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The production of heavy quark pairs at high Pt is a good test of perturbative 
QeD, since the quark mass, 'mq, provides a natural infrared cutoff. Therefore a 
perturbative expansion in a.(mq) is expected to give a reliable estimate of the 
heavy quark cross-section. Furthermore, when the Pt is much larger than the 
quark mass, the cross-section is dominated by logarithms of Pe/mq, which are 

-, ("" independent of the production mechanism of the associated jet. It then makes 
sense to discuss the multiplicity of heavy quarks within the jet rather than their 
cross-section, since all dependence on the parton distribution functions and hard 
process cross-sections then disappear, leaving a quantity that is fully calculable in 
perturbation theory[l}. The leading non-perturbative corrections were calculated 
in [2} and found to be small. 

Heavy Quark Production in Jets 
However, because the logarithmic terms are large, and appear at all orders in 

the expansion in a.(mq ), they must be reorganised into an improved perturbation 
series that resums all large terms in the original series. This is most easily done in 

M.H. Seymour terms of evolution equations that describe how the quantity of interest changes 
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Solvegatan 14A, S-22362 Lund, Sweden 	 species inside a jet of any species were derived to next-to-leading logarithmic 
accuracy (i.e. resumming all terms of the form a:logm 

, m = 2n,2n -1), while 
in [5] a slightly different approach was used for the specific case of heavy quark 
pairs.Abstract 

Another approach to resumming large logarithms is to formulate the evolution 
as a probabilistic chain, which can be simulated numerically using Monte Carlo We discuss the Monte Carlo simulation of heavy quark production in 
methods[6-9}. Such algorithms are generally only to leading logarithmic accu­high-pt jets. An algorithm is described that allows such rare processes 
racy, but include many important additional effects, such as energy-momentumto be studied in a realistic amount of computer time. The results of 
conservation, which only enters analytical calculations at next-to-next-to-leadingthe algorithm are compared with analytical calculations for a colour­
order[10]. They have been extremely successful in describing experimental datasin~~t source, and prctI!t~d !?~ the ~,t ,time for hadron-hadron 
in terms of a small number of adjustable parameters, particularly in the relatively 

colliSIons. I".! I . . ' .... well-understood environment of e+e- annihilation into hadrons. ,':
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c· 	 ,.:rt; The Monte Carlo algorithms currently in use have a common feature that they ,,:" 
simulate jets with unit weight, That is, they produce jet configurations with the 

I same frequency as in nature. When studying rare processes, such as heavy quark 
i production, this is a considerable problem since many events must be generated, 
I most of which are never used. This even makes some studies impossible, because ..~ i 

of the amount of computer time they would require. 
,('" 

In this paper we describe an algorithm capable of producing jets with any ~ :-\1 
required flavour configuration (or indeed scale configuration, although we do not 
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which it is a development, is the ability to calculate the relative probability of 
generating any given flavour/momentum configuration in a closed form. This 
requires the explicit calculation of all the relevant form factors, and the removal 
of so-called vetoes in the generation of the scale of each branching. The latter 
requirement is rather strict, and means that any algorithm that relies heavily on 
such vetoes cannot be improved in the way described here. 

The remainder of the paper is set out as follows. In Sect. 2 we describe the 
Monte Carlo algorithm, paying particular attention to the explicit calculation of 
the form factors. We give results for the bottom quark multiplicity in gluon and 
quark jets produced by colour-singlet sources, and discuss some of the approx­
imations made. In Sect. 3 we discuss the analytical results of [4], and compare 
them with the method of [5], and with the Monte Carlo results. We also pra­
pose a modification to the result for a quark jet that makes no difference within 
the next-ta-Ieading logarithmic approximation in which it is valid, but gives a 
result that is more physically reasonable owing to a change in the sub-leading 
terms. Finally in Sect. 4 we discuss the application of our algorithm to hadron­
hadron collisions, and give the results for the Pt spectrum of bottom quark pairs 
in proton-antiproton collisions at VS 1.8 TeV. 

Our algorithm is implemented as a package of additional routines for HERWIG, 
and is available by ema.iling the author, mikeethep .Iu . se. 

Monte Carlo Algorithm 

In perturbation theory, large logarithms arise in the cross-section for multi-parton 
final states owing to configurations where two or more partons become almost 
collinear. To accurately determine such cross-sections, these logarithms must 
be resummed to all orders. This resummation can be formulated as an iterative 
procedure, such that individual phase-space contributions can be simulated using 
Monte Carlo algorithms[6-9]. Such algorithms are capable of describing many of 
the gross features of hard scattering events and, together with hadronisation 
models[1l,I2], more specific features of their hadronic final states. 

The large logarithms associated with soft gluon radiation can also be re­
summed in a Monte Carlo algorithm, by appropriate choice of the evolution 
variable. This follows from the coherence of the soft gluon radiation, which re­
duces the multi-gluon phase-space to the angular-ordered one, after azimuthal 
averaging. That is, it can be described as a factorised series of branchings, each 
with an opening angle smaller than the last. In the HERWIG algorithm[6], this 
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is done by defining the evolution variable to be 

Q2 == E 2e== E2 Pi'P; / EiE; ~ E2(I - cos 0;.;), (1) 

where E Ei + E; and Ei,j, Pi,; are the energies and 4-momenta of the two 
produced partons. The final approximation becomes exact when the produced 
partons are massless. It can immediately be seen that ordering in Q2 corresponds 
to ordering in opening angle. 

