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Abstract 


We use the infinite product representation of the q-exponential function to derive some 

useful identities involving the product of q-exponentials of operators. We then use several 

of these results to formulate and compare some of the possible q-deformations of the time 

evolution of an operator in quantum mechanics and discuss some of their implications. 
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In the past few years quantum groups and quantum algebras [1] have had an increasing 

and broader range of applications in mathematics and physics. A deeper mathematical 

understanding of these algebraic constructions was achieved once they were identified as 

particular cases of Hopf algebras [2], while its relevance to physics can be traced back to 

the theory of integrable models and the role of the Yang-Baxter equation in two-dimensional 

statistical mechanics [3] . 

More recently, much effort has been directed in developing the representation theory of 

quantum groups and quantum Lie algebras [4], which at the same time has allowed the study 

of new physical situations which can be understood as q-deformed (generalized) versions of 
-

standard physical systems [5]. In particular, the formulation of a consistent q-defoimation of 

quantum mechanics is essential to the development of a successful approach to a quantum 

field theory with quantum group symmetries. The formulation of noncommutative geometry 

[6] , its relation to quantum groups [7] and the development of noncommutative differential 

calculus on the n-dimensional quantum space Rq in its bosonic [8] and fermionic 

formulations [9], in terms of the R-matrix of Glq(n) and SOq(n) respectively, provides the 

basis for understanding the corresponding geometry and analysis. In particular, it has been 

shown [10] that differential operators acting on functions on R; correspond to q-differential 

operators times a scaling operator acting on functions on R" , therefore bringing the theory 

of q-analysis to play the corresponding role in commutative geometry. The theory of 

differential q-analysis was originally formulated at the beginning of this century and 

posteriorly extended to include q-integration [11] such that the standard calculus can be 

recovered once one takes the limit q=1. Therefore, the parameter q can be seen as a 

deformation parameter of operators and functions. The study of the so called q-series 

dates back to the times of Euler, and it has played an important role in applications to the 

theory of partitions [12] and the theory of vector spaces over a finite field [13]. 
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In particular, since the exponential function plays a prominent role in the q=1 (undeformed) 

case ( e.g.partition functions,path integrals, coherent states), then the so called q-exponential 

function expq(x) is probably one of the most interesting functions for physical applications in 

which involves a quantum group structure and therefore have a q-analog correspondence in 

commutative geometry. Some of its basic properties for q-commuting coordinates were 

discussed in [14] and more recently in [15]. 

In this letter our main interest resides in the formulation of the q-deformation of the time 

evolution equation in one-dimensional quantum mechanics. Since the natural generalization 

of this equation consists in replacing the exponential function by the q-exponential function 

we fIrst discuss and generalize some of the relevant identities that the later satisfies. As we 

will shown, the eXPq(x) richer algebraic structure, as compared with the standard 

exponential, does not allow a unique q-deformation. The letter is organized as follows. We 

fIrst use the infinite product representation of the q-exponential [16] to derive some useful 

identities and then generalize to the case of the product of q-exponentials of arbitrary 

operators and discuss some interesting particular cases. Based on this we then give and 

compare in this context some of the possible deformations of the evolution equation of an 

operator in the Heisenberg picture and conclude with some remarks. 

The q-exponential function expq( Ax) is defmed according to the rule 

( 1) 


where Iql < 1 and Dx == x-I [xax] is the q-derivative and raj == 1 - qa with the requirement 
l-q 

that 
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limitq--+l [expq(lx)] =exp(lx) (2) 

Eqs. (1) and (2) provide a representation in tenns of the Eulerian series 

00 

exPq(X) =L [X]", ' (3) 
,,=0 n . 

where the q-factorial is defmed as 

,,-1 

En] ! == II [n-m] . (4) 
m=O 

An infinite product representation of eq. (3) can be written once we recall an 

important theorem due to Cauchy [12] which states that, for Iql < 1 and Ixi < 1, the next 

identity follows 

00 00

L (a)" x" =II (1 - axq") (5) 
,,=0 (q)" ,,=0 (1 - xq") , 

,,-1 

where we have used the standard compact notation (a)" = II (1 - qm a). In particular, the 
m=O 

a= 0 case gives that 

00 

(6) 




- -
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which clearly states that for two commuting variables expq(x)expq(y);t:expq(x + y) and 

therefore the function expq (x + y) if it is represented by the Eulerian series in eq. (3) will not 

satisfy eq. (1), i.e. for q ;t: 1 the function expq (x) is not an additive character on the field R. 

From the product formula we can readily obtain some useful identities. In particular, 

expq(x) expq (-x) =expql (1- q)x2) , 	 (7) 

m-1 

exPq(x) =	II expq-( qnx) . (8) 
n=O 

The inverse of eXPq (x) can be found from the product formula 

-
(expq (-x)) -1 =II (1 + (1- q) xqn) , (9) 

n=O 

such that with use of eq. (5) it can be shown to satisfy the useful identity 

eXPq (x) eXPf-1(-X) =1 . 	 (10) 

The last equation indicates that more general identities can be found by investigating the 

product 

expq(A) B expc1(-A) = L L _1_ 1 An B (-Ar . (11) 
n =0 m =0 [n]! [m].-l! 

