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ABSTRACT 

In these notes I describe recent work on the application of Finite 
Temperature Field Theory to the calculation of the propenies of neutrinos 
that propB.ate throulh a medium. Thi' method serves as a powerful 
frameWCllk 10 undersIand some 01 the unusual propenies of the neutrinos in 
a medium and also providel very efficient techniques for practical 
calculations 01 mevanl quantities, such as the neuttino Index of refraction 
and the eIecIromapedc vertex. Both of these aspectS are illustrated in the 
eowse 01 the Iecbfts. 

1 Introduction 

A neullino that propagates through a medium can have propenies that differ from 
those in the vacuum In unexpected and imlQlant wayt. For example, in the Standard 
Model of weat inlalCtionS. a neutrino in vlICuum is luaranteed to be massless by the 
lepton number symmetry of the theory and the chiral nature of the neutrino field: the only 
tenD that is biBnear in the neUlrino field and which also satisftes these two conditions, .... 
therefore the only OIIC dial can .ppear • the effective action. is the kinetic energy term. 
Sttictly spealdna. this.......,.ent holds if We also ~ that the effective action be Lorentz 
invariant, u It shoo.. be in the vacuum. The situation in the medium is very different. 
Althoup the fuadamenlll La........an is Lorentz invariant. the effective action is not. The 
presence of a blck:pound inedium introcl'ucel a special reference frame, namel), the frame 
1ft which ill center"01_ II at test. In this case. it il possible to have a tenn in the 
effective acdcxI that Is bUineII' in the neutrino raelcl, JapeCts the lepton number symmetry of 
the fundamental La....lian. and which il different from the kinetic enerlY tam. The 
result 01 this alditlonal tenD Is that die effective equation for the neuttino field in the 
medium diffen from the We),' equadoa in such a way that the enerlY-momentum relation 
for a propalatinl neullino is not the vacuum telatlon E - p. This can be interpreted in 
tenns of an index 01 refraction, III effecdve potential or an effecdve mass for the neutrino. 

Aput from the effect that the background can have on the propenies of a single 
neutrino. it can also have great influence on the oscillations of neutrinos of one flavor 10 
another as the neulrinos ttavcrse a dense medium. 1berefore, the oscillation of neuttinos in 
astrophysical contexts a~ very different frorri the oscillations in vacuum. For this reason, 
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the problem of neutrino oscillations in matter and its implications in various aSlrOphysical 
contexts. such as the solar neumno problem. the observations of neutrinos from the 
supernova and the Early Universe, have been the subject of numerous articles and 
reviews( I ). The ramifications and implications of this problem have quickly become 
cu~nt areas of intense research. 

Most of the work on the propagation of neutrinos in a medium has been focused in 
understanding the interesting and complicated phenomena contained in the evolution 
equation for neutrino oscillations in mailer. These are the celebrated Mikheyev. Srnimoff. 
Wolfenstein equations(2), which take the typical form 

-i d" = (Ho + V)" , (1.1)
dt 

where "is a vector in the space of neutrino flavors and V is the effective potential for the 
neutrinos in the medium. For example, for electron and muon neutrinos propalating 
through normal matter. 

o (1.2)v =( f1c;'" o ). 
where GF is the Fennl constant and "e is the electron number density. 

The main focus of these notes will not be the subject of neutrino oscillations in 
matter and its applications in the above-mentioned settings. As already mentioned. Ref.(I) 
contains an excellent review of the work carried out in these directions. Our purpose is to 
expose. in a peelagoaical way. the approach that we have used to understand the ~ 
of neutrinos that ~agate through a medium. This includes understanding the ongin of 
the tenns in an equation such as Eq.(1.2). and learninl efficient methods to calculate them 
in a variety of physical circumstances. The main Ingredient in the Ipproach that we hive 
used and advocate is the calculation of the neutrino elf'ecdve .:tion usin, finite temperature 
field theOry. In our experience, this approach has provided I convenient framewort to. on 
one-hand understand the intriguing aspects of this subject and, on the other. to cany out 
practical calculations. Our interest is to present the method and techniques of finite 
temperature field theory in a way that makes them useful to understand the existing results 
and extend the previous calculations of the properties of neutrinos in a medium. 

The material contained in the next four sections is organized as follows. In 
Section 2 we will present the salient features or the formalism of real-time finite 
temperature field theory in the form that we have used it to calculate the properdes of 
neutrinos in matter. The Feynman rules of this formalism. which are now well known[31. 
are somewhat complicated by the fact that they involve a duplication of the numbers of 
propagators and vertice! of the original Lagranglln. We will present a simple derivation of 
the Feynman rule! by following a straightforward generalization of the canonical 
quantization procedure in quantum field theory. This approach, which we call the 
canonical approach, provides a very intuitive understanding of the need 10 duplicate the 
vertices and propagators of the original lagrangian in order to formulate the Feynman 
rules. In addition. since it involves familiar operator methods, the formalism is very 
liuitable to study the implications of the symmetries of the Larangian and the b.::kground 
medium for the Green's function of the theory. In Section we will derive the relation 

fonnaJism is a 2 x 2 matrix. and the equation of motion for the neutrino field in the 
medium. In Section 4 we will apply these techniques to the P.ro,blem of neutrinos 
propagating In a medium. SpecifICally. we will consider in detail the case of a chiral 
neutrino of the Standard Model propa,ating throulh a background of electrons. We will 
learn to calculate the leons in an equation such u Eq.(1.2). show how to rederive previous 
results and how to extend them, and calculate some of the eleclrOmagnelic properties of the 
neutrino. 