A central role in any branching algorithm is played by the form factor, ~(Q2), 
defined as the probability that a parton capable of branching at scales up to Q2 
does not produce any resolvable radiation. This can be written in terms of the 
naive probability that it does radiate, 

{l Q dkl1-lIi(le) }
~(Q) = exp - L dzP(z) a. , (2) 

Q. ~ "'(") 1\" 

where z is the energy-fraction of the splitting, and Qc and Zi,j are infrared cutoffs 
to be defined shortly. We shall also make use of the two-scale form factor, 

~(Q) {lQ 
dkl1-lIi(le) a.}

~(Q, q) ~(q) exp - q k ...(Ie) dzP(z)-:; . (3) 

For gluon emission, the infrared cutoff is on the local transverse momentum 
of the emission. Kinematically, this gives us 

zi(k) = Qi/k, (4) 

where Qi is the cutoff for parton type i. Coherence in heavy quark fragmentation 
can also be incorporated by careful choice of Qt.. This coherence results in an 
emission probability that is identical to that of alight quark at large angles, but is 
suppressed within a cone of opening angle mq/Eq, the 'dead cone'. Kinematica.lly, 
this is achieved by Qq "" m q. We set 

Qq = Qo+mq, (5) 

where Qo is a flavour-independent parameter of the model, which has a tuned 
value of order 500 MeV. The cutoff Qc is simply given by the point where 
Z;. + z; 1, that is, 

Qc Qi + Q;. (6) 

In the MS scheme, the splitting of a gluon to massive fermions is identical to 
the splitting to massless ones above threshold, and zero below. This corresponds 
to setting Zq 0 when considering g -+ qq, but retaining Qc = 2Qq. 
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Many of the next-to-Ieading logarithmic terms can be resummed by suitable 
treatment of the running coupling. Indeed by using as its scale the relative 
transverse momentum of emission, and its two-loop running form, 

a. = a~2)(z(I- z)k), (7) 

a precise connection can be made between the HERWIG scheme and the MS 
scheme, at least in the semi-inclusive region, z --t 1[13]. This means that the 
AQCD in HERWIG has a precise relationship with AMI, rather than being a freely 
adjustable parameter. For gluon splitting to quarks there are no soft logarithms 
to resum, and the scale used for a. should be k. 

The differential probability for the first splitting of a parton with upper scale 
Q to be at scale q is then given by 

dql1-.ci (q) a 
dP(qjQ) = - dzP(z)"""!'d(Q,q) = dd(Q,q). (8) 

q .Ii(q) 'lr 

Since the right-hand side is a total integral, q values can be generated with this 
distribution simply by choosing a uniform random number on the range [0,1], p, 
and solving 

p = d(Q,q) (9) 

in q. If this solution is above Qe, then it corresponds to emission at scale q. Oth­
erwise there was no resolvable emission and the algorithm terminates. This can 
be easily generalised to the case of more than one type of competing branching, 
by choosing q values corresponding to each type of branching according to the 
above procedure, and then using the largest. 

If d(Q, q) is not a conveniently invertible function, a trick known as the veto 
algorithm can be used. This involves finding a function d' that is invertible and 
has a derivative that is everywhere larger than that of d. One then generates q 
according to d', and vetoes a fraction dd(q)/dd'(q) of these emissions (i.e. the 
chosen emission is not considered resolvable, and the evolution continues from the 
chosen scale). However, the improvement to the algorithm that we describe here 
relies on knowing the form factor in a closed form, and so we should avoid using 
vetoes where possible. In some algorithms[9], vetoes are also used to enforce 
kinematic constraints. Since these usually have an uncalculable effect on the 
form factor, such algorithms cannot be improved in the way we describe here. 
As we discuss below, one such veto exists in HERWIG for extreme kinematic 
configurations, which slightly reduces the efficiency of our algorithm. 
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2.1 Gluon emission form factor 

The splitting functions are 

I+(I-z)2
Pq....qs(z) O,. , (10)

Z 

o 1 + Z4 + (1 Z)4Pg....gg(z) (11)
J. z(I _ z) , 

where OJ. = Ne = 3 and 0,. = (N; 1)/2Ne = 4/3. Exchanging the order of 
integration relative to (2), we obtain 

l Qi,Q 
-log d(Q) = <dZP(Z) ~ d: a.(z(I z)k) +(i +-+ j, z +-+ (1 _ z». (12) 

QilQ JQil.c 'Ir 

The inner integral can be performed by using the second order renormalisation 
group equation, 

2 da• 2 
p, dp,2 -,8oa.(1 +,8'a.), (13) 

where the ,8 coefficients are functions of the number of flavours considered to be 
light at scale p" I, 

1
,80 12'lr(1l0. 2/), (14) 

1,8' == ,81 24'lr2,80 (170: (50. +30,. )J). (15),80 

This can be used to rewrite the integral 

dle a.(p,) 1 [ 1]a,(m.in(l-.c)Q••mJ»J--- L:- log--- (16)
k '7r J 2'lr,80 ,8' + I/a. a.(m.in(.c(l-z)Q,mHd)' 

where the sum over I accounts for the flavour thresholds. The final integral, 
over z, is calculated and inverted numerically in HERWIG, to generate the distri­
bution of q. 

