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Abstract 

We study the pion decay constant, associated with the time component 

of the axial current, in the nuclear medium in terms oftlie pion self-energy. 

The theoretical scheme exploits chiral properties of the s-wave 1rN ampli­

tude as previously applied to the study of the medium renormalized pion 

mass. We show that the Gell-Mann-Oakes-Renner relation holds to a good 

approximation in the medium. The renormalizations of the pion decay con~ 

stant and the pion mass are consistent with that predicted for the quark 

condensate in the medium. 



1. INTRODUCTION. I'he problem of the modification of the weak cou­

pling constants in the nuclear environment is especially interesting for the isovec­

tor axial current since it is linked to pion physics via. its partial conservation 

(PCAC). In this work we will focus on the pion weak decay constant (denoted by 

fit) which is of particular interest since it is related to the quark condensate via 

the well known Gell-Mann-Oakes-Renner (GOR) relation [1]. In free space the 

GOR relation reads: 

- 2mq < vac Iqq I vac > , (1) 

where the average of the up (u) and down (d) current quark masses has been 

denoted by mq = ~(mu +md), whereas < vac I qq I vac > stands for ~ < vac I 
uu+dd I vac > and f-rr ~ 94MeV. We are concerned here with the renormalization 

of the decay constant associated with the time component of the axial current, 

the one which enters in the GOR relation. It is natural to expect that the GOR 

relation can be extended to the case of non-zero density as follows: 

f * 2 * 2 
-rr m-rr - 2mq < 0 Iqq (p) I0 > . (2) 

Here, the in-medium renormalized values have been labelled by the asterisk, I 0 > 

denotes the ground state of dense matter, and < 0 I qq (p) I 0 > is the correspond­

ing quark condensate. If this relation holds, then the study of the decay constant 

provides an information on the quark condensate in the dense medium. The evo­

lution of this condensate has been shown to be governed by the :E commutator 

and therefore linked to the soft 7rN amplitude [2]; [3], [4]. On the other hand, 

the pion mass in the medium has recently been studied in terms of the chiral 

properties of the 7r N amplitude by Delorme et a1. [5]. The main result of their 

investigation is that the pion mass remains almost unaltered as compared to the 

free space one. 

In order to reach a consistent description for all the quantities entering the 

GOR relation, we will treat both the pion mass and the pion weak decay constant 

on equal footing, exploiting the approach of ref. [5]. 

2. THE PION PROPAGATOR AND THE PION DECAY CONSTANT 

IN THE MEDIUM. In order to keep to the essentials, we consider a piece of 

isospin symmetric (homogeneous nuclear matter, ignoring all correlations. Con­
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sider the pion propagator for a pion at rest (ij = 0) of energy qu. It is defined 

according to 

(3) 

where T is the usual time ordered product and i = 1,2,3 is the isospin index 

of the pion field. In syrnmetric nuclear matter the pion propagator is obviously 

independent of t he index i. In using closure over the states In> with energy En 

we obtain the spectral representation as 

(4) 

Here V denotes the normalization volume . The condition Pn ofollows from 

space integration and will be implicitely understood in the following. To obtain 

the modification of this propagator in the medium we consider the s-wave pion 

self energy IIO(q(J) == IIU(qu,ij 0). For on shell pions, IIO(m'lr) is simply related 

to the standard optical potential via 

(5) 

Now, the pion propagator in the medium D'!f' becomes 

(6) 


In dense matter we define a quasi-pion, that we denote by 1i-, which is on shell 

in the medium. The energy of such a pion is nothing else than the effective pion 

mass m;, which satisfies the following equation: 

(7) 

To find the effective mass we expand nO(q6) 1 around q~ 0, as in ref. [5], which 

leads to 

O( ) * 2( 8IIO)II 0 +m'lr -82 q~:;:::O +.... 
qu 

(8) 

In this way we obtain the effective pion mass as 

m* 2 
7r 

m;[l + no\o)]
m 1r (9) 

1In symmetric nuclear matter no is an even function of qo. 
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In the sanle manner we perform an expansion of IIt\ ql~) near m; 2 in the pion 

propagator to obtain 

- ( 2 2 0 ( 2) (2 II< 2)( an ) . )-1>I<D7r ( qo) qu - m7r - II m7r - qu m7r aq~ q~=m: 2 +... +~E 

= ((1 - (~~ )"i=m~ 2 )(q~ m: 2+.., + iE)r
1 

. (10) 

In this equation terms of order (q~ m; 2)2 have been ignored. Near the quasi-pion 

pole the propagator thus has the form 

with (11) 

On the other hand we extract the quasi-pion pole from the expression given in equ 

4 for the pion propagator by isolating among the states In> the quasi-pion one, 

i. e. In>= Ii > with En m;. As a result we find in the vicinity of q~ m;2 
the alternative expression for the in-medium pion propagator 

(12) 


