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" ABSTRACT

In these notes I describe recent work on the application of Finite
Temperature Field Theory to the calculation of the properties of neutrinos
that propagate through a medium. This method serves as a powerful
framework to understand some of the unusual properties of the neutrinos in
& medium and also provides very efficient techniques for practical
calculations of relevant quantities, such as the neutrino index of refraction
and the electromagnetic vertex. Both of these aspects are illustrated in the
course of the lectures.

1 Introduction

A neutrino that propagates through a medium can have properties that differ from
those in the vacuum in unexpected and important ways. For example, in the Standard
Model of weak interactions, a neutrino in vacuum is guaranteed to be massless by the
lepton number symmetry of the theory and the chiral nature of the neutrino field: the only
term that is bilinear in the neutrino field and which also satisfies these two conditions, and
therefore the only one that can in the effective action, is the kinetic energy term.
Strictly speaking, this argument if we also require that the effective action be Lorentz
invariant, as it should be in the vacuum. The situation in the medium is very different.
Although the fundamental Lagrangian is tz invariant, the effective action is not. The

resence of a background medium introduces a special reference frame, namely the frame
in which its center of mass is at rest. In this case, it is possible to have a term in the
cffective action that is bilinear in the neutrino field, respects the lepton number symmetry of
the fundamental Lagrangian, and which is different from the kinetic energy term. The
result of this additional term is that the effective equation for the neutrino field in the
medivm differs from the Weyl equation in such & way that the energy-momentum relation
fora pmpafning neutrino is not the vacuum relation E = p. This can be interpreted in
terms of an index of refruction, an effective potesitial or an effective mass for the neutrino.

Apart from the effect that the background can have on the properties of a single
neutrino, it can also have great influence on the oscillations of neutrinos of one flavor to
another as the neutrinos traverse a dense medium. Therefore, the oscillation of neutrinos in
astrophysical contexts are very different from the oscillations in vacuum. For this reason,
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the problem of neutrino oscillations in matter and its implications in various astrophysical
contexts, such as the solar neutrino problem, the observations of neutrinos from the
supernova and the Early Universe, have been the subject of numerous articles and
reviews[1). The ramifications and implications of this problem have quickly become
current areas of intense research.

Most of the work on the propagation of neutrinos in a medium has been focused in
understanding the interesting and complicated phenomena contained in the evolution
wultion for neutrino oscillations in matier. These are the celebrated Mikheyev, SmimofT,

olfenstein equations{2), which take the typical form

% (o4 v . (1)

where y is a vector in the space of neutrino flavors and V is the effective potential for the
neutrinos in the medium. For example, for electron and muon neutrinos propagating
through normal matter,

v=(Gme 0 ). 1)

where Gr is the Fermi constant and n, is the electron number density.

The main focus of these notes will not be the subject of neutrino oscillations in
matter and its nprlications in the above-mentioned settings. As already mentioned, Ref.(1)
contains an excellent review of the work carried out in these directions. Our isto
expose, in a pedagogical way, the approach that we have used to understand
of neutrinos that propagate through a medium. This includes understanding the ongin of
the terms in an equation such as Eq.(1.2), and learning efficient methods to calculate them
in a variety of physical circumstances. The main ingredient in the approach that we have
used and advocate is the calculation of the neutrino effective action using finite temperature
ficld theory. In our experience, this approach has provided a convenient framework to, on
one hand understand the intriguing aspects of this subject and, on the other, to cnr? out
practical calculations. Our interest is to present the method and techniques of finite
temperature field theory in a way that makes them useful to understand the existing results
and extend the previous calculations of the properties of neutrinos in a medium,

The material contained in the next four sections is organized as follows. In
Section 2 we will present the salient features of the formalism of real-time finite
temperature field theory in the form that we have used it to calculate the properties of
neutrinos in matter. The Feynman rules of this formalism, which are now well known(3],
are somewhat complicated by the fact that they involve a duplication of the numbers of
propagators and vertices of the original Lagrangian. We will present a simple derivation of
the Feynman rules by following a straightforward generalization of the canonical
quantization procedure in quantum ficld theory. This approach, which we call the
canonical approach, provides a very intuitive understanding of the need to duplicate the
vertices and propagators of the original Lagrangian in order to formulate the Feynman
rules. In addition, since it involves familiar operator methods, the formalism is very
suitable to study the implications of the symmetries of the Lagrangian and the background
medium for the Green's function of the theory. In Section gr we will derive the relation
between the Green functions that are calculated with the Feynman rules and the
macroscopic quantities of interest; c.g. the relation between the self-energy, which in this

formalism is a 2 x 2 matrix, and the equation of motion for the neutrino field in the
medium. In Section 4 we will apply these techniques to the problem of neutrinos
propagating in a medium. Specifically, we will consider in detail the case of a chiral
neutrino of the Standard Model propagating through a background of electrons. We will
leam to calculate the terms in an equation such as Eq.(1.2), show how to rederive previous
!csntl!tis and how to extend them, and calculate some of the electromagnetic properties of the
neutrino.

2 Canonical Approach

In this section we present a s of the canonical quantization approach to the
real-time formalism of finite temperature ficld theory{4). We begin by considering in detail
the case of a scalar boson and then summarize the analogous results for fermions
afterwards. Our ultimate goal is to obtain the field equation satisfied by the effective field

$ct = (§(x)) (VA ))
;l;efe bt;nc angle brackets indicate an average over the distribution of states of the system,
en
IrZo
0=z
Here Tr stands for the trace, and Z is the partition function defined by
ZmePPut Lo 2.2)

where the (04 are the (conserved) charges that commute with the Lagrangian, the ay are the
chemical potentials that parametrize the tion of the medium, Py, is the momentum
operator and uy represents the 4-velocity of the medium, which in its rest frame is simply
the vector (1,0). As in ordinary quantum ficld theory, the field equation for the effective
field is determined from the effective action, which is constructed from the knowledge of
the Green's function. The latter are calculated by tion theory, and for this we need
to know the expression for the propagators of the free ficlds.