2.2 Gluon splitting form factor 

The splitting function is 

Pg-+qlj(z) = Hz2 + (1 - Z)2). (17) 
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Thus the form factor is given by 

~(Q) exp {-L: dkk [dZ(Z' +(1- z)')";~) } (18) 

1 {Q dk } 
exp { ;'11" J2Q, Ta.(k) (19) 

(3' + 1/a.(2Qq ») e:AJ • (20)
( (3' +1/a.(Q) 

Again, the flavour thresholds can be incorporated by writing the integral as a 
sum over flavours, 

D.(Q,2Qq) = D.(Q,m,)D.(m"m,_I) ... D.(mq+l,2Qq)' (21) 

The two-scale form factor can then be inverted to generate q, by first finding the 
flavour region, n, in which the solution lies, and then solving 

(3' +1/a.(q») t4; 
p if n = I, (22)( (3' +1/a.(Q) 

(3' +1/a.(q) ) ';flo D.(mn+l,2Qq) otherwise, (23)( (3' +1/a.(7n.n.+l) p Ll(Q,2Qq) 

in a.(q), and inverting this to find q. 

2.3 Forcing quark pair production 

Once we have the form factor for each type of branching in a closed form like 
this, we can force the first heavy quark pair to be produced at the nth branch, 
simply by switching off g -+ qq during the first n 1 branchings, and switching 
off g -+ gg at the nth. At each stage, the branching is required to be resolvable. 
We neglect the effect of light quark production, and discuss this approximation 
in a later section. A weight factor is then assigned to the jet as a whole, which 
is the products of the probabilities of each stage that we have forced. That is, 
the probability of having the nth gluon splitting producing the first heavy quark 
pair at scale qn, with each of the intervening splittings at scales qi is 

n-l 
1'n(q1!' .. ,q,.) II (1 D.gg( qi-t, 2Qg)) D.qq( qi-l,

.=1 
x (1 D.qq(qn-l,2Qq))D.gg(qn-l,qn), (24) 

with qo == Q. Both lines should also be multiplied by the form factors of any 
other types of emission that are switched off, for example gluon splitting to light 
quarks or, in some models, diquarks. 

As a specific example, consider n 3. We first produce two gluons at scales 
ql,2, and energy fractions Zl,2, which are forced to be inside the phase-space, and 
before any quark splittings. Then we produce a heavy quark pair at scale q3, 
which is again forced to be inside the phase-space, and before a third gluon is 
emitted. Thus the combined probability for each stage we have forced is 

1'a(ql,q2,q3) (1- D.gg(Q,2Qg))D.qlj.(Q,ql) 
x (1 D. gg(q1,2Qg))D.qlj.(ql,q2) 

x (1 D.qlj(q2, 2Qq)) D.gg( Q2, qa). (25) 

The first term of the first line is the probability that a gluon is emitted between Q 
and 2Qg, the second term is the probability that no quarks are emitted between 
Q and ql, i.e. before the first gluon, and likewise for the subsequent lines. 

2.4 Reduced phase-space for gluons 

If we wish to force heavy quark pair production at a given vertex of the shower, 
we must ensure that earlier emissions leave enough phase-space for it. With 
the angular-ordered kinematics, this gives a simple modification of the infrared 
cutoff-it is replaced by the sum of the cutoffs for all particles that must be 
produced. So for a heavy quark pair to be produced n emissions later than the 
one we are considering, (n 2)Qg +2Qq must be added to the cutoff. For gluons 
this leaves a cutoff of 

Qn = (n 1)Qg +2Qq, (26) 

with obvious generalisation to the quark case (where n 1 is not allowed by 
conservation of baryon number). The probability distribution for the first gluon 
emission below Q to be at q, with enough room for the subsequent splitting is 
then 

1 Q
d 1- ,/q { jQ dk t-Q,/q }

d1'(qjQ)"'!!' dzP(z)~exp - Tic dzP(z)~. (27) 
q Q... /q q Q,/q 

Note that the reduced phase-space appears in the first term, representing the 
probability that the actual emission is in the phase-space, while the full phase­
space appears in the form factor, since competing radiation need only be resolv­
able. Defining the modified form factor, 

Qdkl1-Q,/k }
D.'(Q,q) exp - T dzP(z)~, (28){ j q Q .. /k 
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this probability distribution can be written as 

A(Q,q) 
(29)dP(q; Q) dA'(Q,q) A'(Q,q)' 

In other words, one can generate q by inverting the modified form factor, and 
then weight the event by the ratio of two-scale form factors at that point. 

2.5 Improving the efficiency 

Clearly the q distribution of the first branching of a jet that produces a quark­
antiquark pair at its nth branching, is not the same as that of a general jet. In 
particular, near to threshold the distribution can be pushed towards much higher 
q values. We can incorporate some of these effects by a simple modification of 
the generated distribution, bearing in mind that we may only use distributions 
that can be integrated analytica.lly, so an exact reweighting (which could be 
implemented using the veto algorithm) is not possible. 