In identifying now eqs. (10) and (12) the matrix element of the pion field between 

the ground state of matter and the quasi-pion 7r is obtained as 

(13) 


This expression will be exploited later. We first define the pion weak decay con­

stant within the medium which is naturally introduced via the axial current cor­

relator for the time components 

with the corresponding spectral representation being 

11"'( ) = ~ 2E v< 0 I A~(O) In(Pn = 0) >< n(Pn 0) I A~(O) 10> (15)tj(J L.ln n 2 E2 + . qo - n tf 

The renormalized pion decay constant /; is defined from the residue of the quas~ 

pion pole at q~ m; 2 in the last equation to be 

(16) 
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Fronl this definition the medium renormalization of the divergence of the axial 

current matrix element immediately follows as 

m*:1 f'" 2/ < i I8°At, /0 > 12 11" 11"---- (17)1< 7r I 8°A~ Ivac >12 m; f; 

Next, in exploiting the PCAC hypothesis in the standard form 8 /J A:
J 

( z) = 

11I"m;q,i( z), we assume the medium renormalization of the divergence of the axial 

current to be completely exhausted by the corresponding renormalization of the 

pion field, which amounts in the following equality: 

1< i I 80At) I 0 > 12 l<ilq,i IO>12 

(18)1< 7r 180 At) I vac >/2 1< 7r I q,i Ivac > 12 

1Inserting the eqs. (13) and (17) in eq. (18) together with < 7r q,i vac >= 

1/.J2m1l"V the following relation between I; and 111" is obtained: 

(19) 


Replacing in the last equation the effective mass by its expression (9) we deduce 

the in-medium pion weak decay constant 

(1 
(20) 


We further assume the derivatives of the pion self energy over q5 at the points 

q~ 0 and q'G = m; 2 to be the same and obtain the final result for the in-medium 

decay constant 

(21) 


Up to this point we have expressed the renormalization effects on the pion 

mass and weak decay constant in terms of the pion self energy. We now express 

them in terms of the 7rN amplitude. 

In a homogeneous medium the pion self energy is related to the (isospin 

symmetric) 7rN amplitude Dt by n° = DJvp. The Born term of DJv vanishes 

in the static limit and we will neglect it in a first step. The non-Born part is 
2smoothly varying and can be expanded near the soft point as a power serie in v , 
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t, q'l and q'1. At the soft point D~, (0,0,0,0) - 'E N/!; where 'En ~ 45 MeV is 

the 7rN sigma commutator defined in the standard way as 

8ij 'EN ==< N I [Q¥, [Qj, H]] IN> . (22) 

Here Q; stands for the total axial charge. The expansion of the amplitude limited 

to the s-wave term writes: 

'EN q2 + q' 2 2 
Dt(O, 0, 0, 0) == -f2 (1 - '}. + (311 + .... (23) 

'1!" m 1r 

In expanding the optical potential around the soft pion point we put q== q' 
and qu == q[, II in eq. (24) after which we are led to the following expansion: 

(24) 

Thus, IIO(O) is related to the sigma term by IIO(O) 'ENP/{; On the other hand, 

the value of the 1r N scattering length is experimentally found to be very small, 

which implies that 

(25) 

The derivative of the self energy is then 

(26) 

which results in an almost independence of the pion mass on density, as appears 

from the expression 2 

,......,,......, 1r •m 2 (27) 

The pion decay constant instead is affected according to 

_f;_2,......, 1 
1 ,......, -------;:~-;-'- • (28) 

/ 1r 21 + ~J2 
7r m 'lt 

20ur formal expression for m; 2 differs from that of Delorme et al. [5] although the conclusion 

about the stability of the mass is the same. The reason for this difference is that, in order to 

make the link with the chiral lagrangian approach Delorme et ala [5] considered a correlated 

medium, as explained in their work. 
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This 	rcprt~sents for 1';1 a quenching of ~ 15% at normal density. 

If we include the nuclear correlations and release the static approxima.tion, 

the self energy is no longer proportional to the 11" N amplitude and cannot be 

represented by the simple expression (25). According to 11" mesic data the pion 

self energy at ql~ ::.::; rn; is determined as HU(m;') == 47rbd r p with bcff ~ - .024 m; 1. 

Taking for the derivative 

(29) 

we find that the pion mass squared is now increased by ~ 13% at normal density 

while the quenching of J7r (~19% instead of 15%) is somewhat more pronounced. 

The renormalization of !7r has previously been calculated by Akhmedov et 

al. [6] , [7]. These authors considered the in medium PCAC relation and combined 

a mean field approach with Migdal's finite Fermi system theory with the result 

2 ( Mp )2 anO)2
!; == 1 - f;m; (1 aqJ 	 (30) 

e 

Here mfT denotes the mass of the effective (j mean field. This expression (equ 30), 

although superficially different from our equ 21 is actually similar to our result. 