2.1 Free-field scalar propagators

As will be seen Iater, the following propagators enter in the Feynman rules:

i 4 x-y) = (THDY 0) @30)
i Bp 72 (x-y) = (T 09 ) @.3)
i 812 (x-y) = (9" 0)90)) 230)
i A (x-y) = ($()9°0)) .39



where T stands for time-ordered product and T for the anti-time-ordered product. The
explicit expression for the propagators in E?(z .3) are found straightforwardly by
substituting the standard plane-wave expansion of canonical field theory,

- _d’k ~ikx 4 h¥(k)eit x
90) ](2 )325("""‘ + br(k)eit)

and imitating the analogous steps of the vacuum case. The only difference is that in the
present case we must use the relations

(a(l)a*(k") = 20 2ES (k- KWAK) + 1) |

(b)) = 21 2ES (k- KNAK) + 1) ,

where f(f) is the Bose-Einstein distribution function for the particles (antiparticles),

given by
ebu-a_
fwy=—~1 (2.4b)
eftsva_ |

In Eq. (2.4) @ is the value of the combination X @4Qa for the ¢-particles. In this way,
the propagators in momentum space are found to be given by

Ar (k) = ——L——_ 2xi8 (k2 - m2)n(k-u) (2.53)
k2 -m? +ie
Ar k)= — " 2mis (k2 — mAn(ku) (2.5b)
k2 -m?2_ e
A 12lk) = — 218 (k? - mAn(k-u) +0(-k-u)) (2.5¢)
Ap (k) = - 2mi8 (k2 - m2n(k-u) +6(k-w)), (2.5d)
where
nk-u) = Ok-u)n(x) + &-k-u)n(-x) , (2.6)
with
mn:g{T, @n

and the variable x is defined as

= fleu - a 2.8)

Introducing the standard free propagator in vacuum,

Furthermore, if the
!\;ntions in Eqs. (2.5)":3‘5

Apva = (8- A0 + B(-kw))
Ar 2 =(4f - A;iﬂ + G(k-u))

Ay = —A

k2-m2+ie
the formulas in Eq.(2.5) can be written in the f(‘mn‘

A 11 = Ap + (A - AP
Ar 2 =—4F + (A - AN

~ A O
-4
where the clements of U are given by

Un=Un=1T+q
v _n+ (-ku
12 ——-—-——-*n—-*n

v _ N+ 6(ku)

L

- It is also useful to note that
Z;. k2-m? 0
0 (k- m?)

2.9)

(2.10a)
(2.10b)
(2.10c)
(2.10d)

ators Arab are collected together in a matrix Ap , then the
10) can be sumimarized in the matrix equation

@1

(2.12a)

(2.12b)

(2.12¢)

(2.13)


http:matrix.dF

2.2 Free-field fermion propagators

The free fermion propagators are defined by

iSE11(X = Yap = (TWa () yp () (2.14a)
iSF 20t~ Y)ap = (TWa (W5 (7)) (2.14b)
iSF 120~ Y)ap = = (¥p 0)Va (1)) (2.14¢c)
iSF21(x - Y)ap = (Wa (DY) (2.14d)

Substituting the free field expansion
v = | LY (a,0u )5 + bk et =)
(2n2E":

the following explicit formulas are obtained:

SEn() =k + m)|—L— + 2miGk? - mz)ﬂr’ (2.152)
k2-m2+ic
S = (k + m|—= 4 2midk? - m!)mrl (2.15b)
k2-m2+ie
Sk 1206) = (& + my2nidk? - m2ng - Ok-u)) (2.15¢)
Sk (k) = (8 + m2midk? - m2ng - O(k-u)) (2.15d)
NIF is defined by
N = 0(k-w)np(x) + O(-k-u)np(—x) , (2.16)
where
nE(x) = ;lﬁ- .17

with x defined as in Eq.(2.8). The minus sign in Eq.(2.14c) is introduced so that the usual
conventions for minus signs in diagrams involving fermion loops can be applied
uniformly, independently of which propagators are involved in the diagram. The formulas
in Eq.(2.10) and (2.11) for the scalar case have their counterpart here. In particular, if the
fermion propagators given by Fx.(2.15) are collected in 2 2 x 2 matrix, then we can write

S=ud °F 0 )up, (2.18)
0 S
where
s;‘m. 2.19)
and
Srapisty 2.20)

Ur is given by a formula similar to Eq.(2.12), with the replacement 7 = -7)r.

2.3 Feynman rules

As already mentioned, our final goal is to be able to determine the equations for the
effective field from the knowledge of the Green's functions that we calculate in field
theory. The precise relation between those two is the subject of the next section. Our
immediate purpose now is to learn how to calculate the Green's functions. For illustrative
purposes, let us begin by considering the following Green's functions in a scalar theory:

G(x1,....xN) = (T(x1)...$(xn)) @21
Following the standard procedure in vacuum, we express the exact Heisenberg fields that

. appear in Eq.(2.13) in terms of fields ¢;, that satisfy the free equations of motion. Thus

we write
$=U'a)alU()

where U (¢) is the evolution operator. Choosing a ime t satisfying  *
~T <0 dN € T,
and introducing the notation U(£,-%) = U(YU-'(=1) , the identity
Té(x1)...008) = U (AT hin(x1). . inGMU(£-D)JU(-D) 2.22)
holds. Substituting Eq.(2.22) into Eq.(2.21) yiclds »
G(x1,....x2) = (U (DT #ialt1)... 01U (£~ D) U(-1)) . .23
In the case of the vacuum the result is similar, the only difference being that the average is

with respect to the vacuum state. Formally, in the limit £ — o0, U(e0) = 1, while U(e=)i0)
must be a phase times the vacuum state again because it is stable. Therefore, in that limit

the U -1 (1) can be factored out, giving the final formula for the vacuum Green function


http:Eq.(2.21
http:Eq.(2.22
http:Eq.(2.13
http:Eq.(2.12
http:E(I.(2.15
http:Eq.(2.IO
http:Eq.(2.ft

(0T 9iulxy)...0ialen)U (=) J0)

GOxy,...x3) = (2.24)
(OU(==)0)
The perturbation expansion is obtained by expanding the formal formula
Ues) = Te‘! et 2.25)

and reducing the products of field operators through Wick's theorem, which yields the

Feynman rules. In the present case, we can still use U(—e<) ~3 1, but the U-! (1) cannot be
factored out, because it does not act on the vacuum state alone. Therefore, the final
formula for the Green function is in this case

G Xty tN) =(U~ NN TPi(x1)... 0in G U (o)) (2.26)

The perturbation expansion is obtained by expanding the formal formula for U(es), but in
this case we have to take into account the factor U-1(es), which is given by

Ut(eo) = Tc"] Friede @.27)

and expand it also. In Eq.(2.27), T indicates the anti time-ordered product.

From Eq.(2.26) it is not difficult to understand the need to introduce all the
propagators defined in Eq.(2.3) and the corresponding doubling of vertices. When U and
U-1 are expanded in Eq.(2.26), G consists of a sum of terms of the generic form

(T(AB..F)T(AB,..F)) (2.28)
where the bar over A,B.,..., is just to indicate that they are operators that appear under the

T sign in Eq.(2.26). By a slight generalization of the standard Wick theorem for
<T{(A,B,...F)> the product in Eq.(2.28) can be reduccd to a sum of terms in which all the

rators appear contracted in pairs. However, in the present case a contraction means any
of the four propagators. Following previous authors, we will refer to the vertices that
come from U and U -1 as tygc-l and type-2 vertices, respectively. Then, a propagator that
joins two vertices is one of the four given in Eq.(2.3) according to the following: if it joins
two type-1 vertices it is 4gyq ; if it joins two type-2 vertices it is Arpp ; if it joins a :{Xc-l
and a type-2 vertex, then it is 4ry7 if the particle propagates (i.c. the momentum flows)
from the type-2 to the type-1 vertex, or Apy; if the converse is true.