For gluon splitting to quarks, the contribution of a given vertex to the overa.ll 
weight is given by 

dP(q;Q) = dAqli{Q,q) Agg{Q,q). (30) 

To leading order, with fixed coupling, it is easy to show that Aqq,(Q, q) and 
Agg{ Q,q) can be related by a simple power law, 

Agg(Q,q) = (Aqq(Q,q»", 

with Il a calculable constant. Empirica.lly, graphs of log Agg(Q, q) as a function of 
log Aqq,{Q, q) are reasonably straight even for Q values as large 50 Te V. Further­
more, they are guaranteed to be concave upwards, that is the straight line joining 
their endpoints is everywhere above the actual curve. This makes this straight 
line an ideal Monte Carlo distribution to generate, including the appropriate 
weight in the integral. 

That is, instead of generating Aqq{Q,q) uniformly as usual, we generate 

dAqq{Q,q){Aqq{Q,q»)" , (32) 

log Agg{Q, 2Qq) 
Il= .

log Aqli(Q I 2Qq) 
(33) 

Il ranges from around 50 for Q = 20 GeV, to 200 for Q 50 TeV. The Jacobian 
factor appearing in the overa.ll weight then reads 

1 
Il +1 (1- (Aqq{Q»o+1) (34) 
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As an example, for the first bb emission from a 1 TeV gluon jet, this increases 
the Monte Carlo efficiency from 9% to 64%. 

A similar procedure is also possible for the case of gluon emission within the 
reduced phase-space, but with Il replaced by 

dlog Agg(Q,q) I (35) 
Il dlog Aqq(Q,q) q=Q' 

since the equivalent graphs are convex. 

2.6 Combinatorial factors 

The above procedure is capable of simulating jets that produce a heavy quark 
pair at a given vertex, but to complete the algorithm we must also choose for each 
event, which vertex of which jet will produce the pair. This must also account 
for the (sma.ll) probability that an event will contain more than one pair. 

Having decided that the pair is to be produced at the nth vertex of a jet, we 
must sum over the different jet configurations in which this occurs. Neglecting the 
effect of internal light quark lines, this is simple; for gluon-initiated jets there are 
2"-1 symmetric configurations, which have equal weight. For quark-initiated jets, 
there is one less configuration, owing to the absence of a q -+ QQ vertex, and they 
are no longer symmetric. However, we find empirica.lly that each configuration 
has similar weight, so we generate equal numbers of each. 

Within a single jet, the average weight for pairs to be produced at the nth 
vertex is roughly constant with n, although a better estimate of this is an area 
in which the efficiency could be improved. We generate equal numbers of events 
with n in the range 1 to N. By default, N is set to the integer nearest to , 
1+log(Q214m!), an empirical limit that can be overridden by the user if necessary. I 

The possibility of several pairs being produced at different values of n is easily 
incorporated by switching off production of the requested heavy quark pair at { 
a.ll vertices before n, but simulating the jet as normal after n. The possibility < 
of several pairs being produced at the same n is not as simple; to avoid double­
counting we cannot just a.llow other pairs to be produced at the same depth in 
the shower with their natural weight. Instead, we usua.lly switch off the heavy _ 
quark production at the other vertices, and in a sma.ll fraction of events explicitly I 
generate more than one pair., 

A similar combinatorial problem exists when there is more than one jet J 
consider. We first estimate the probability that each jet will contain [' 
quark pair using the analytical result discussed in the next section. Thf 
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these estimates, we can calculate the probability that any given combination of 
jets contains heavy quark pairs. To illustrate the idea, consider the case of two 
jets. If our estimates of the probability that each jet will contain a pair are PI 
and P2, then we estimate that the probability of both is PIP2. Thus, a fraction 

j,. _ Pi (36) 
• - PI +P2 +PIP2 

of the time we choose jet i only to produce the pair, and a fraction 

- PIP2f ­12 
PI +P2 +PIP2 

of the time we choose both. In each case, we multiply the corresponding weight 
factor by 11f. To avoid double counting, the heavy quark pair production must 
be switched off during the first N vertices of any jets that were not chosen. A 
similar algorithm applies when there are more than two jets. 

Note that all the assumptions we make in this section, such as the constancy of 
the weight with depth within the jet, only affect the efficiency of the Monte Carlo 
algorithm, and not the actual distribution of events produced. Since we calculate 
the weight of each configuration as we produce it, the assumptions we make about 
the weight distribution are always corrected for in the output distributions. 

2.7 Results 

In Fig. 1, we show the multiplicity of bottom quark pairs in a gluon jet as a 
function of its hardness, Q (strictly speaking, this is half the multiplicity in 
events in which gluon pairs are produced in a colour-singlet state of invariant 
mass .J2Q). It begins to rise logarithmically from threshold, as would naively be 
expected, and then increases more rapidly as the parton multiplication takes off 
at Q '" (2Qq)exp(I/Va.) '" 300 GeV. 

Also shown are the individual contributions from each vertex of the parton 
shower, which never rise much above one percent. 