In order to compare the two expressions, we first note that in the linear (j model 

the sigma term ~N is ~N = Mm;/m";,.. Second we expand our denominator in equ 

21: (1 + ~NP/!;m;')-2 ~ (1- ~NP/r;m;)2 (dilute gas approximation). Hence, 

the only difference between our result (equ 21) and Akhmedov one's (equ 30) lies 

in the different powers of the term 1 - ia!n;. This is simply a matter of definition 
% 

of I;. Our choice of definition is consistent with the in-medium GOR as written 

in equ 2. We stress on the other hand that our approach is based on a unique and 

consistent framework which relies entirely on the properties of the pion propagator 

in the medium. 

9. 	 THE GELL-MANN-OAKES-RENNER RELATION AT FINITE 

DENSITIES AND THE E TERM IN THE MEDIUlv!. 

To derive the generalization of the GOR relation at finite density we start from the 

underlying QCD theory and write the axial current in terms of the fundamental 

quark fields q as 

(31) 

6 




- - ----------

Neglecting possible strange content of the pion we define a pion-like operator in 

terms of the quark fields as 

r,' 
~~ (x) = iq( x),,) ; q( X ) • (32) 

From canonical commutation relations one obtains the equal time commutator of 

the axial charge with the pion operator as 

(33) 

On the other hand the divergence of the axial current is linked to the operator ~ 

by 

(34) 

To obtain the GaR relation we sandwich the commutator (33) taken at x = 0 

between the ground state of nuclear matter and saturate it with a complete set 

of states In>. Making use of the link (34 ) between the operator ~ and the 

divergence of the axial current we get 

1 
« 0 I A~(y,O)) In >< n I(-2 )811l1~(O) 10> 

mq 
1· . 

< 0 I(_)8IJ A;l(O) In >< n I A~(y,O) 10 > ) 
2mq 

-2
1. 

< 0 Iuu(p) + -dd(p) 10> . (35) 

This leads to the sum rule 

-mq ( < 0 Iuu(p) +dd(p) 10> 

- 2mq < 0 Iqq(p) I 0 > . (36) 

with the implicit condition in = O. A priori all the unnatural parity pion-like 

states contribute to the saturation. Among them there are low lying particle hole 

states. However the contribution of the ph-sector is expected to be small (a few 

percent) since the axial charge of the nucleon, I"V if . iN /M, vanishes in the static 

limit. Hence, we can only retain only the contribution of the quasi-pion pole. 

With this assumption and using the definition of /; from eq. (16) we immediately 

get 

/; 2m; 2 = - 2mq < 0 Iqq(p) I0 > , (37) 
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the in-medium GOR relation. Its validity relies on the neglect of all intermediate 

nuclear states but the quasi-pion, which should be a good approximation. Insert­

ing in the last equation the expressions for m; and f; given in eqs. (2.9) and (21) 

we find that in the medium the quark condensate is renormalized according to: 

< 0 Iqq(p) I 0 > I '" 2m* 2 
7r 7r = 

< vac Iqq Ivac > 12m 2 
7r 7r 

1 
(38) 

The modification of the condensate is found to depend only on the soft 

pion self energy, the derivative disappearing in the product f; 2m; 2, as it should. 

Indeed the evolution with density of the condensate is governed by the nuclear 

E commutator, i.e. by the soft pion-nucleus scattering amplitude which depends 

only on the soft pion potential. 

For a homogeneous medium where II(O) = ENP/lfr equ 38 becomes 

< 0 Iqq(p) I0 > 1 
(39)I - 1 Pl.N< vac I-qq vac > + /2 2 

7ttrt1r 

At low densities the last expression (39) can be approximated by 

< 0 Iqq(p) 10 > ~ (1 _ pEN) (40)
< vac I qq I vac > f;m; , 

a result already obtained by several authors [2], [3] and [4]. The full expression 

(39) has been derived by M. Ericson [8] in a multiple scattering scheme for soft 

pions. In this approach the replacement of the linear density dependence of equ 

(40) into the hyperbolic one of equ (39) is an effect of the distortion of the soft 

pion wave. In the present work the hyperbolic expression naturally apppears as a 

consequence of the GOR relation. 

In summary, we have studied the in-medium renormalizations of the pion 

decay constant and the pion mass in a consistent approach based on the chi­

ral properties of the 11" N amplitude. We have shown that the decay constant is 

quenched by about 15-20% at normal density, while the pion mass remains stable 

(as in ref. [5]). Using the GOR relation, which we expect to be valid to a good 

approximation in nuclei, we have deduced the quark condensate at finite density. 

At low density our result coincides with that previously obtained by other authors 
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as quoted above. At higher densities on the other hand and for a homogeneous 

medium we find by a different technique the expression which recently has been 

given by one of us[8], which implies a reaction of the nuclear medium against 

chiral symmetry restoration. 
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