We know sketch the procedure 1o reduce the products such as that in Eq.(2.28),
which is a slight generalization of the standard Wick theorem, found in many textbooks{5].
Omitting the space dependence, which is not relevant for this analysis, the problem then
reduces to consider a product such as

(T(a{t)oy(th)....afi))T(Aalta) X (15)...aM1))) (2.29)

where the bar over the various quantities are only to indicate that they appear under the anti
time-ordered product. Further, we can restrict the attention to the case in which the
operators are labeled such that .

fta<lp<..<ly (2.30a)
and

L>h>..>0. (2.30b)

If this is not the case, then we re-label the operators such that these conditions hold. The
product in Eq.(2.29) then reduces to

(Celtdas(1h)...af 1) Calt) Cslth)...0f 1) @.31)

and from here on the procedure is identical to the standard one. The first operator, @, is
commuted to the right until it reaches the end, and it is then brought back to its original
place by using the cyclic property of the trace. To bring this opérator to the right we
express the product of two operators in the form

Bty — Nab@%a = Ca
where 1), is taken as +1 if the two operators are fermions, or —1 if one or both are bosons.
The quantity Cgp has the value 0, +1 or —1, which is easily obtained using the canonical
commutation relations. The product in Eq.(2.31) is then equal to
Cap{O(te)... 0D ()X (1s)...0A10)  + Tiat{ To(16)Uulla)....Of1) Calte) e 1)... A1)

The same procedure is successively applied to @, and the operator that a to its right
until it appears at the end of the product. Then, using the cyclic property of the trace,

(@5(1s)...af1P (1) b 1p).-.. O ) Xella))

= ST a2 i) .. At ts(10).. 01
= e M (1) Cs(1p)... A ) Gl te) i (1p)... L 1) (2.32)
where A, is +1 (1) if oy is a creation (annihilation) opcrator and &, is the same quantity
that appears in the argument of the exponential in Eq.(2.4a); namely, if the indices a,b,...
label momentum states,
e=fku-a

where a has the same meaning as in Eq.(2.4). The last step in Eq.(2.32) follows from the

useful relation
Z-'aZ = et


http:Eq.(2.32
http:Eq.(2.4a
http:Eq.(2.31
http:Eq.(2.29
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http:Eq.(2.28
http:Eq.(2.26
http:Eq.(2.26
http:Eq.(2.26
http:Eq.(2.21

Putting everything together, we arrive at the formula

(E,E,,...E,a,a,,...a,) = (E;&;,...E,a,ab...a,) + ..+ (E;E,,...E',a.a,,...a,)

+ (0ap...00; .00 + ... + (OqOp... OO, p...0) (2.33)

with the understanding that, when fermions are involved, the usual bookkeeping of signs
must be made to bring the two contracted operators together. In terms of the commutator
(or anti-commutator for fermions) C,p defined above,
p1, B is defined by
p' ﬁ»} = _CI.Z_
1+ neka

where 11 is +1 for fermions and —1 for bosons. On the other hand, by explicit evaluation
the following result is easily verified:

BiB: = (BB

By using Eq.(2.33) recursively, we arrive at a formula for (@aQp...af040p...0p) in which
aI{ the operators are contracted in alu)ossiblc ways. Further, the resulting formula also
applies directly to the original product of Eq.(2.29) for arbitrary orderings of the
time-arguments, provided that the contractions are reinterpreted to mean the following:

o, = (Ta,on) (2.34a)
ooy, = (Taga) (2.34b)
aza, = (a.0p) (2.34c)

2.4 Exact propagalors

The knowledge of the exact propaﬁators is important because they determine the
quadratic part of the effective action, which in tum determines the cffective ficld equation
for the particle in the background. The precise connection between the propagators and the
effective action will be clucidated in the next section. Here we will learn how to calculate
the exact propagators. We consider first the scalar field.

The exact propagators are defined as follows

iNE ntx - y) = (TP ) (2.352)
A 2(x - y) = (ToP () (2.35b)
iAE e - y) = (9 (NP0) (2.35¢)

contraction of any two operators -

10

iF 1(x-3) = (4 ) @.354)
Using the transformation in Eq.(2.22), we can express these propagators in the form
IXF 10— y) = (U @) To om0 () 2.36a)
i8F 22x - y) = (Tl IV N U2 ) 2.36b)
i85 126 - y) = (F 99U 19) (T#a)U)) @369
iF 00— ) = TtV 1)) (4 0)UE)) (2.36d)

In deriving these equations we have used identities such as (omitting the space dependence)

«n )0.('2) = "(—f*TOh('l)U "(f.—f)lTO{:n('z)U(ﬂ—f)b(—f) (2.37)

THee (@) = U ATt iU (e 0luo) @37)

in the limit T — e. From Eqs.(2.36) it follows that, if we collect the propagators in the
matrix & then - . _

A'E(k) = AR(R) + AF(RYR(D)A’F(K) (2.38)

where Ar is the matrix of free propagators, given in Eq.(2.20), and ¥ is the matrix of
sclf-energies calculated from the diagrams represented in Fig. 1.

From the definitions in Eq.(2.36), the following identities are easily derived:

(iaF u@) = isF 22 (2.393)
Aru+A&rn=4rn+drn (2.39b)
Arnuk) =8 12(k) | : (2.39c)

where x is defined in Eq.(2.8). These relations imply that only one component of AF is
independent. A convenient parametrization that automatically satisfies Eqs.(2.39) is

~ & 0
Ar= . . 2.40
F ‘{ 0 -A'F}J @40

where U is the matrix given in Eq.(2.12). Eqs.(2.39) in turn imply that only one
component of the scif-energy matrix is independent. Defining x by writing

Ape— 1 (2.41)

k2-m2_x


http:Eqs.(2.39
http:Eq.(2.12
http:Eqs.(2.39
http:Eq.(2.36
http:Eq.(2.20
http:Eqs.{2.36
http:Eq.(2.22
http:Eq.(2.29
http:Eq.(2.33

a b

Fig. 1. Scif-cnergy diagram for a scalar.

and comparing with Eq.(2.38) it follows that

x=U-} x 0 -1 .
x U(o _x‘).o Q42
or, explicitly,
m=x+(x-x)M (2.43a)
A =-x"+(x-x)M (2.43b)
m2 = -(n- 20 + o-kw) (2.43¢c)

In addition, it is useful to observe that
- -
@) =k~ ml)( 2 0) -= @2.44)

which follows cither from Eq.(2.38) or by inverting (2.40){6]. Eqgs.(2.43) are very uscful
because they show explicitly how to obtain all the components of x from one of them. For
example, if 7, is calculated, then from Eq.(2.43a)

Re x=Re (2.45a)
Iy enhdioek
Imn 1+2n mnh(zx)e(k u)lm xq , (2.45b)

so that all the components of & arc expressed in terms of &y, . In practice, instead of
using Eq.(2.45b), it is simpler to usc(7]

= - it imaeku) (2.450)

An+ okw) 200

In Eqs.(2.36b) and (2.36¢), e(k-10) = O(k-10) -~ O(—k-u) .

The formalism for fenmions is similar.  The exact propagators are defined by

. V a b

Fig.2 Scif-encrgy diagram for fesmions.