With use of [n]f-1! =q-ra(n-1)12 [n]!, this product can be written in a very convenient form in 

terms of q-commutators as follows 

-~-.~.~ ~--------------
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expq(A) B exp,-l(-A) =B+ [A, B] + ri]! [A ,[A , B]~ + rtrr[A,[A ,[A, B] ..1,] + ... 

... + [;]! [At [A, .. .[At[A, B],-l]~-l ...]q] + ... (12) 

where [At BJ.. =AB - q1& BA. We can easily verify that 

[At[A, B]~]q'" = [A,[A, B]",,]q" , (13) 

and therefore in eq. (12) the order of the q-commutators is irrelevant. This nice feature allows 

to derive simple identities. In what follows we display some particular cases: 

1) If [A,B]q =0 one can check from eq. (12) that 

expq(A) expq(B) = expq(A+B + [A,B]) . (14) 

An example of this case corresponds to the coordinates of the quantum plane by defining 

A= yand B= x, and therefore it would be useful to q-deformations of two-dimensional 

classical and quantum mechaniCs. 

2) The case [A,B]q = 1 is particularly interesting because it corresponds to the q­

commutation relation satisfied by the q-derivative D" and the coordinate x,and therefore 

expq(iD,,) and exp (ix) can be interpreted as the q-analog of the Weyl-Heisenberg operators. 

Similarly to the previous case, we also have 

eXPq(A) B exPf-l(-A) = B + [A,B] (15) 
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Since [[A,8] , B1, = 0, we fmally obtain 

(16) 

Now we use some of the previous identities to study different possible quantum 

deformations of the time evolution equation 

A(t) = e iHt A(O) e-iHt (17) 

with ii a time-independent hennitian operator. Since the complex conjugate of the q­

exponential does not correspond to its inverse; the deformation of (17 ) is far from being 

unique. Three possibilities that arise are 

a) 

b) (18) 

c) 

Clearly the three cases are indistinguishable in the q=1 !imit. The case a) can readily be 

discarded once we realize that it is not valid for the product of two operators. This problem 

does not arise in the other two cases. In particular, the operator U is unitary and the operator 

T2 is not. We see that the case c) would be applicable if, as in standard quantum mechanics, 

the corresponding Hilben space and its dual are related by the adjoint operation where in the 

case b) they should be related by an additional q --+q-l transformation with the condition that 



- - -- -
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H(q-l) =H(q). Now, to find the equation of motion we take the q-derivative of (18) such 

that with use of the infmite product representation of expq-l (x) and the q-analog of the 

Leibniz rule we obtain for the case b) that 

D, A(t) = i expq(iHt) [H ,A(O)] expq-l(- qiHt) 

D, A(t) =i [H ,A(t)] I_ (19) 
1- i(l- q) H t 

For the case c) the corresponding difference equation is easy to obtain but it is much more 

complicate to solve. Applying the definition of D t we obtain 

-D,A(t) =~-1 [-A ,-=-A ] -4 (20)
1- q ,1.+ ,1._ 

. (1 )H
where 4 =1 ± l -q t . 

2 

-2 
The simplest example to consider is, of course, a "free quantum particle" H0 = fm .Then, 

in b) the coordinate operator satisfies the following difference equation 

(21) 

Since we ~ant to find its solution on the quantum line we consider a quantum 

defonnation of the phase space 

px- q xp =-if(q) (22) 
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whereJrq) is an arbitrary function such th at f(q =1) =1. A very simple calculation gives 

DtX(t) =[p (1+q) j(q) +....L (q2 - 1) p2 x] 1 (23) 
2m q2 2m q2 1- i (1-q) tp2/2m 

which indicates that for q~l : D; x(t) ~ 0 although Dt P= O. In fact, the corresponding 

difference equation is given by 

D; £(t) = - i q (l-q) [Dt x(t)] p2 1 (24) 
2m 1- i q(1-q) tp2J2m 

which vanishes, as expected, for q=1. The solution of this equation is rather simple, 

denoting Dt x(t) =u(t) we obtain 

=flo (1- iq (1-q)Ho t) (25) 

where Uo satisfies [P,uo]" = O. We see that ubecomes a time-independent operator in the 

q=1limit. Now, the coordinate operator can be obtained by applying the well known q­

integral operator with the result 

¢It) = - (t _ . q (1- q) fj0 (2) + - (26)x, Uo '[2] xo 

For the case c) the difference equation of motion for the coordinate operator is given by 
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(27) 

with 4 = 1 + i q2(1:;:') jj t . 

If we had chosen instead of eq. (22) the usual commutations relations for pand xwe will of 

course obtain different difference equations but still leading to complex solutions. 

In this letter, we have formulated some q-deformations of time evolution in quantum 

mechanics. The two deformations we have analyzed are not equivalent. In fact, one can 

check that the operators 7'2 and U satisfy different difference equations, and therefore they 

would correspond to two different deformations of the SchrOdinger equation. Our starting 

point consisted in the replacement of exp(x) by eXPq(x) and therefore of the standard 

derivative by the q-derivative D t• Since D t is a difference operator, the q-parameter 

introduces a discretization of time, and hence the deformations discussed here could be of 

relevance to approach problems of quantization of space-time. Some fundamental aspects in 

this direction has been discussed in ref. [17]. The approach in this paper and other 

alternative methods based exclusively on the q-deformation of the commutator algebra [18] 

could be seen as different options, and therefore giving different predictions, to the q­

defonnation of a quantum mechanical system. 
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