The Monte Carlo efficiency of our algorithm is also shown. It is extremely 
high at low energy, but decreases with energy until at Q rv 1 Te V it crosses the 
solid line, meaning that our algorithm gives no improvement over the standard 
method. 

In Fig. 2, we show the equivalent curves for a quark jet (again defined as half 
. f a colour-singlet event). Its features are qualitatively similar except that it rises 

-lowly from threshold, as would be expected from the absence of a q ~ QQ 
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Figure 1: The multiplicity of bottom quark pairs in a gluon jet as a function of 
the jet hardness, Q (solid), together with the individual contributions from each 
vertex (dotted), and the Monte Carlo efficiency of event generation (dashed). 
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Figure 2: As Fig. 1, but for a quark jet. 
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Figure 3: As Fig. I, but with the infrared cutoff increased by 500 MeV. 

One interesting test of our algorithm is its infrared safeness. As mentioned 
in the introduction, this is one of the reasons for interest in heavy quark pro­
duction in jets. The curves corresponding to emission at each vertex of the jet 
are certainly infrared sensitive, since changing the cutoff on gluon emission will 
change the number of resolvable gluons emitted at angles larger than the heavy 
quark opening angle. However, their sum should be infrared safe, and thus in­
variant under changes of this cutoff. In fact small violations would be expected 
because HERWIG assigns a mass to the gluon and conserves energy at each ver­
tex. As shown in Fig. 3 this effect is small, and the total multiplicity is, to a 
good approximation, infrared safe. 

2.8 Approximations 

The only approximations we have made, relative to the standard HERWIG algo­
rithm, are to truncate the emission after N vertices, and to neglect the effect of 
internal light quarks. The effect of the former can be seen in Figs. 1 and 2-the 
default value, N ~ 1 + log ( Q214m!), is perfectly adequate. 

Although we do not have an algorithm that systematically sums over all jet 
configurations that include light quarks, it is easy to include the first contribution, 
n = 3, since it only has two symmetrical configurations, i.e. g ~ qq ~ qqg ~ 
qqQQ. In Fig. 4 we show the ratio of this process to the dominant n = 3 one, 
g ~ ... ~ ggQQ. The combinatorial factors from the sum over configurations 
(1/2) and light flavours (4) are included. It can be seen that the light quark 
contribution is always less than one percent of the gluon contribution, and is 
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Figure 4: The ratio of the quark to gluon contribution to bottom quark pair 
production in a gluon jet at the third vertex. 

therefore negligible. However, we note that parton mixing is formally a next-to­
leading logarithmic correction, and thus such effects would have to be included 
if a full next-to-Ieading Monte Carlo prescription were attempted. 

3 Analytical Results 

The resummed multiplicities of one parton type within another were calculated 
to next-to-Ieading logarithmic accuracy in [4J. Their results for the quark multi­
plicityare 

lfq _ N- 8 Cp n'N-
JVq (Qo, Q) - (zo, Zl) + '3 CA. b (zo, Zl) (38) 

in a quark jet, and 
8 n, ­

Ni(Qo,Q) = '3bN (zo,zd (39) 

in a gluon jet, where 

327rCA. 
Zo (40)

b2a.(Qo) , 

327rCA. 
Zl (41)b2a.(Q) , 

'Ez.~ 
N-(zo,zJ) (~) 3 cA. • (42) 
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jJ'(ZO, ZI) (~) B [IB(zdKB(zo) _ KB(ZI)IB(zo)], (43) 

B 2 "O')/b (44)(no"3 A. + in, - in, OA. ' 

b ¥OA. - ~nj, (45) 

and IB, KB are the modified Bessel functions of order B. We shall also be making 
use of the function 

,N+(zo,zd = ZI (~)B [IB+1(Zl)KB(zo) +KB+1(ztlIB(zo)], (46) 

which determines the diagonalised parton multiplicity to next-ta-Ieading logarith­
mic accuracy[31, and thus gives the leading contribution to the gluon multiplicity 
in a jet[4]. We obtain the heavy quark pair multiplicities as 

~Q(Qo,Q) (Ni(Qo,Q) -1) /2nj, (47) 

~Q(Qo)Q) N:(Qo,Q)/2nJ, (48) 

with 

Qo 2mq, (49) 

n, = q. (50) 

Note that jJ' contributes next-to-Ieading logarithmic terms (i.e. terms of the form 
a:Lm I m = 2n - 1, L = log(Q /Qo)), while N- has a power series in a,L, only 
the first two terms of which contribute at next-ta-Ieading logarithmic accuracy. 
Note also that at asymptotically large scales, N- is negligible relative to jJ' and 
the heavy quark multiplicity in a quark jet is the same as that in a gluon jet, 
scaled down by a factor 0, / 0 A.' As we have already seen from the Monte Carlo 
algorithm, this is far from the case at current or foreseeable energy scales, where 
the multiplicity in quark jets is considerably suppressed relative to that in gluon 
jets. Near threshold, the pair multiplicities have the following expansions (the 
threshold region is formally defined as the region where a.L2 « 1 but L ~ 1), 

JIilQ(Qo, Q) a. {fL} + (a.)2 {~0A.L3 _ ~b(B + I)L2} +O(a!), (51)
411" 3 411" 