ISF11(x = Y)ap = {TWa (X)yp (7)) (2.46a)
iSF n(x—y),,;§;r“+a @) (2.46b)
iSF12(t - Yap =- (Vs () va(x) (2.46¢)

iSF 21X - Vap = (WalX)¥p () (2.46d)

(:i:.he free and exact propagators are assembled in the matrices S and 5:;- , respectively,
_ S'r=S5r+SFESF , (2.47)
where L is the matrix of self-energies calculated from the diagrams represented in Fig. 2.

Similarly to the scalar case, the exact propagators are not independent, but satisfy the
following relations that can be derived from their definition:

Spy1(B) + Sppp(k) = S (B + Spyo(B) (2.483)
Spaak) = ~Spy,(B) (2.48b)
Spay (k) = -€xS g o () (2.48¢)

These relations imply that the propagator can be parameirized in the form

- Sp 0
‘Fal — r, (2.49)
0 -5
where _
sp=P's ]ty 2.50)

and U is defined as in Eq.(2.20). If we write

§p=—»>bt—, @sn
tE-m-Z

13
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then the self-energy matrix can be expressed in the form

vl 0 3} 7.
or, explicitly,
In=2X- (5 —;J)ﬂr (2.52a)
In=-E-(2-Zhe (2.52b)
Zin= (£-Z)ne - o-kw) (2.520)
Zu = (z-Zne - okw) (2.52d)

where the bar over £ has the same meaning as in Eq.(2.50). From Eqs.(2.52), it follows
for example,
Re Z=Re Xy (2.538)

P! _ Eku)Zy,
2ilne - o-kw)  2nr0)

ImX = v (2.53b)

where the symbols Re and Im here should be interpreted as the dispersive and absorptive
art, respectively. For future reference we note that, in analogy with Eq.(2.44), the
inverse fermion propagator can be expressed as

~-1 ~
Sp =(k- m‘ (‘) _01 ).. z 2.54)

In summary, although the propagators and the self-energy are 2 x 2 matrices in this
formalism, there is only one independent component. In practice we only have to calculate
m for example, and then we can determine the other components using Eqs.(2.45) and
(2.43). The same occurs for fermions. However, there is still the question as to what is
the relation between the propagators and self-energy matrices that we have introduced, with
the effective action or, equivalently, the effective field equation for the particle. This is the
subject to which we now tumn our atiention.

14

3 Effective Action

As before, we begin by considering the case of a scalar ficld and then gencralize the
results to include he case of fermion fields.

1. Scalar field
In the presence of a source, /, the classical field is defined as

¥ = ($(x)
Using the transformation in Eq.(2.22) we have the two equivalent formulas

9ct(x) = (U (U =) pin)) (3.12)
$ai00) = (T{U; ()0 =)) (3.1b)

where the subscript j on U(ee) indicates that it is the evolution operator in the presence of
the external source. In order to be able to obtain these as functional derivatives, we define

™l = Zjy jg) w (U} ) Uj()) = (Te- U5 + G0 + Hellpeds + oo +hicl) 3.2
Corresponding to each source, we introduce a classical field by

¢ = (33a)
7
b= (3.3b)
. . 7]
which, using
Aji=h)=1,
are such that
-2=h)=tlh=))=ba 3.4)
In similar fashion, we define _
¢ =W 3.5)
5.

For ja # j1, $a is not the Hermitean conjugate of ¢4, but

15


http:Eq.{2.22
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$ali2=j1) = $a G2 = 1) (.6
Introducing I" by (here we omit indices as well as summation and integration symbols)
ro.dl-w-re-19. 3
where the currents are taken to be functionals of the fields, then
or_ ;. eC. 3. (3.8)
&a 5.
If we now take the physical limit j2 = ji =J , then using Eq.(3.6) it follows that
(ﬁﬂ) = )
8balpy = - 2= &
(15_@ =" . (3.9b)
)t = - 0=

Eqs.(3.9) are the effective equations of motion for the classical field. What remains to be
done is to find the expression for I'in terms of the Green functions calculated through the
Feynman diagrams. Below we will do precisely this, but only for the contribution to I
coming from the propagators. This contribution gives risc to the lincar part of the
equations of motion and, in general, is the one that determines how the particle propagates
through the medium.

Before we go into the details we 'give the results: either of Eqs.(3.9) imply that the

classical field, in momentum space, satisfies the equation
k2 -m2— xegocthy =-i"h) (3.10)
where
Aoy = nO(k-u) + x°0(-k-u) @a.1n

L]
9 satisfies the conjugate equation,

To derive thesc results we proceed as follows. We assume that the theory is such
thatif fa =0, then ¢a =0 . Egs.(3.8) then imply

(\55) _ =0 (155 =0,
&ales-o 50ale.0 =0

which means that there is no symmetry-breaking. I then has the expansion
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r= [ @0 OrPmem + ... (3.12)

where the dots indicate higher order terms in the ficlds, which we will not consider. From
this point on we omit the argument & and the integration symbols. Taking a derivative
with respect to #« on both sides of the following equation

¢, =
© e

6‘*“(&1 -6’1‘)
8adic 5o 505

we arrive at

Evaluating this for ¢, = 0 which, as we have assumed, implics that j, = 0, we obtain

8¢=(§3¥:)” (-r$) @.13)

Tu:: second derivative of W is related to the pri?pgguors. In fact, from Eq.(3.2) it follows

Ezll ) i = _(ﬁ;"_ﬂL
(8‘&: Jj =0 '
where 13 is the third isospin matrix. Substityting this in Eq.(3.13) and inverting, then
= o4 -%)1s (3.14)

Cof R
(\;h:;: w:d have used Eq.(2.44). X is the self-energy matrix given in Eqs.(2.42) and
43), a

A7 = (K2-md)1y

The equations of motion follow from Eqs.(3.9) and (3.14). For example, neglecting the
higher order terms,

O =Yg+ e .
o

Eq.(3.9b) then becomes
(dla— r‘{zbk(l =_j * »


http:Eq,(3.9b
http:Eqs.(2.42
http:Eq.(2.44
http:Eq.(3.13

which, using Egs.(3.14) and (2.43), reduces to Eq.(3.10).

There is an important observation we would like to make. We would not get the
correct equations of motion by taking the limit —¢; = ¢; = ¢ in Eq.(3.12) and then take a
derivative with respect to ¢4, The cffective action I"gives the equations of motion for the
ficlds ¢, #2, and it is in those equations that we can take the physical limit —¢;=¢; = &1 .