2 Canonical Approach 

In this section we present a surmwy of the canonical quantization approach to the 
lUI-lime formalism d. fmlte temperature field 1heory(4J. We begin by considering in detail 
the case of a scalar boson and then summarize the analogous results for fermions 
afterwuds. Om- ultimate goal is to obCain the field equation satisfied by the effective field 

~= (<<r» (2.1) 

whete the angle brackets indicate an average over the distribution of stales of the system.
elven by 

(O).fcZQ.
TrZ 

Here Tr stands for the crace. and Z is the partition function defmed by 

z·_~-fJP·· +I~ (2.2)• 
where the QA are the (cOnserved) clutrJes that commute with the Lagrangian. the a.t are the 
chemical potentials that parametrize -the composition of the medium. PII is the momentum 
operator and ~ represents the 4-veioci" of die medium. which in its rest frame is si."ly 
the Vector (I.D). As in ordinary quantum field theory. the field equation for the effective 
field is detennined from die effective action. which Is constructed from the knowledge of 
the (]reen's function. 1be laner an: calculated by perturbation theory. and for this we need 
to know the exprasion for the propagators of the tree fields. 

2. I Free-neld lealar. propaplon 

As will be seen Iller. the followinc propaptors enter in the Feynman rules: 
•i dF 11(.1 -1) • (T~). (y» 

. . (2.3a) 

iii,22 (x - y) - (T«r~ (Y» (2.3b) 
•

iii, 12 (.I - y) • (. ()')f(.r» (2.3c) 
•i .1'21 (.r - y) .. (. (.I). ()'» (2.3d) 

between the Green functions that are calculated with the Feynman rules and the 
macroscopic quantities of interest; e.g. the relation between the self-energy. which in this 
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where T stands for time-ordered product and T for the anti-time-ordercd product. The 
eltplicit eltpression for the propagators in Eq.(2.3) are found strailhtforwardly by 
substituting the standard plane-wave eltpansion o(canonical field theory. 

f(X) ... f~(a(k)e-ib + b*(k)e'1:'6)
(2Jl')]2E 

and imitating the analogous steps of the vacuum case. The only difference is that in the 
present case we must use the relations 

(a(k)a*(k'» ... (21C~2E6 (k - k')(ltk). + I) • 

(h(k)b*(k'» ... (21C~2E6 (k-k~k) + .) • 

where ( (/) is the Bose-Einstein distribution function for the panicles (antiparticles). 
given by 

j{k) ... ----1 (2.4a) 
_ efJl·.-a - • 
j{k) ... ----1 (2.4b)

efJl·.... a_ I 

In Eq. (2.4) a is the value of the combination I: a.tQA for the ;-particles. In this way, 
the propagators in momentum space are found to be given by 

.dF 11(1) = I . - 2Jri6(i2 - m2),,(i·u) (2.Sa)
12-m2 +;e 

-I 2
LtF 22(1) = 2Jri6(i - m2),,(i·u) (2.Sb)

12 -m2-ie 

LtF 12(1) = - 2mO(12 - m2~"(i.u) +9(-i.u») (2.Sc) 

AF 21(1) = - 2mo (1 2- m2~,,(I.u) +9(i'u»), (2.Sd) 

where 

'I<l·u) O(l'll)n(x) + 8(-I·u)n(-x) • (2.6) 

with 
It(X) =-L (2.7)

eX - I ' 

and the variahlc x is defined as 

4 

Introducinl the standard flee propaptor in vacuum. 

l1,(i) =- ---1 
i 2-m2+ie 

the formulu in Eq.(2..5) can be written in the form 

• 


dF 11 =- d,: + (d,: - .dF)" 

d,: II =- -d,: + (d,: - d,: )" 

d,: 12 III (dF- ~~IJ + 9(-i..,») 
dF21 =- (.dF- ~~" + 6(i..,») 

Funhermore, if the propagators d,:,.. are coll~ted together in a matrix.dF 
relations in Eqs.(2.S) mel (2.10) can be summarized in the mabix equation 

AF = U( dF O. t. 
o -dF r 

where the elements of U are given by 

UII =Ull =fI+Jj 

. It is also useful to ROle thal 

;;1 =( i 2 -m2 
o ')

o _(i 2-m2) 

S 

(2.9) 

(2. lOa) 


(2.tOb) 


(2.IOc) 


(2.IOd) 


• then the 

(2.11) 

(2.12a) 

(2.12b) 

(2.12c) 

(2.13) 

\:::/Jk'll-a (2.8) 

http:matrix.dF
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2. 2 Free-neld fermion propagators 

The free fermion propagators are defined by 

iSF n(x 	 Y)aP!IE (r"a (x)"p (Y» (2.14a) 

iSF 22(X - Y)al'. (f"a(x)"I'(Y» 	 (2.14b) 

iSF I2(X - Y)aIf. (Vp(Y)¥'a(x» 	 (2.144:) 

iSF 21(X 	 Y)aIf!!! ("a (x)Vp(Y» (2.14<1) 

Substituting the free field expansion 

tp(X) ~f	~I, (as(k)u,(l)t-ii'% + b;(k)v,(l')eil'%) 
(2Jr~2E s 

the following explicit fonnulas are obtained: 

SF l1(k) =(I +m)( t + 2m~k2 - m2)"F) (2. ISa) 
A:2_m2+1£ 

SF 22(A:).~ (I +m)I -I + 2m~k2 m 2)"FI (2.ISb) 
A:2-m2+i£ 

SF 12(A:) == (I + m)2m~12 - m2~'lF - 6(-I.u») (2.ISc) 

SF 21(k) =(I + m)2m~k2 - m2~"F - 6(k.u») (2.Ud) 

"F is defined by 

'IF == 8(k·u)nF(x) + 6(-k·u)nF(-x) • (2.16) 

where 

(2.17)nF(X) =~~ + 

wilh x defined as in Eq.(2.ft). The minus sign in Eq.(2.14c) is introduced so that the usual 
conventions for minus signs in diagram! involving fermion loops can be applied 
unifonnly. independently or which propagators are involved in the diagram. The formulas 
In Eq.(2.IO) and (2.11) for the senl:lr case have their counterpart here. In particular. if the 
fennion propagalors given hy E(I.(2.15) are collected in a 2 x 2 matrix. then we can write 

- 1 0 fSF·U 	 s, F (2.18)
O.-:sF • 

where 
SF- f+m 

k2 _m2 +1£ 
, (2.19) 

and 
S F.ftsJf (2.20) 

UF is liven by a formula similar to Eq.(2.12), with the replacement" -t -"F. 