~Q(Qo,Q) (a,)2 {~OpL3 _ ~O0, (110A. loOP n, - ~n,)L2} +O(a!). 
411" A. A. (52) 

When we are even closer to threshold, L ~ 0, the logarithmic terms are no longer 
dominant, and one should add the process-dependent non-logarithmic terms from 
a fixed order calculation[4]. Thus the above expressions are not relevant in that 
limit. Nevertheless, it would be convenient if the expressions we use are at least 
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reasonably behaved there. It can be seen that this is the case for gluon jets, since 
(51) rises linearly for L close to zero. However, for quark jets, since the O(a.) 
term is missing, the leading term in (52) is a quadratic fall to negative values, 
which is clearly undesirable. Since this term is of the form a:Lm, m < 2n I, 
it is beyond the scope of a next-to-Ieading log calculation and is completely 
undetermined. Note that the coefficients of a: in (51) and (52) terminate at 
m = n, i.e. there are no terms in a:Lm, m < n, so the quadratic behaviour in L 
is entirely given by the a!L2 term. 

We can use the fact that this region is undetermined to alter the expression 
to a more physically reasonable form. Indeed, as mentioned earlier, ,N- does not 
generate any relevant logarithms beyond the first order, and so it can be replaced 
by any function jJ'-«zdzo)2) having the properties 

1. jJ'-(z) ~ 1- ~~if(z 1) as z ~ I, 

2. jJ'-(z) ~ 0 as z ~ 00. 

We arbitrarily decide to define jJ'-(z) in such a way that the a!L2 term in ~QQ 
is exactly zero. This corresponds to modifying condition I, 

I'. jJ'-(z) ~ 1- ~~if(z 1) + ~~;t(B + l)(z _1)2 as z ~ 1. 

One such function is 

jJ'-(z) ,N-(rr:) (1 +a(rr: - 1)2e-2(C-l»), (53) 

! Op n, (B _1: Op n,)a (54)30A. b 30A. b . 

Note that for n, = 5, a ~ 0.2, which implies that jJ'- is never more than about 
3% above,N-. We stress that no special significance is claimed for this particular 
form of jJ'-; within the next-ta-Ieading logarithmic approximation in which it is 
valid, it is identical to,N-. It does however ensure that N~Q is a positive quantity 
for all L > O. 

An alternative approach was taken in [5], where the heavy quark pair multi­
plicities were obtained by explicit integration of the gluon multiplicities, 

&tOo. ( _ 1 (ldha.(h2 
) ( Q~) r-cif,.rg

/Ve ' Qo, Q) - "3 J 1;-11"- 1 + 21:2 VI - k2"JV c (h, Q), c q,9. (55) 
Qo 

Note that this includes terms that are power-suppressed relative to the next-to­
leading log results. However, the first of these is '" (Qo/h)" so we do not expect 
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it to contribute significantly. Neglecting the power~suppressed terms, this can be 
written in terms of the variables introduced earlier, as 

lfQQ ) 41.11 dz ll'lI( ) 
.IV c (Zo, ZI 3b.lo -;JVc z, ZI , (56) 

which can be integrated using the results 

ll d
zZ N+(Z,Zl) ~N(Zo,ZI) +.. " (57)

Zo

lid;N-(Z,Zl) ! CA ~ (1 N- (zo, ZI») , (58)
8Cp nJ

II ~zN(z, ZI) _1-N+(Zo, ZI) + ... , (59) 
ZoZl 

where the neglected terms in (57) and (59) are suppressed by additional factors 
of ZO,l' Since N+ is leading, and N is next~t~leading, the neglected terms of (57) 
and the whole of (59) result in only sub~leading logarithms and can be neglected. 
Then, given the gluon multiplicities in [4], one obtains the same expressions for the 
heavy quark pair multiplicities as given in (47,48), except that both occurrences 
of N are multiplied by an extra factor of ZI/Zo. Since N only generates next~t~ 
leading logarithms, and ZI/Zo has the expansion 

ZI b 
- = 1 + -a.L + ... , (60)
Zo 1(' 

the extra factor makes no difference to next~to-Ieading logarithmic accuracy, and 
the two approaches are identical. This shows that the exponent of the coefficient 
in (43) is undetermined to this accuracy·. These differences can be used as a 
rough guide to the importance of sub-leading logarithms, and of power-suppressed 
terms. 

In Fig. 5 we show the multiplicity of bottom quark pairs in a gluon jet, accord­
ing to each of these approaches, together with the results from HERWIG. The 
solid curves are the direct next-to-Ieading logarithmic approach for two different 
values of A. Recall that the next-to-Ieading logarithmic approximation contains 
no renormalisation-scheme dependence, so A is considered a free parameter, un­
related to AMS ' The dot-dashed curve is the integral of the gluon multiplicity, 
neglecting the power-suppressed terms. The difference between this and the solid 
curve is purely because of the sub-leading logarithmic terms, and gives a rough 
indication of their size, which is small. Finally the dashed curve is the full inte­
gral, including the power-suppressed terms, which are also seen to be small, even 