2. Fermion fieid

Following steps analogous to those leading to Eq.(3.13) we obtain in this case

H fs;' rfs)o]-'ﬁ)) =8 3.15)

so that
= o575 5
Substituting Eq.(2.54)
= (k- m)ty - Tty (.16)
The field equations
(r{? - rg)h" —] )

then become

(£ - m - L)k =-jch) 317
where _

Zey= ZO(k-u) + XO(—k-u) (3.18)

4 Chiral Neutrinos in a medium

In this section we will apply the techniques developed in the previous sections to
study the propagation of a massless, chiral neutrino of the Standard Model, through a
medium. The presentation is based on our work on the subject[8,9), which is in turn based
on an idea due to Weldon{10]. In addition, we will discuss some aspects of the
electromagnetic interactions of the neutrinos in a background of electrons[11]. In all these
cited references, the attention was restricted to the real part of the self-energy. Although the
explicit calculations that we reproduce here are also restricted to the real pant, the general
discussion that we present in Scctions 4.1 and 4.2 is not.
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4.1 Self-energy

he Chirality implies that the self-energy of a left-handed neutrino of momentum £ is of
omm

Zer= RML .1
where L,R = %(l + )s) and M is a combination of gamma matrices. In vacuum, the most

general form of Zis
Zew=alL

where a is some function of k2. In this case, although the residue of the propagator is
modified, the pole remains at 2 = 0, which implies that the particle remains massless.

The situation in the medium is different. The effects of the medium will introduce

in Z an additional dependence on the velocity four-vector w! of the background. The
self-energy is still given by Eq.(4.1), but the general form of X is now

x‘”'s (ﬂt + b‘y: (4.2)
where a and b are functions of the Lorentz-invariant variables
o=ku,K=(0?-2)"? @4.3)
We will indicate explicitly this dependence when needed.
Some general properties of a and b follow from the discrete symmetries CP and
CPT , when they apply. To discuss these properties let us recall that the generating
function that i tes the effects of the medium is given by Eq.(2.2). A background is

incorpora
said to be CP symmetric if the chemical potentials of charges that are CP odd are zero. If,
in addition, the Lagrangian (and hence H) is CP invariant, then Z satisfics

(CPY'Z(u)CP) = Z(Aw) 4.9)

where we have indicated explicitly the dependence of Z on uy, and A =diag(1,-1,-1,-1).
Similar considerations hold for CPT with the distinction that the Lagrangian is always
assumed to be CPT invariant.

If the Lagrangian is CP invariant and the background is CP symmetric (so that
Eq.(4.4) holds) then the self-energy must satisfy the following relation (see Appendix):

—CrP
Zey (k) = Lp(k) (4.5)
where ):,C,‘; is obtained from X, by making the substitutions
(%as Ouve Tu?Ss B) 2 = (Wte v WS B)

(1. Ouvis) = (1. Ouvs)


http:subject(8.91
http:Eq.(2.54
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http:Eq.(3.12
http:Eq.(3.1O

Thus, CP invariance of the Lagrangian and the background implies that
a’'(-oK) = a(w.X) (4.62)
b (-wK) = -b(wK) (4.6b)

On the other hand, if the background is CPT symmetric (we are assuming that the
Lagrangian is CPT invariant) then the self-energy satisfies

5 Zeg(-k)ps = Leplk) (4.7)
which implies the same relations in Eq.(4.6) for the coefficients a and . We will show

below that whenever Eq.(4,6) holds, the neutrino and antineutrino have the same

dispersion relation. Therefore, if the bacnl;frwnd is CPT symmetric then, independently of
whether or not the Lagrangian is CP invariant, the neutrino and antineutrino have the same
dispersion relation. Equivalently, the ncutrino and antineutrino have different dispersion
:’edlations only if the background has non-zero chemical potentials of charges that are CPT

4.2 Dispersion relation and wave function
The cffective field equation,
(- Zgww =0
can be written in the form

Yyi(k)=0 (4.8)
where

V” = (l - a)k“ - b“y (4'9)

Eq.(4.8) has solutions only if @ and K are such that V2 =0. Thus, the energy-momentum
relation is given by the solution of the equation

(1 -a)o-b=H1-a)X 4.10)

which is in general complex. We denote by ax (w; ) the solution with the positive
(negative) sign. It is uscful to define

o =-wy @.11)

which, in analogy with the situation in the vacuum, we identify as the dispersion relation
for the antiparticle.

Notice that @y is given by the solution of

(1 at agx) hi + b-amky” =[1 - a-ank) K

or equivalently

(1 -a*ox .ok + b°(-ox.K) =[1 - a* ax ) K 4.12)

Therefore, in general,
ox # ox

s0 that the neutrino and antineutrino have different dispersion relations. However, if the
Lagrangian is CP conserving and the background is CP symmetric, then @x = wx, since
Eq.(4.6) implics that &« and ®x satisfy the same equation. In this case the neutrino and
antineutrino have the same energy-momentum relation and the same lifetime. As remarked
below Eq.(4.6) the same conclusion holds under the less restrictive case that the
background is CPT symmetric, independently of whether or not the Lagrangian and the
background are CP symmetric.

In order to determine the wave function, we choose to work in the rest frame of the
medium, which is defined by setting

ut=(1,0) (4.13)

The wave function in an arbitrary frame can then be obtained by a Lorentz transformation.
We consider first the wave function for the neutrino, which we denote by ug (k). Putting
k = (wx, k) in Eq.(4.8) and remembering that @y satisfies Eq.(4.10) (with the + sign),
the equation for the spinor becomes

‘uL - o N (4. l4)

where "”z("ljﬂ) @.15)

lsiauation (4.14) is of the same form as the equation for a massless spinor in vacuum. Its
ution can be given explicitly once a particular representation of the gamma matrices is
chosen. However, for most purposes, the knowledge of the projection operator is
sufficient. Apart froma factor, this projection operator is proportional to L4,
so that we write

gy .ex~l;»*_ (4.16)

where Ny is a normalization constant that is determined following the same procedure as in
the case of the vacuum. Firstly, the imaginary part of the self-cnergy is ignored. Then the
ficld equation can be obtained from the effective Lagrangian

Loy =y R - Zglvr(h)
=y ()Y (k) @17
The classical theory defined by Eq.(4.17) is now quantized, so that ., is regarded as a

quantum field for the neutrino in the medium. In analogy with the case of the vacuum, the
field has the plane wave expansion
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= k K)uy (K)e-it-x J_b‘k ik-x 4.18
Vi) ] gﬂ—P{g;a( yug(K)e f&} (”m(k)e ) (4.18)

where o
k*=(ax. k) , B =(ay, k) 4.19)
We denote by 10) the new vacuum state and by 1k) m;ﬁne—neuu'iho state obtained as
Wea'tw)
We adopt the normalization of the one-neutrino state to beg, -}; :
"
so that the anticommutation relations of the creation and annihilation operators is fixed to be

(k) = (2n)32ak6"’(i -x)

[a®), a* &), = (25P20x6 K - &)

Therefore, for example,

(Oly (k) = g (K)e-ik-x

The normalization of the spinor is then determined by imposing on the field the canonical
anticommutation relations implied by the Lagrangian in. Eq.(4.17) or, equivalently, by
requiring that the one-neutrino contribution to the propagator Sy defined by

OTy o0y = | L& e-te- sy |,
(2x)

coincides with the singular term of the inverse kinetic energy operator

LYR (4.20)

v?
in the limit kg — . The one-ncutrino contribution tothe propagator is given by

Se(k)y particle = m!gfm

- LA _ 421
Wilko — o) @20

where Eq.(4.16) has been used in the second line. On the other hand, remembering that
(1 a¥ -bA},, _, o =(1-a)Kh

we can take the limit in Eq.(4.20) and comparing with (4.21) we obtain
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Nk =(%,) , “.22)
where o=~
f=((1-alw-K)-b 4.23)

Incidentally, notice that the equation for ax is equivalent to f{ax) = 0 while, in terms of 7
defined below, the equation for @y is {-ax) = 0.
For the antincutrinos, the spinor vy (k) that appears in Eq.(4.18) is the solution to
Eq.(4.8) for
k=(-o,k)=-k

Using Eq.(4.12), the equation for v (k) is then

fv (k) =0
In analogy with Eq.(4.16) we write
vy = Ot @.24)
Nx
and following the same steps that led to Eq.(4.22) we obtain
o o )
Nx la R 4.25)
where
Fe(1-afo+K)-b (4.26)

Equations (4.16) and (4.24) give the projection operators that must be used for neutrinos
and antineutrinos that appear as external particles in a physical process.