2 • 3 Fe,nman rules 

As already mentioned, our final pi 'is to be able to detennine the equations for the 
effective field from the knowledle of the Oreen's functions that we calculate in field 
theory. The precise relation between those two is the subject of the next section. Our 
immediate purpose now is to learn how to calculate the Oreen's functions. For illustrative 
purposes, let as begin by considerinlthe foUowinl Oreen's functions in a scalar theory: 

G(X., ... .r:N) = (r~Xl)...~XN» 	 (2.21) 

Followinlthe standard procedure in vacuum, we express the exact Heisenberl fields that 
. appear in Eq.(2.13) in terms of fields f;,. that satisfy the free equations of motion. Thus 
we write 

• =- U-I(, ).".U (,) • 

where U (,) is the evolution operator. OIoosinl a time f satisfyinl • 

-f < ' .. 'l,....'N < f. , 

and introducinl the nowion U(f,-1) =- U('I)U-l(_1) , die identity 

T~Xl)•••I(xN) - U-l(1')(r~xa)...•;,.(~N)U(f,-1)JU(-1) (2.22) 

holds. Substitutinl Eq.(2.22) into Eq.(2.21) yields 

G(X ..... .r:2) - (U-I(1')(r.a.<Xl).....(XN)U(f.-f)JU(-I) . (2.23) 

In the case of the vacuum the result is similar. the only difference being that the average is 
with respect to the vacuum state. Formally, in the limit f -+ -. U(-) -t I. while U(-)IO) 
must be a phase times the vacuum state alain because it is stable. Therefore, in that limit 
the U -I (I) can be factored out. givinllhe final formula for lhe vacuum Oreen function 

http:Eq.(2.21
http:Eq.(2.22
http:Eq.(2.13
http:Eq.(2.12
http:E(I.(2.15
http:Eq.(2.IO
http:Eq.(2.ft


G(O)(X ..... ..I2):: (0 'T#i,.(XI) ... #u.(XN)V(-)!to) (2.24) 
(OV(-)IO) 

The penurbation expansion is obtained by expandinlthe rormal rormula 

V(-) = T.,j I'xL",.(1l) , (2.2~) 

and reducing the products of field operators through Wick's Iheorem, which yields the 
Feynman rules. In the present case, we can still use V(--) -+ I, but the V-I (I) cannot be 
ractored out, because it does nOi act on the vacuum state alone. 1bererore, the final 
formula for the Green function is in this case 

G(X..·....IN) ::(V-I(-~T;;'(XI)...#i.(XN)V(-)b (2.26) 

The penurbation expansion is obtained by expandinl the rormal rormula ror V(-), but in 
this case we have to take into account the factor y-I(_). which i. Jiven by 

U-I(_) =fe-'f ;1tLJ.1l) (2.21) 

and expand it also. In Eq.(2.21). T indicates the anti time-ordeml product 

From Eq.(2.26) it is not difficult to understand the need to introduce an the 
propagators defined in Eq.(2.3) and the correspondin, doublin, of venices. When U and 
U-I are expanded in Eq.(2.26). G consists of a sum or terms or the ,eneric form 

(f(AIi...F)T(A,B••.•F» (2.28) 

where the bar over A,B,...• is just to indicate that they are operators that appear under the 
f sign in Eq.(2.26). By a slight generalization of the standard Wick theorem for 

<T(A.B•...FJ> the product in Eq.(2.28) can be reduced to a sum of tenns in which all the 
operators appear conuacted in pairs. However. in the present case a contraction means any 
of the four propagators. Following previous authors. we will refer to the vertices that 
come from U and U -I as type-I and type-2 vertices, respectively. Then, a propa,ator that 
joins two vertices is one of the four given in Eq.(2.3) accordin, to the followin,: If it joins 
two type-I vertices it is .1Flt; if it joins two type-2 venices it is An2; if it joins a type-I 
and II type-2 vertex. then it is .1FI2 if the panicle propagates (i.e. the momentum flows) 
from the type-2 to the type-I vertex. or .1FlI if the converse is true. 

We know sketch the procedure to reduce the products such as that in Eq.(2.28), 
which is a slight generali7.3tion of the standant Wick theorem. found in many textbooks( ~J. 
Omilling the space dependence. which is not relevant for this analysis. the problem then 
reduces to consider a product such as 

(f(~,(id)ab(i,,) ...alif»T(~('d)ab('b)...al'p» • (2.29) 

8 9 

where the bar over the various quantities are only to indicate that they appear under the and 
time-onleml product. Further. we can reslrict the attention to the case in which the 
opcI'IlOIS lie labeled IUCII that 

;. < I" < ... < it (2.JOa) 
and 

1,..>1,,> ... >1, . (2.30b) 

If this is not the cue, then we re-Iabel the operators such that these conditions hold. 1be 
product in Eq.(2.29) then reduces to 

(~i.>(i6(;.)...aj(~a.<I.)a,,(I.)•.•fl.1{~) • (2.31) 

and from here on the procedure is identical to the Slandard one. 1be fust operator. a. is 
commuted to the ript until it taches the end, IRd it 's then brou,ht back to its original 
place by using the cyclic property of the trace. To brin, this optrator to the ri,ht we 
express the product ~ two operalOn in the form 

a.a;, - IJ..a"a. • C. 