-The inconsistency between the two methods is because of the asymmetry in [4] between 
the treatment of the two scales Q and Qo. One would expect the integration method to give a 
better estimate of the exponent's value[14] 
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Figure 5: The multiplicity of bottom quark pairs in a gluon jet as a function 
of the jet hardness, Q, using the explicit next-to-Ieading logarithmic expre8~ 
sions (solid), the integrated gluon multiplicity (dashed), and the latter neglecting 
power-suppressed terms (dot-dashed). All curves use A = 100 MeV, except the 
solid ones, which use the values shown. The points are from the Monte Carlo 
algorithm. 

for Qnot too far above threshold. Both of these effects are smaller than variation 
of the unknown parameter A. We conclude that using the next-to-Ieading loga­
rithmic approximation alone to predict the heavy quark multiplicity in a gluon jet 
is reasonably reliable. We also see that the Monte Carlo results are in reasonable 
agreement with the next-t~leading logarithmic approximation. 

In Fig. 6 we show the equivalent for quark jets, which is not so reassuring. 
The problem of the negative threshold extends to well over 100 GeV, and the sub­
leading terms that were added to solve it still make a significant difference for Q 
well over 1 TeV. Furthermore the sub-leading terms indicated by the difference 
between the direct and integrated methods are also large. These problems are 
all because of the suppression of the leading terms in the threshold region, which 
exaggerates the importance of sub-leading corrections. We conclude that the 
next-t~leading logarithmic approximation alone is not a good way to predict the 
heavy quark multiplicity in a quark jet at current or foreseeable energies, and it 
needs to be augmented with the process-dependent non-logarithmic terms. This 
is not too severe a problem for practical calculations, as the production of high-pt 
heavy quark pairs in hadron-hadron collisions is dominated by gluon jets. 
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Figure 6: As Fig. 5, but for a quark jet. The dotted curve uses the modified 
result from Eq. 53. 

Hadron-hadron Collisions 

When simulating the general hard processes relevant to hadron-hadron collisions, 
one encounters several effects in addition to those discussed above for colour­
singlet sources. Since the incoming partons are coloured, they are able to emit 
gluons. Recoil from this emission means that the hard process cmf acquires a 
transverse momentum, pe, relative to the hadron-hadron emf. The singularities of 
the matrix element are manifested in the Pt spectrum as a singularity as Pt -+ 0, 
a.nd it is essential that the corresponding logarithms are resummed to all orders 
to provide a finite Pt spectrum. This can be done using a Monte Carlo algorithm 
known as backward evolution[15], which evolves the incoming parton downward 
in scale from the hard interaction back into the incoming hadron. This can also 
be formulated to resum the soft logarithms by careful choice of the evolution 
variable[7], at least in the region where ~ is not too small. 

The hard interaction plays two roles: in defining the kinematics of the hard 
jets of the event, and in defining the initial conditions for the evolution of the 
incoming and outgoing partons. Coherence effects are particularly important 
for the latter[71, which limit soft gluon emission from a given a parton to an 
angular cone defined by the opening angle to its 'colour connected' partner. The 
idea of colour connectedness is only well defined in the large-Nc limit, but the 
additional terms, which are both colour-suppressed and dynamically suppressed, 
can be distributed amongst the leading terms in such a way that each sub-process 
cross-section is a positive quantity throughout phase-space[7]. 

.. 

• 

There are four separate sources of heavy quarks in hadron-hadron collisions: 

1. Pair production; 

2. Flavour excitation; 

3. Final-state parton evolution; and 

4. Initial-state parton evolution. 

Throughout the following we consider the first two together, as the hard process 
contribution. The separation is entirely arbitrary, and the description of the entire 
process, i.e. the sum of all four, should not depend on it. A crucial role in this 
separation is played by the factorisation scale 1-', since particle production above 
this scale is attributed to the hard interaction, while that below it is attributed to 
the parton evolution. In HERWIG, since we only use the lowest order expression 
for the hard scattering, this is easily defined as 

2 
I-' = 

2stu 2 
"'Pe, (61) 

in the case of massless 2 2 scattering, and 

2 2s(t m:)(u - m!) 2 

I-' = 82 + (t m q )2 + (u m q )2 '" mtl (62) 

in the massive case, where the transverse mass me is given by m: P: + m:. 
Thus it is essential for a complete description, that all emission within the par­
ton evolution be at scales below this, in addition to the limits imposed by colour 
coherence. In the standard algorithm, this is simple to implement-if a gluon 
emission with local transverse momentum above 1-', or gluon splitting with trans­
verse mass above I-' is generated, then it is vetoed and evolution continues from 
the generated scale. However, since this modifies the form factor in a way that 
cannot be easily calculated, it means that we cannot use it when forcing heavy 
quark production. 

To be explicit, the problem is the following; if we are to force a g -+ qq 
splitting, then the associated weight factor must include the probability that 
there was not a g -+ gg splitting at a larger scale. Although we know the 
probability that such a splitting was not generated, since this is just the form 
factor, we do not know the fraction of generated splittings that would have been 
rejected, eventually resulting in no emission. Thus we cannot switch off any type 
of branching in a region in which it could get vetoed (except in cases where the 
corresponding effective form factor can be explicitly calculated). 