This completes the summary of the fonnaiism that we have used to study the
properties of neutrinos in & medium. The rest of this section is devoted to the application of
the formalism to several specific calculations.

4.3 Index of refraction in matter

As our first example, we consider a neutrino plmgating through a background of
clectrons. The diagrams that enter in the calculation of the self-energy are shown in Fig. 3.
Diagram (a) contributes only to the electron neutrino. Diagram (b) gives an identical
contribution to all neutrino species and therefore it can be ignored in the analysis of
neutrino oscillations in matter. Diagram (c) contributes only if there are neutrinos in the
background, as it is the case in, for example, the early universe.

We assume that the temperature is such that there is no appreciable number of W's
and Z's in the background. Thus, their propagators remain the same as in the vacuum.
The diagrams give, in addition to the temperature-dependent part, the standard vacuum
contribution to the wave function renormalization which, to the order that we are
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Fig. 3 Diagrams for the ncutrino sclf-cnergy in a background of electrons.
calculating, can be factored out and has no effect on the backgrou ndent terms. Itis

not difficult to deduce that for temperatures and neutrino energles small compared to the W
and Z masses, the 1-2 component of the self-energy is to the number density
of electrons evaluated at energies of the order of the W and Z masses, which is negligible.
Therefore, we restrict ourselves to the calculation of the m:elrn of the self-energy. In this
case, according to Eq.(2.53) we need to calculate only the part of the 1-1 clement.

We consider first Diagram (a). Its contribution to the background-dependent part of
the self-encrgy is then

. 4 »

where §'r is the temperature-dependent part of the 1-1 element of the electron propagator,
which is given by

"F(p) = (p + mRaidp? - m2np(p-u)

Terms of order (m/my)?, which in the Feynman-t Hooft gauge arise from the exchange of
unphysical Higgs scalars, have been neglected. To leading order in the inverse W mass,
we replace in the W propagator

(p ~ kP - miy > —miy

Then, using the identity ¥P¥: = -2, we obtain

mf | @)

To do the integral, notice that it can depend only on the vector u. Therefore, it must be of
the form

z,‘,",) = ﬂ_&ﬂiﬁ[ fip_ﬁw;t - mz)ﬂr‘ﬁ'“)

ut
where

4
! :’ 'I.,I’M I”"ﬁ‘ﬂz - m”l}p(ﬂ'!‘)

(2np

25

We now cvaluate this integral in the rest frame of the medium, where p-u = pg. Then,
I dpodlp? - mUnepo) = Ufp) - Ap)

where f(ip) and fip) are the momentum distributions of electrons and positrons
respectively, given by

ﬂp)z..._.._l_..___ 'ﬁp)z_l_______

ePE@)-a 4 § eBEP)+ay |
Thus, we oblain
}:.‘}'}ui-;—(f‘—;ﬂu . @“.2n
where
ne=2 ] (‘;"’ fip) (4.282)

d:’p =
A=2 . 4.28b
e ] (—?21 () ( )

give the number densities of electrons and positrons.

In order to calculate the contribution from Diagram (b), we write the piece of the
Lagrangian that describes the interaction of the Z with fermions in the form

Lz=-g22] Y  FudA+Bry+ Vmw,}

€LY, quarks
where
gz=—%—,
2cosby
A=h-20sin? 0w ,
B=-I3
Therefore, for the electron,

A,:“z-l+ 25in? By .
=1

The contribution to the self-energy from Diagram (b) is


http:Eq.(2.53

is® = cigprn| B S Cyr]isoimda. + Bow)
(27f -m}

re(”);‘gl"e 4D At m? )
1= (zﬂ)‘t’dp m2ne(p-u)

= gz&(”e ~ AL
amé, (4.29)

As already mentioned, Diagram (c) is relevant only if there are neutrinos in the background.
In that case its contribution can be obtained from Eq.(4.27) by making obvious
substitutions.

For the electron neutrino the self-energy is given by the sum of Eqs.(4.27) and
(4.29), while for the other species it is given by Eq.(4.29) alone. In terms of the
coefficients a and b introduced in Eq.(4.2)

a =0 (for all species),

b=8241+ Afne 7o) (for vy ,
4mﬁ,

b= —gz—A,(n, ~7,) (for v, vy) , (4.30)
4m&'

The dispersion relations are simply
w=Ktb (4.31)

with the + (-) sign holding for the neutrino (antineutrino). In the context of neutrino
oscillations in matter, the term proportional to A, gives a common phase in the solution to
the evolution equations, and it is permissible to discard it. If this is done, and we introduce
an index of refraction by

Eq.(4.31) yields, for the electron ncutrino,

nzt b=y Y26, 7). (4.32)

() w

which reproduces the well-known resultsf 12}

This calculation also shows that, to leading order in the inverse W mass, the wave
function renormalization factor Ng | given by Eq.(4.22), is unity. Equation (4.31) also
illustrates that in a CPT-asymmetric background the dispersion relations for the antincutrino
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and antineutrino are different. On the other hand, if the chemical potentials are zero, then
n. =T, and the dispersion relations are the same. Finally it should be noticed that
Fiq.(4.30) holds for a relativistic or non-relativistic, and a degenerate or non-degenerate
electron gas.

4.4 Electromagnetic properties

The effects of the medium can have great influence on the electromagnetic
properties of neutrinos. For example, in the vacuum, the electric- and magnetic- dipole
operators are odd under CPT. Therefore, the dipole moments of a Dirac neutrino are
opposite to those of its antiparticle while the dipole moments of a Majorana neutrino vanish
because this particle is its own antiparticle[13]. In a medium the situation can be drastically
different{14]. In general, the effect of the medium gives rise to CPT asymmetries in the
effective electromagnetic interactions of the neutrinos. These asymmetries manifest
themselves as new terms in the effective action which are identical for a particle and its
antiparticle, and therefore can be non-zero even for a Majorana neutrino. The conditions
under which this can happen were analyzed in Ref.{14]. Apart from qualitative differences
such as the one just mentioned, there can be important quantitative differences as well. For
example, consider the radiative neutrino decay, which has been studied extensively in the
context of various astrophysical and cosmological lems. It is well known that in the
vacuum the rate is suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism.
However, a medium that contains electrons but not muons or taons is not
flavor-symmetric. Therefore, in such a medium the background-dependent part of this
nur:plimde is not GIM-suppressed. As a result, the decay rate could be much larger than in

vacuum.