where ". is taken as +1 if the two operators are fermions, or -I if one or both are bosons. 
1be qUlRtity C..bu the value 0, +1 or -I, which is easily obtained usin, the canonical 
commutation "dons. 1be product in Eq.(2.31) Ii then equal to 

C_(~(;c) .•.aj(~a.<'.)""(I.)...fl.1{lp) + IJ_(a,,(;,,)~;.)...aj(~)a.(I.)""(I,,)...fl.1{'/» 

The same procedure is successivdy applied to a:. and the operator that appears to its right 
until it appears at the end of the product. 1ben, using the cyclic propeny of the trace, 

(a.(i.)...aj(~a.<I.)a,,(,.)•..fl.1{~)~i.» 

-L: -- -- -­
• TrZTra.<I,..)Za,,(I.) •.. fl.1{IPa.(I.)a,,(I,,) ... af,.I/) 

- •.\F.(a..ci.>a.<;.)...aj(~a.(I.)a,,(,.)...af,.lp) (2.32) 

where A. is +1 (-I) if a:. is a creation (annihilation) operator and f1r is the same quantity 
that appears in the arpment of the exponential in Eq.(2.4a); namely, if the indices a,b, ... 
label momentum Slates. 

£ =/Jl." - a 

where a has the same meaning as in Eq.(2.4). 1be last step in Eq.(2.32) follows from the 
useful relation 

Z-I~=e~ 

http:Eq.(2.32
http:Eq.(2.4a
http:Eq.(2.31
http:Eq.(2.29
http:Eq.(2.28
http:Eq.(2.28
http:Eq.(2.26
http:Eq.(2.26
http:Eq.(2.26
http:Eq.(2.21
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Putting everything together. we arrive at the formula 

(~ab... ajfltlab ...a,) =: «(J.;a;... ajfltlab ...a,) + ... + «(J.;ab... a;a.ab ...a,) 

+ (£r.;ab" .(ija~ab...a,) + ... + (£r.;ab' ..ap.ab...a;> (2.33) 

with the understanding that. when fermions are involved, the usual bookkeeping of signs 
must be made to bring the two contracted operators together. In tenos of the commutator 
(or anti-commutator for fermions) CtJb defined above, the contraction of any two operators 
"1.th is defined by 

/J;/Ji=:~ 
I + 'leA.£I 

where '1 is +I for fermions and -I for bosons. On the other hand, by explicit evaluation 
the following result is easily verified: 

/J;/Ji =: (PlfJz) 

Dr u5ing Eq.(2.33) recursively, we arrive at a formula for (~a....aJCtlab...ap in which 
al the operators are contracted in all possible ways. Funher, the resultin. formula also 
applies directly to the original product of Eq.(2.29) for arbitrary orderings of the 
time-arguments. provided that the contractions are reinterpreted to mean the following: 

a.;a; II (Ta.,a,,) (2.34a) 

~a; II (Ta.,a,,) (2.34b) 

Cl.;a; ~ (atlab) . (2.34c) 

2.4 Exact propagators 

I 
The knowledge of the exact propagators is important because they determine the 

quadratic part of the effective action. which in tum determines the effective field equation 
for the panicle in the background. The precise connection between the propagators and the 
effective action will be elucidated in Ihe next section. Here we will learn how to calculate 
the exact propagators. We consider firSI the scalar field. 

The exact propagalors are defined as follows 

iA'F lI(.t - y) = (T~x)~·(Y» (2.35a) 

iA'r 22(.( -- y) = (f4J(x)~ •(Y» (2.J5b) 

, . 
iA r 12( t - y) =(~ (Y)4J(x» (2.J5c) 

10 

•I.d'F 21(.r - y) • (~). (y» (2.35d) 

Using the transformation in Eq.(2.22), we can express these propagators jn the fonn 

111'F 11(.r - y) = (U-I(")(T",,(x).~(y)U("»)) (2.36a) 

I.d'FU(.r - y):: <ff~(.r)~(y)U-I(oo»)U(oo» (2. 36b) 

I.d'F lix - y) -= (f(•• :(y)U-I(oo»)(Tf;,.(x)U(oo») (2.36c) 

I.d'F21(X- y) - df.".(x)U-'(oo»)r(f;:(Y)U(oo)h (2.36d) 


In deriving these equations we have used identities such as (omitting the space dependence) 


~'I). ·('2) - U-I(-f~f.u.('I)U-I(f,-f)lT.':('2)U(f,-f»)u(-'I) (2.37a) 


f~'I).•('ll == U-l(-~ffi,.('I).~('2)U-l(f,-f»)u('I) , (2.37b) 


in the limit f 4 From Eqs.{2.36) it follows that, if we collect the propagators in the
00. 

matrix~, then 

A'At) =AAt) +AAt)i(i)A' At) (2.38) 

where AF is the matrix of free propa.aton, given in Eq.(2.20), and i is the matrix of 
self-energies calculated from the diagrams represented in Fig. I. 

