlN] as a function of the two-electron average energy 250+1 Eav[nl2] in 

the case of a general spin-independent two-body interaction. 

At this stage, it is convenient to use the (~, ill-parametrization defined by (2). In 

this parametrization, the energy 25+1 Eav[nlN] is a linear combination of the parameters 

~ and~. The coefficient of ~ in this linear combination is clearly (1/2)N(N -1). Since 

the parameter ~ appears only in the singlets of nl2, the coefficient of il in 25+1 Eav [nlN] 

is (1/2)N(N 1)(nJ/nf), where nJ refers to the Young pattern [1] deduced from [f] 

by omiting its first row. (The latter assertion follows from the fact that So = 0 for the 

singlet states so that Sf = S and thus the sum on [f'] in (16) reduces to the orbital 

Young pattern [1] associated to the spin Young pattern [<p] =[ep1 - 1, ep2 - 1] for the 

spin S and the number of electrons N 2.) Therefore, equation (16) may be written in 

the form 

~ N(N - 1) (~+ nJ il) . (17)
2 nf 

The final step is to calculate the ratio nj/nf of the dimensions of the IRe's [I] (for 

SN-2) and [f] (for SN)' This may be achieved by using the well-known formula (see for 

instance Pauncz 1979) for the IRe's of the symmetric group. We thus get 

ep2(ep1 + 1) 
(18)

N(N-l)' 

The introduction of (4) and (18) into (17) leads to equation (1). This completes the proof 

of the formula (1) for 28+1 Eav [nlN] in the general case of a spin-independent two-body 
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Hamiltonian. If we are interested in the special case where V is the repulsive Coulomb 

interaction (ie, Vi; = e2 ITi;), it is then sufficient to replace the parameters :E and ~ 

in (1) by the appropriate linear combinations of the Slater-Condon-Shortley parameters 

3. Appendix: Sum rules for coupling coefficients 

Let G be a finite or compact group. We use 9 to denote an IRC of G and J1- to clas

sify the rows and columns of a (standard) unitary matrix representation DO associated 

to 9. In this notation, the Clebsch-Gordan coefficients of the group G are written 

(9192J1-1J1-219192b9J1-) where b is an internal multiplicity label to be used when the Kro

necker product 91 ®92 contains the IRC 9 several times. The Clebsch-Gordan coefficients 

of G satisfy ordinary unitarity relations controled by summations on P1J1-2 or b9J1- (see 

for example Sviridov and Smirnov 1977 and Kibler 1979). In addition, they satisfy the 

following sum rule (referred to as an orthogonality-completeness relation (Kibler 1979)) 

E E (9192J1-1J1-219192 b9J1-)* (919~J1-1J1-~1919~b'9J1-) = 

(19) 

A(glgl ® g2) 6(g~, g2) 6(1'~, 1'2) 6(b' , b) :'img 

Im92 

where ~(9 /91 ® 92) is 1 or 0 according to as 9 is contained in 91 ® 92 or not. In 

the special case where G is the group 8U2 (or 803 ), there is no need for the label 

b and we have 9 i (or £) and J1- =mj (or mi) ; in this case, equation (19) is a 

simple rewriting of one of the two ordinary unitarity relations for the Clebsch-Gordan 

coefficients (i1i2m1 m2/i1i2im) that follows by using the symmetry property of the latter 

coefficients under the interchange i2 +-+ i. 

Let us now consider a subgroup H of G. The label J1- may then be replaced by the 

triplet ah"Y, where h stands for an IRC of the group H, "Y for an index to characterise 
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the rows and columns of a (standard) unitary matrix representation nh associated to h, 

and a for an external multiplicity label to be used when the IRC h of H occurs several 

times in the. reduction of the IRC 9 of G. In the G ::J H basis, equation (19) may be 

transcribed as 

The orthogonality-completeness relation (20) can be rewritten in terms of isoscalar fac

tors for the chain G ::J H. For this purpose, we use the Racah factorisation lemma 

(Racah 1949) 

(glg2alhl,la2h2,2Ig1g2bgah,) == L (gla1h1 + g2a2h2Ibga/3h) (h1 h2,l,21J:t1h2/3h,) 
p 

(21) 

that gives an expression of a Clebsch-Gordan coefficient of G, in a G ::J H basis, as 

coefficients of this linear combination are the isoscalar factors (gtathl + g2a2h2Ibga/3h) 

for the chain G ::J H. (In equation (21), the label /3 is a multiplicity label of type b.) 

Then, by applying twice (21) in (20) and by using (19) for the group H in the so-obtained 

equation, we end up with 

(22) 

Equation (22) constitutes an orthogonality-completeness relation for the isoscalar factors 

of the chain G ::J H. 
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4. Closing remarks 

The unusual sum rule (22) is of central importance in the derivation of the main results 

(equations (16) and (1)) of this paper. This sum rule is based on (19) and on the Racah 

lemma. It is interesting to mention that equation (19) also plays a fundamental role 

in the derivation of sum rules for the intensity of two-photon transitions between Stark 

levels of a transition ion in a liquid or crystal environment (Kibler and Daoud 1993). 

Equation (1) has been derived in the framework of atomic spectroscopy. Let us 

mention that the result (1) is also of relevance in the spectroscopy of partly-filled shell 

ions in condensed matter as far as S may be assumed to be a good quantum number 

(an assumption that is reasonable for transition-metal ions in crystals). 

Finally, let us observe that formulas which parallel (16) and (1) might be derived 

in the shell model of nuclear physics. In this connection, we may think of obtaining 

average energies for fixed spin S, or fixed isospin T, or fixed spin Sand isospin T. 

However, a complication arises when replacing N electrons on a nt-atomic shell by N 

nucleons on a nt-nuclear shell because the isospin degree of freedom manifests itself by 

the replacement of the trivial spin chain (U2 )s :J (SU2 )s by the nontrivial spin-isospin 

chain (U4 )ST :J (U2 ...... SU2 )s ® (U2 ...... SU2 )T (cf Jahn and van Wieringen 1951). We 

hope to return on this extension to nuclear physics in a forthcoming paper. 
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