In this section we present a summary of the calculation of the
background-dependent part of the vy vertex for the case in which the medium consists of
a gas of clectrons[15]. As usual, the electron gas is assumed to be embedded in a uniform
positive-ion background. However, since the background-dependent terms turn out to be
proportional to the inverse of the electron mass in the classical and non-relativistic limit, the
effect of the ions is negligible in most circumstances.

The off-shell vertex function is defined in such a way that

(VWEONWR) = Tk M)

The diagrams that enter in the calculation are shown in Hf' 4. We assume as before that
the temperature is such that there are no W or Z bosons in the background. Therefore,
only the electron propagator has a background-dependent term. The calculation of the
background-dependent part of Iy, which we denote by I’y , is simplified by making the
following observations. Since the ime‘g)lls involved are cut-off by the electron-positron
distributions, the dia marked as (W') gives a contribution which is suppressed by an
extra power of 1/mw? relative to the other two dia, . Therefore, to leading order in the
inverse W mass, only the diagrams marked as (W) and (Z) need to be calculated. In the 't
Hooft-Feynman gauge, the diagrams in which the W's are replaced by the unphysical
Higgs fields are also suppressed by extra powers of 1/mw? and therefore do not contribute
to Iy, to leading order in 1/mw?. In addition, this also implies that the leading terms (in
1/mw?2) that arise from the diagrams marked (W) and (Z) are gauge invariant. This
contrasts with the situation in the vacuum, where the leading term cancels by the GIM
mechanism and the next term receives contributions from every diagram.
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Fig. 4 Diagrams for the ncutrino-ncutrino pholon vertex.

With these preliminaries, our task is reduced to the calculation of the following
quantities:

=% f ox YoLiSk(p - qm.:wm;ﬁ——)g——i (4.33a)

iy = q;”f" T ] L THiSH - SO + Be)]  (433b)

Notice that the coupling of the electron neutrino to photons is given by the sum of these
two terms, while only the second one contributes to the other flavors of neutrinos. In view
of what was argued above, we retain only the leading term in powers of 1/mw2.
Therefore, we will neglect the momentum dependence of the W and Z propagators.

We will calculate only the real part of the amplitude; thus, the electron propagator
to be used is the 1-1 clement. When it is substituted in Eq. (4.33), several terms are
produced. The terms that are independent of the electron and positron distributions
contribute only to the standard vacuum part and we drop them. The rest of the terms
contain either onc or two factors of the distribution functions. However, those involving
two factors of the distribution functions contribute only to the imaginary part of the
amplitude, and we also drop them. Therefore, we retain only those terms involving one
factor containing the distribution functions. In addition, the integrals are interpreted as their
principal-value part.

The expression in Eq. (4.33a) can be rewritten using the Fierz-type identity
YIAYL = -THAYLW L (4.34)

which is valid for any 4 x 4 matrix (sce Appendix B). We can then write both expressions
in Eq. (4.33) in the form

R S (4.35)

jtv

where
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T = —g-j (23)’“{(’ — &+ mpplp + miydA, + B

[6[@ aF - milo-gu] , dp? - m2)rlp-u)] 436
pt-m (p-qP-m? |
and 7, v is given by an expression that is obtained from this by making the following
mplwemems
2,8 4 1B -4 437

mi amf’ 2

We henceforth concentrate on the evaluation of fﬁz) only. The results for f;(.w) can be
recovered at any stage by using the substitutions given in Eq. (4.37).

Making the change of variable p — p + ¢ in the first integral of Eq. (4.36) and
carrying out the traces, we then obtain

1@ __d A v+ Pyt Gov) - B q | @)
(21)‘21'-'( o i{ q+2pq -

-BYf —ﬁ&mﬂ"p‘{————l—-—— +@- —q)” . (4.38)
q*+2p-q
where
pr=(Ep) , E=Vp2+m? .

The remainder of the calculation can be conveniently organized by making use of the
following observations. Electromagnetic gauge invariance implies

QFTyy =
From Eq. (4.38) it is easily verified that both T( % and v scparatcly satisfy this equation.

However, from Eq. (4.38) we also sce that both of thcse tensors have the additional
property that they are symmetric under the simultaneous interchange

He v, g4
Therefore, TH#Y also satisfies

qu‘w=0 )
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Moreover, from Eq. (4.36) or (4.38) we can see that with the approximation of keeping
only the leading terms in 1/mw?2, Tyy does not depend on & and &’ separately, but is a
function only of q. The most general form of Tyy that is consistent with all these
propertics is

Tuv=TRyv + TLva +TpPpuv (4.39)
where
R;:v = fpv— Qﬂv ’
_ Wlly
uv .‘.‘,2 .
Pu=de ayp .
nv =g nvasl (4.40)
We have defined
. Qv
Buv= v~
uv = 8uv ?
and

Uy = Zpwu¥
Further, the cocfficients Ty, Ty, Tp, are functions of the variables

2=qu,

o=Va’-¢2, . | “.41)
the latter of which also appears in the definition of Py in Eq. (4.40).

The tensors Ry, Quv, Puv. have the useful property that when one of them is
contracted with the others the result is zero, while

R"vRuv =2,
Q“"va: 1,
P”v”uv =-2. (4.42)

The form factors T74_p can thus be obtained by projecting as follows:

S | - Hy v
71' = iRuv‘r"v = %[T"” - ME‘;—T‘N y

g . gV
11 = Q™ = WHIT,,, |
u

-1
=P, Th
To=gFwl™. 4.43)

Applying this to the expression for T, given in Eq. (4.38), we obtain

(D _2085Ad, B]
T! -—Z_IA- ,
T m3 w?

70 _4esiAe p
L mj w’

T’(’Z) = ‘4¢828¢QC ,

o 4.44)
where
[
d’p 2m?-2p-q ]
A= +f]|/———+@ - 9|,
J (2=2E qt+2pq
oo [ (o2’ + 200en - pa, o "’*"}
] axP2E 9+ 2pq |

f 3
=| 22y i("—'u --q
C= - —1 R
(2x2E u? lqz +2pq @ )]

(4.45)

|

The expressions for T,‘-I’, can be obtained from Eq. (4.44) by making the substitutions
indicated in Eq. (4.37). ’

The integrals in Eq. (4.45) must be interpreted as their principal value, as
mentioned before. The convenience of expressing the form factors in this form lies in the
fact that A, B, and C are scalars, so that the integrations can be performed in any reference
frame, in particular in the rest frame of the medium. In an arbitrary frame the distribution
functions are expressed in the form

a1 .1 4.46)
s efpu-ay | s efpura g (

If we denote the components of p# in the rest frame of the medium by

pt = (T, P},
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then the expressions for fand f become simply

=—1  f=__1 4.47
eﬂﬂ-“+|len*¢+l “an

In this fashion it is straightforward to carry out the integrals for A, B, C. This has
been done in Ref. (15) in considerable detail. In addition, Ref. (15) contains several
applications of these calculations, such as as a very simple rederivation of the known
formulas for the plasmon decay rate into ncutrinos. Among other things, those examples
serve to show the way to calculate other, similar decay processes in a medium. One
particularly interesting case is the neutrino radiative decay, to which we now tumn our
atiention.