From the defmidons in Eq.(2.36), the following identities are easily derived: 

(I.d'F 1 1 (i)r • I.d'F 22(i) (2.39a) 


Ii'Fit + Ii'F 22 c Ii'F 12 + Ii'F 21 (2.39b) 


Ii'F 21(i) == t.lli'F l2(t) , (2.39c) 


where x is defined in Eq.(2.8). These relations imply that only one component of A'F is 
independenl A convenient parametrimtion that automadcally satisfies Eqs.(2.39) is 

-; ~ Ii', 0 ~ AF= • (2.40)o -11'F 

where U is the matrix given in Eq.(2.12). Eqs.(2.39) in turn imply that only one 
component of the self-energy matrix is independent. Defining If by writing 

A' IE! • (2.41) 
£J F t 2 _ m2 -1f 

http:Eqs.(2.39
http:Eq.(2.12
http:Eqs.(2.39
http:Eq.(2.36
http:Eq.(2.20
http:Eqs.{2.36
http:Eq.(2.22
http:Eq.(2.29
http:Eq.(2.33
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~ -iltab= - - ~ _~ - ~ - .t 

Fig. I. Sclf-cnergy diagram for a scalar. 

and comparing with Eq.(2.38) it follows that 

i =U-t( If 0 \.-1 (2.42) 
o -1ft r 

or, explicitly. 

Itt1 = IC + (IC - IC·)" (2.43a) 

1122 =-IC· + (IC-If·)" (2.43b) 

1112 =-(It - IC·~11 + 8(-t,"») (2.43c) 

In addition, it is usdullO observe Ihat 

~-I 

(£1;) =(k 2 _ m2~ I 0) _ • (2.44)
10-1 

which follows either from Eq.(2.38) or by inverting (2.40)[6]. Eqs.(2.43) are very useful 
because Ihey show explicitly how 10 obtain aillhe components of i from one of them. For 
example, if 1111 is calculaled. lhen from Eq.(2.43a) 

Re IC = Re ICn (2.45a) 

1m 11 = 1m 1111 = tanh(l..r)£(t·u)lm ICU • (2.45b)
1+2', 2 

so Ihal all the components of i arc expressed in lenns of ICI t. In practice. instead of 
using E(I.(2.4Sb), it is simpler to uscl1l 

1m 11 = ____(1!1L-. _ iICI2E(t·U) (2.4Se)
~" + O(-k.u») - 211(..1) • 

In ElIS,(2.J6h) :md (2.:l(lC), 1'(l,ll) O(l,ll) 9(-k·u). 

Ollie fOflllalism fOf fCrlllions is simil:lf. The exact propagators are defined by 

l-Ix.­ ~ 
fia.l SCIf-eneqy ..... ror ramions. 

ISF U(x - 1)«11 8 (T".(x)~_(y» (2.46a) 

ISF22(X - 1)«11- ~.(.t)~_(y» (2.46b) 

ISF '2(.1' - "«II--(~_(y)".(x» (2.46c) 
" r:.;' 

ISF:n(X - 1).11 8 ("a<x)~_(y» (2.46d) 

If the free and exact prop.aton are assembled in the mabices SF and S'F , respectively, 
Ihen 

S'F == SF +SFES'F • (2.41) 

where E is the matrix of self-energies calculated from the diagrams represented in Fig. 2. 
Similarly to the scalar case, the exact propa,ators are not independent, but satisfy the 
folloMn. rdations that can be derived from theD'Mania: 

s;, ,(l) +S;·u(t) == S~I(t) +S;12(l) (2.48a) 

S;21(t) == -S;II(t) (2.48b) 

S~I(t) --eJCS;12(l) (2.48c) 

These relations imply that the propasator can be parametrized in the form 

-- 1S~ 0 ~ (2.49)S'F-U -; F. 
o -SF 

where 

S;.ftsjf (2.50) 

and UF is defined as in 13q.(2.20). If we write 

S'F=-.-l (2.SI) 
I-m-E' 
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then the self-energy matrix can be expressed in the fonn 

-IE= Ui'( : -E" F, 
o " 

or, explicitly. 

XII =X - (E -E)",. (2.S2a) 

1:22 =-E-(E-E)"F (2.S2b) 

En = (X -ij'lF - 6(-i.u») (2.S2c) 

X21 = (X-XX'lF- 6(i.u») • (2.S2d) 

where the bnr over X has the same rneaninl as in Eq.(2.SO). From Eqs.(2.S2), it follows 
for example. 

Re X= Re I'll (2.S3a) 

1m I' = X,2 _ E(i·u)EI2 (2.S3b)
2i ('IF - 6(-i.u») 2lIlAX) , 

where the symbols Re and 1m here should be interpreted as the dispersive and absorptive 
part. respectively. For fmure reference we note that. in analolY with Eq.(2.44), the 
anverse fennion propagator can be exprc5sed IS 

""";'-1 ....~ I 0)SF =(1 -m - I' (2.S4)
0-1 

In 5ummary. although the propagators and the self-enerlY are 2 x 2 matrices in this 
formali5m. there is only one independent l."Oft1ponent. In practice we only have to calculate 
Kli for example. and then we can detennine the other eomponents usinl Eqs.(2.4S) and 
(2.43). The s.1me occurs for fermions. However. there is 'still the question as to what is 
the relation between the propalat0f5 and self-enerlY matrices that we have inb'oduced. with 
the effective action or, equivalently, the effective field equation for the particle. Thi5 is the 
subject to which we now tllm our attention. 

3 Effective Action 

As before, we bepn by c:onsiderinl the case of. scalar field IJId then leneraJiu the 
resutts to include he case of fennion fie1cls. 

I • Se,,"', fl.'" 

In the presence of a source.i , the classicil field is defined as 


'd·(~» 

Usinl the transformation in Eq.{2.22) we have the two equivalent fonnulu 

'.h) • (Uj'(->7{U,,<-).u.<x)b (3.la) 

Id(x) =- (~Ujl(").;"(X»)ui<-» (3.tb) 

where the subscripti on U(-) indicates that it is the evolution operator in the presence of 
the external source. In order to be able to obtain these u funcdonal derivatives, we define 

.'1I{J•.;d I: 2r.iJJ1]. (Uj.,I<_)Uj.(-» = (fe-(.s" +(,1" +H.c.)},..(s.. +(;.', + lI.c.)~ (3.2) 

Conespondinl to each source, we introduce a classical field by 

(3.la)ft·"~I 
~ (3.3b)... 