This veto is only active in collisions in which the two outgoing partons have a 
rapidity difference of '" 3.4 or more, because of the hard process kinematics and 
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the colour coherence condition. Since in the following we will require the detected 
heavy quarks to be reasonably central, the recoiling jet must be at large rapidity 
in order for any vetoes to be possible. Thus only a small fraction of hard scatters 
leads to jets that could require a veto. Even in those cases, since the scale of the 
jet is not too far above the threshold for vetoing, the fraction of emissions in the 
'veto region' (the range of Q2 where a veto is possible) is small. 

The strategy we adopt is therefore as follows. If we are required to force an 
emission in a jet that is above this threshold, it is allowed to evolve naturally 
through the veto region. If this gives no emission within the region, then the 
forcing algorithm is used as normal, starting immediately below the veto region. 
If it happens to give the parton that was intended to be forced, then the forcing 
algorithm continues as normal. If it gives any other parton, then the event is 
given zero weight. In this way, such jets are simulated correctly, even though the 
Monte Carlo efficiency is not as good as in the usual case. It can be immediately 
seen that if the veto region covered the whole of phase-space, this would reduce 
to the standard method of jet evolution, and the forcing algorithm would not 
be used. Thus a forcing algorithm cannot be used in Monte Carlo programs in 
which vetoes are prevalent. 

Having implemented such an algorithm, it is straightforward to study any 
desired quantity. As an example, we show in Fig. 7 the Pt spectrum of bb pairs 
in pp collisions at 1.8 TeV. Experimentally bottom quarks must be reasonably 
central to be detected, so we make a representative cut of I'll < 1 for both the 
quark and antiquark. The spectrum peaks at around 2mb, as would be expected. 
Also shown are the equivalent curves for various ranges of pc of the hard process. 
Although this is not a directly measurable quantity, similar results would be 
obtained by, for example running a jet algorithm on the event, and cutting on 
the Pt of the hardest jet on the opposite side to the bb pair. It can be seen that 
for each range of hard process Pt, the bb Pt peaks at about the bottom of the 
range, meaning that the pair takes most of the jet energy on average. There are 
also considerable tails above and below the selected range, owing to recoil from 
the other jets in the event and (in the latter case) to pairs that take considerably 
less than the whole jet energy. 

In Fig. 8, the spectrum is shown again, in comparison with that from the 
hard process. Although this has a larger cross-section, it falls more rapidly with 
Pt than the production in jets does, since this Pc is predominantly recoil from 
the initial-state radiation, which is constrained to be less than the factorisation 
scale, JL '" mt. The mc spectrum is dominated by the region close to mb, so 
the pair pc falls rapidly above this value. The total cross-section from the hard 
process is about three times larger than that from jets, and so the latter is an 
important correction. For large pair transverse momenta, Pt~30 Ge V, the latter 
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Figure 7: The p, spectrum of bb pairs in Pi> collisions at 1.8 TeV from production 
in jets (solid). Also shown (dashed) are the individual contributions from events 
in which the hard process Ph measured in GeV, is in the range (from left to right), 
p, < 10, 10 < Pt < 30, 30 < Pe < 50, 50 < Pt < 70, 70 < p, < 90, and Pt > 90. 
The errors shown are purely statistical. 
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Figure 8: The Pt spectrum of bb pairs in pp collisions at 1.8 TeV from production 
in jets (solid), from the hard process (dashed), and the leading contribution from 
initial-state radiation (dotted). 
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is completely dominant. 

As stressed earlier, to describe the whole process all the possible sources of 
heavy quark pairs must be included, but we have so far neglected the possibility 
of them being created during the initial-state evolution. There are two ways in 
which this can happen, either by a gluon being evolved backwards into a heavy 
quark, or by the emission of a gluon that splits into a heavy quark pair. We expect 
the former to be negligible, owing to the smallness of the distribution functions 
for heavy quarks at currently attainable scales. We would expect the latter to 
behave in a similar way to the final-state quark jet case, i.e. to be formally of the 
same logarithmic order as from final state gluon jets, but considerably suppressed 
near threshold by the requirement that a gluon is emitted at a large enough scale 
to contain the heavy quark pair. Although we have not developed a forcing 
algorithm that systematically sums all such configurations, we can estimate its 
size by forcing its leading contribution-the hardest gluon emitted producing a 
heavy quark pair at its first branching. This is also shown in Fig. 8, and is 
negligible at around one percent of the final-state contribution. We therefore feel 
justified in neglecting the possibility of initial-state production at present. 

We conclude that the production of heavy quark pairs in final-state jets is 
an important component of the total cross-section for bottom quarks in hadron­
hadron collisions. Furthermore it is an essential component of any study that 
involves pairs produced with transverse momenta more than a few times the 
bottom quark mass. The background to the top quark search is one such example. 
We have implemented a forcing algorithm that allows such production to be 
studied in a reasonable amount of computer time, unlike previous algorithms 
that produce heavy quark pairs with the same frequency as in nature. The 
results of the algorithm are in good agreement with analytical results in the 
next-to-Ieading logarithmic approximation, at least for the physically important 
case of gluon jets. For quark jets, the analytical results are not reliable without 
the addition of process-specific non-logarithmic terms. 
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