4.5 Neutrino radiative decay

In this section we calculate the rate for the radiative decay of a heavier ncutrino to a
lighter onef 16]:
vk - V) + Ko

We begin the calculation by assuming that the dispersion relations of the particles are not
significantly affected by the medium, so that we can use the relations vali<r in the vacuum.
In order to be self-consistent, we should then take the wave-function renormalization
factors associated with the external lines equal to unity. In effect these assumptions imply
that we consider only the transverse polarization states of the photon. In addition, we
assume that the mass of the final neutnino vanishes, or at least that it is so small compared
to the mass of the decaying neutrino, that it can be neglected.

The matrix element for the process can be written as

iM = (k) u(k)e*(q) ,

where u(k) denotes the Dirac spinor with momentum & and e denotes the polarization
vector of the photon. We have used the primes on M and I" to indicate that we will
consider their background-dependent part only. Following the notation of Eq. (4.35) we
can write

Fa=UMU,,TopL
where U is the lepton mixing matrix. As already mentioned, we assume that the

background contains electrons but not muons or taons, nor any W bosons for that matter.
As discussed in the previous section, to the lowest order in //my? the most general form of

Tap is
Tyv = TiRyuy + TeQuv + TpPpy

The quantities 77 p are given in terms of the integrals A, B, C defined in Eq. (4.45). In
the present casc we are interested in the value of these functions for
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qt=0; Q=0
Since
a&-ﬂi
@’

it is easy to sec from Eq. (4.45) that C = 0 when g2 = 0. The expression for B in
Eq. (4.45) shows that, while it is not zero when ¢2 = 0, it has & finite value. Since B
appears in the formulas for Trsp in the combination B/, it does not contribute in
Eq. (4.44). Therefore, the non-zero form factor in Xthe present case is

s am
T %J iz—f),{ﬂp) +fp)l (4.48)

where
pr=(Ep) withE=+pem? ,
and f, f are given in Eq. (4.46) and (4.47). Using

Y8m§ =G,
we thus obtain s =Gl

TP 2 ZeGngm, (4.49)
in the case of a non-relativistic background of electrons, and

TP = eGeTYVT (4.50)

in the extremely relativistic case, when the temperature is much greater than the clectron
mass, so that positrons are also present. The square of the matrix element can be evaluated
easily using the polarization sum

Y edqRIegqd) =~ Rop
A = transverse modes

Thus,
[MP=m] u:.lz,,~lrrf{(—"-‘f£-)-“-~£;} . 4.51)

where m is the mass of the decaying neutrino. The differential decay rate in any frame is
given by

: . p A% dq
ar = Lons'k-r-gmf2 99
2ko (2R 2 (21°2q0

If the background contains photons we should put a factor of

K}
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on the right-hand side of this formula to take into account the stimulated emission of
hotons. Since this factor is always larger than unity, this will increase the rate further.
imilarly, if the background contains neutrinos, we should also include the Pauli-blocking
factor on the right-hand side. In the presence of both, neutrinos and photons, the inverse
process must also be taken into account. In our estimates we have neglected all these
effects. ‘ '

The quantity of interest is the decay rate in the rest frame of the medium, where
up = (1,0). The integration can be carried out in terms of the momentum variables of that
frame, in which we denote by v the three-velocity of the decaying neutrino, or in terms of
the variables in the rest frame of the decaying neutrino, in which case we have to boost the
velocity 4-vector of the medium. The result is of the integration is

r=Jusu \TPFw) 4.52)
where the function F is given by
Fv)=(1 - v’)'”{éhﬂ%}- 3] . 4.53)

The crucial difference between Eq. (4.52) and the formula for the decay rate in the
vacuum| 17] is that the latter contains the GIM suppression factor

)y f'—'%v.‘,v.v-r

l=eptM

while Eq. (4.52) is free from that suppression. This is just a consequence of the fact that
the GIM suppression mechanism is not operative in ordinary matter. A more detailed
comparison of the two rates is given in Ref. (16).

Conclusions

In these lectures | presented the approach that we have used to understand some of
the properties of particles as they propagate through a background medium, with focus on
the case of neutrinos. The application of Finite Temperature Field to this class of
problem lPl'm'ides a well defined sctting to study general questions and gives efficient
methods for carrying out practical calculations.

I wish to thank Arnulfo Zepeda, José Luis Lucio and the organizers of the school
for inviting me to give these lectures, and my friends Palash Pal and Juan Carlos D'Olivo
for the collaborations that have led to most of the material that 1 have presented here.

Appendix A

For illustrative s let us consider the consequences of CP invariance for the
‘sgl‘t;i-ekmrgy of a scalar field. Denoting the CP operator by 6, the transformation of a scalar
ie

07'¢(x)0= ¢’ (A "'x)

where A =diag(l, -1, -1, —-1). We assume that the chemical potentials are zero, so that
Eq. (4.4) holds. Then by taking the trace of the identity
24" 0)90) = 07 Z(AWKAY)$ (A0
we obtain
Ap(x -y, u) = Ay(Ay - Ax; Au),

where we have made explicit the dependence on the vector uy, and we have omitted the
prime and the subscript F in the exact propagator. Since

A(x - y) = Ap(x - NG (x - yyu)+ dax -y - 04},
it follows that
. An(x -y, u) = Aj(Ay - Ax; Au),

and a similar relation also holds for Ay;. Therefore, CP invariance implies that the
propagator matrix satisfies

Ag(x — y; u) = Ap(Ay — Ax; Au)

or, in momentum space,

Ag(k) = Apa(-k)

The inverse propagator must satisfy a similar relation and, from Eq. (2.44), also the
scif-energy matrix. Thus, '

Kap(—k) = Xpa(k)
which in turn implies
x(-k) =x(k)

From the relation between x and xy given in Eq. (3.11) we finally obtain that, if CP
invariance holds, then

k) =X (R)

Similar considerations for the fermion case lead to Eq. (4.5).
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Appendix B

erne Let v and ¥ be two spinors, and let M be any 4 x 4 matrix. Consider the matrix
element .

A s yinlMyPLy

If we denote by e; a set of basis spinors, then

A=Y (varalMeley'Lw)

iml4
= - Y (vardlwilelrLMe)
i=l4
In the second line we have used the standard Fierz identity

(vanLokxrLv))={wrlwilzrLe) .
with
¢=Me;. x=e

Now A can be written in the form

A= -(vavelwi) Y, Tr(ee]y"LM)

i=14
= —(varalwi)Tr (y"LM)

Since this is valid for any two spinors ¥, 3, we have the matrix relation given in
Eq. (4.34).
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