~1 
whieh, usinl 

.2[j.=11] =1 , 

are such that 

-~(h =il) =;'(11 -it)-Id (3.4) 

In similar fa.,hion, we define 

;.=~ (3.S)
If; 

For i2 ~jl, ;. is nOi the Hermitean conjupte of~, but 
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;o(h =it) =~fh"Jd (3.6) 

Inttoducing r by (here we omit indices as well as summation and integratioo symbols) 

r[•.•J= W - J.• - t .•. (3.7) 

where the currents are taken to be functionals of the ftelds.then 

K=-J. ; 4=-j; (3.8) 
l4. ~ 

If we now take the physicollimit h =it =J, then using Eq.(3.6) it follows that 

=_j, (3.9a)(K) 
~.... - ..... 

(3.9b)(4-) =-t . 
~ It .. -. 

Eqs.(3.9) are the effective equations of motion for the classical field. What remains to be 
done is to find the expression for rin tenns of the Green functions caleulated through the 
Feynman diagrams. Below we will do preciselr this. but only for the conttibution to r 
coming from the propagators. This contribution gives rise to the linear part of the 
equations of motion and, in general, is lhe one that detennines how the particle propagates 
through the medium. 

Before we go into the details we give the results: either of Eqs.(3.9) imply that the 
classical field, in momentum space. satisfaes the equation 

(k 2 - m2 - IC«~cl.k) = -tel) . (3.10) 

where 
IC'fI = ICO(k·u) + IC·O(-k·u) (3.11) 

;d• satisfies the conjug:lIe equation. 

To derive these results we proceed as follows. We assume that the theory is such 
that if i. =() •then '0 =0 . Eqs.O.H) lhen imply 

(DC) =() ; (4-) ,= 0 
li;(J ,,; ~ () 0;" ,.;=0 

which mean.. thai Ihere IS no symmclry-hreaking. r then has the expansion 

- 2)r- . (tIl)fJl)T!" (l)f.(k) + ... • (3.12)J 
where the docs indicate higher order terms in the faelds. which we wiD DOl consider. From 
this point on we omit the arpment 1 and the integration symbols. Taking a derivative 
with respect to.. on both sides or the following equation 

..,=4lf.
Ii. · 

we arrive II 

6.b Zl (.flr..Y --82r)
IjA;~~'" 

Evaluating this for .. • 0 which. u we have assumed. implies that I. = O. we obtain 

(3.13)6.b - (.flr..,'1. H, (-r'J»)
1(4; ~,'.o 

The second derivative of W is related to ~~gators. In fact. from Eq.(3.2) it follows
that ,I,,, ~.' 

. '.;' 

~l L (~~'~~F~3l.c •("At: ~.o 

where f3 is the third isospin mattix. Substin,ti.-, this in Eq.(3.13) and inverting, then 

- 'I ­r:O = ritt;., or" )f3 (3.14) 

where we have used Eq.(2.44). ~ is the'self..energy matrix given in Eqs.(2.42) and 
(2.43), ~nd 

- I 2 ~ =(1 -m2)~3 

The equations of motion follow from Eqs.(3.9) and (3.14). For example. neglecting the 
higher order terms. 

~,.. rl2) ",,(2) 
...IlL. II f. + I 12 #2 .
8ft­

Eq,(3.9b) then becomes 

(r1~ - r1~};~, =-j. • 
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which. using Eqs.(3. 14) and (2.43). reduces to Eq.(3.1O). 

There is an imponant observation we would like to make. We would not get the 
correct equations of motion by taking the limit -fl ... It == ~. in Eq.(3.12) and then take a 
derivative with respect to .d. The effective action rgives the equations of motion for the 
fields ... fl. and it is in Ihose equations that we can take the physical limit -fl=It =fe•. 

2. F~rmlo" Jidd 

Following steps analogous to those leading to Eq.(3.13) we obtain in this case 

[~fJrFfJt..,J-~,;») = 8..c (3. IS) 

so that 

--I 
r2) = fJS'F f) 

Substituting Eq.(2.54) 

r(2) = (I - m)fJ - f)Ef) (3.16) 

The field equations 

(rl~) - n~»)"=-J • 

then become 
(I - m - Iq]}~1) =-j(l) • (3. 11) 

where 

Erl/ = L8(1·u) + E8(-1·u) (3. 18) 

Chiral Neutrinos in a medium 

In this section we will apply the techniques developed in the previous sections to 
study the propagation of a massless. chiral neutrino of the Standard Model. through a 
medium. The presentation is based on our work on the subject(8.91. which is in turn based 
on an idea due to Weldon(IOI. In addition. we will discuss some aspects of the 
electromagnetic interactions of the neutrinos in a background of electrons[ I I J. In all these 
cited references. the attention was restricted to the real part of the self-energy. Although the 
explicit calculations Ihat we reproduce here are also restricted to the real pan. the general 
discussion that we presenl in Seclions 4.1 and 4.2 is not. 

4.1 Setr-enerlY 

Otirality implies that the seif-energy of a left-handed neubino of momentum 1 is of 
the form 

~,,= RML (4. I) 

where L,R =¥I ±~) and M is a combination of gamma matrices. In vacuum. the most 

general form of E is 

E.tr-aiL 

where a is some function of l2. In this case. although the r~idue of the propagator is 
modified. the pole remains at 12 - O. which implies that the particle remains massless. 

The situation in the medium is different The effects of the medium will introduce 
in E an addidonal dependence on the velocity four-vector uP of the background. The 
self-energy is still given by Eq.(4.1). but the general form of Lis now 

1:.,,- (at +b')L 

where a and b are functions of the Lorentz-invariant variables 

(4.2) 

0) :11K l·u • K. (m2 _l2)112 (4.3) 

We will indicate explicitly this dependence when needed. 

Some general properties of a and b follow from the discrete symmetries CP and 
CPT. when they apply. To discuss these properties let us recall that the generating 
function that incorporates the effects of the medium is given by Eq.(2.2). A background is 
said to be CP symmebic if the chemical potendals ofchllJes that are CP odd are zero. If. 
in addition. the Lagrangian (and hence HI is CP invariant. then Z satisfies 

(CPt1Z(uXCP) - Z(A -Iu) (4.4) 

where we have indicated explicitly the dependence ofZ on "Il. and A =diag(I.-I.-I.-I). 
Similar considerations hold for CPT with the'distinction that the Lagrangian is always 
assumed to be CPT invariant. 

If the Lagrangian is CP invariant and the background is CP symmebic (so that 
Eq.(4.4) holds) then the self-energy must satisfy the following relation (see Appendix): 

-Cl' 

E«rr (-1) 2: ~1) (4.5) 


where E~C:: is obtained from E~n by making the substitutions 

(Yp. C1pv• Yp~. ~)-+-(Yp. aI'''' Yp~.~) 

(I. C1pv~) -+ (I. apv~) 
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Thus. CP invariance of the Lagrangian and the backpound implies that 

o·(-ru.K) • a(ru.K) (4.6a) 

b -(-OJ.K) lilt -b(OJ.K) (4.6b) 

On the other hand. ir the background is CPT symmetric (we are assuming that the 
Lagrangian is CPT invariant) then the setr-energy satisfies 

15E4<-I)1'J. ~l) (4.7) 

which implies the same relations in Eq.(4.6) ror the coefficients a and b. We will show 
below that whenever Eq.(4.6) holds. the neutrino and anti neutrino have the same 
dispersion ~Iation. The~tore, ir the background is CPT synmeIric dlen. independently of 
whether or not lhe Lagrangian is CP invariant,1he neutrino and antineulrino have the same 
dispersion ~Iation. Equivalently. the neutrino and antineutrino have diffe~nt dispersion 
relations only ir lhe background has non·zero chemical pcMcndals of charps that are CPT 
odd. 

4 • 2 Dispersion relat ion and "ave runctlon 

111e effective field equation, 

(t - El!!nJ",(k) =0 

can be wrillen in the fonn 

where 
'¥I'dk) =0 (4.8) 

V":i(I-a)k,,-bu,, (4.9) 

Eq.(4.8) has solulions only if OJ and K are such ahat y2 =O. Thus. the energy-momentum 
~Iation is given by the solution of the equation 

(I -o)w-b=±(I-a)K (4.10) 

which is in general complex. We denote by 0Jr (~ ) the solution with the positive 
(negalive) sign. It is useful 10 define 

Cl'K=-wK'. (4.11) 

which, in analogy with the sitmllinn in lhe vacuum, we identiry as the dispersion relation 
for the antipanide. 

Notice th:u tiJK i!'i given hy Ihe solution of 

-_.) - - [ -. -1..lI a( (1Jt(.K) (ltK + h(--CiJK.K) = I a(-01K.K).II{ 

20 21 

or equivaJendy 

[1-a·(__.K>PK +b·(-C;;K.K> =(I-a·(-C;;K.K)]K (4.12) 

TherefOR:. in aenerU. 

_-OJ&' 


so that die neutrino and antineutrino have difrerent dispersion ~Iations. However. ir the 
Lagrangian is CP conservin. and the background is CP symmetric. then ... • _. since 
Eq.(4:6) implies that -. and •• satisfy the same equation. In this cue the neutrino and 
antineulrino have the 1liiie energy-momentum rdalion and the same lifedme. As ~marked 
below Eq.(4.6) the same conclusion holds under the less restrictive case that the 
background is CPT symmetric. independendy of whether or not the Lagrangian and the 
background are CP symmetric. 

In Older to determine the wave function, we choose to wext in the rest frame or the 
medium, which is defined by Idling 

""-(1.0) (4.13) 

The wave function in an arbitrary frame can then be obtained by a Lorentz ttansronnation. 
We consider fllStdie wave function for the neutrino. which we denote by "L(k). Pulling 
i =(OJ&'. IE) in Eq.(4.1) and remembering that _ satisfies Eq.(4.IO) (with the + sign). 
the equation ror the spinor becomes 

AUL=O. (4.14) 

where 

n" =(1 ...L) (4.IS)
'Ikl 

Equation (4.14) is of die same fonn as the equation ror a massless spinor in vacuum. Its 
solution can be given explicldy once a particular representation of the gamma matrices is 
chosen. However, for most purposes. the knowledge of the projection operator is 
sufficient A\*" from a nmmaIizauon factor. this projection operator is proportional to U. 
so that we wnle 

ULllL·~ (4.16)
NK 

where NK is a nonnalll:ation constant that is determined rollowing the same procedu~ as in 
the case of the vacuum. FU'SIly.dIe i_pnary part of the selr-energy is ignon:d. Then the 
field equation can be obtained from Ihe effective Lapangian 

t.,=ti(i~t - ~,,)"dk) 

=v;,.(l)"t(k) (4.17) 

The classical theory defined by Eq.(4.17) is now quantized, so that ¥'t is regarded as a 
quantum field ror the neutrino in the medium. In analogy with the case of the vacuum, the 
field has the plane Wive expansion 
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'l'LJI') (4.18)= f£.k-LLa(k)udk)e-il:'~ + ~·(k)Vt<k)eir.~) 
.. (2n~\lOK 4JK 

" "~ • 1 

where 
l" = (mI'. k) , P' =(~, k) (4.19) 

We denote by 10) the new vacuum state and by 11) the:hne-neub'ino state obtained IS 

Il) =a·(k)lO) 

We adopt the normalization of the one-neub'ino state to be~;~ .. i: 

(l'Il) =(2n~24JK8(J'k ... k') , 
\ 

so that the anticommutation relations of the creation and annihilation operators is fixed to be 

[a(k). a·(k')]. =(2n~2O'K8(J'k - k') 

Therefore. for example. 

(Of'l'1.(x)I1) =ut(k)e-II:'~ 

The normalization of the spinor is then determined by imposing on the field the canonical 
anticommutation relations implied by the Lagrangian in: Eq.(4.17) or, equivalently, by 
requiring that the one-neutrino contribution to the propagator SF defmed by 

(OlT'I'l.,(x)'I'L.(y)IO) ~f~-il:'~ - 7)iSF(1) , 
(2nf 

coincides with the singular term of the inverse kinetic energy operator 

t:l-R (4.20)
V2 

in the limit 10 -4 COl. The one-neutrino contribution to,the propagator is given by 

u~
SF(lh rllrliclc = ~A:o- md 

Lia (4.21)
2NlAlo - O'K) 

where E(I.(4.16) h:IS been used in the second line. On the other hand, remembering that 

r( 1 fI)l- b"JAo -4 0" = (I - a)K" 

we can take the limit in E(I.(4.20) :tnd comparing with (4.21) we obtain 

(4.22)HK=(!L•.-.. ' 

where 

,-(I-aXm- K)- b (4.23) 

IncidentaUy, notice that the equation for 4JK is equivalent to !t4JK) =0 while, in tenns of; 

defined below, the equation for ~ is ~-~) lit o. 

For the antineutrinos, the spinor vdk) that appeus in Eq.(4.18) is the solution to 
Eq.(4.8) for 

1,. (-ml', -Il).--l 

Using Eq.(4.12), the equation for Vl.(k) is then 

jvdk)=0 

In analogy with Eq.(4.16) we write 

VLVL=~ (4.24)HI( 
and foUowing the same steps that led to Eq.(4.22) we obtain 

- (iJI) , (4.25)HI(= am •• ...­
where 

/-(I-aXm+ K)-b (4.26) 

Equations (4.16) and (4.24) give the projecdon operators that must be used for neutrinos 
and antineub"inos that appear u extemal particles in a physical process. 

This completes the summary of the formalism that we have used to study the 
properties of neutrinos in a medium. The Iat or this secdon is devoted to the application of 
the formalism to several specifIC calculations. 

4.3 Index 01 relndlon In matter 

As our fU'St example, we consider a neutrino propagating through a background of 
electtons. The diagrams that enter in the calculation of the self-energy are shown in Fig. 3. 
Diagram (a) contributes only to the electron neutrino. Diagnm (b) gives an identical 
contribution to all neutrino species and therefore it can be ignored in the analysis of 
neutrino oscillations in matter. Diagram (c) contributes only if there are neutrinos in the 
background, as it is the case in, for example, the early universe. 

We assume that the tempenture is such that there is no appreciable number of Ws 
and Zs in the background. Thus, their propagators remain the same as in the vacuum. 
The diagrams give, in addition to the temperature-dependent part, the standard vacuum 
contribution to the wave function renonnalization which, to the order that we are 
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(a) (b) (c) 

Fil. 3 Diagrams for Ihc neutlino self-eneru iR. _kpound ofc~. 

calculating. can be factOlt':d out and has no effect on the bac::klfOUnd-dependenl tenns. It is 
not difficult to deduce that for temperatures and neulrino eneIJIes small compared to abe W 
and Z masses. the t-2 component of the self-eneray is propordonaJ 10 the number density 
of electrons evaluated at energies of the order ofdie Wand Z muses. which is negligible. 
Therefore, we restrict ourselves to the calculation of the real part of the self-enerlY. In this 
case, according to Eq.(2.53) we need to calculate only the raJ part of the I-I elemenL 

We consider first Diagram (a). Its conlribudon 10 the background-dependent part of 
the self-energy is then 

4
-iX!ij = (-iRf rlLJ dp -i is',(p)y,,L

f! (2Jr)4 (p - i)1- ma, 

where S'F is the temperature-dependent pan of the I-I element of abe electron propagator, 
which is given by 

S'F(P) = (JS + ~)2.;(.p2 - m1)IJ,-<p·u) 

Tenns of order(mJmw~. which in the Feynman-'t "ooft gauge arise from the exchange of 
unphysical lliggs scalars. have been n~glected. To leading order in the inverse W mass, 
we replace in the W propagator 

(p -- if - ma. -+-ma. 
Then. usiog the idenlity 11/1yp = -2/1. we obtain 

4 
(a) _ 2(xt!.1.f/ d p ;U1pl_ m1)IJF(P'U)

X'II - mar (21l'}1 

To do the integral. notice thai it loan depend only on the vector u. Therefore. it must be of 
the ronn 

ll 
U ' 

where 

1/,1" d_ )I - -- l'U.'V,2 ",2 '1F(P'U) 
(21ft'/ 

We now evaluate this intqral in &he rest frame of abe mediwn. wherep'u == Po. Then. 

f~l - m1}qApoj ==!(ftp) -h») , 
2 

where Itp) and itp) are the mo~ntum distributions of electrons and positrons 
respectively. given by 

.' 

I(p) • J ./(p) = ---.l 
e/IE(P)-a + I e/lE(,) +a + I 

Thus, we obtain 

(4.27) 

where 
.3p_ 

1Ic=2. ~p) (4.28a)f (2." . 

If, = 2 -.=-r:/tp) (4.28b)f d3p­

{2Jrf 

give the number densities of electrons and posilrons. 

In order 10 calculate the contribution from Diagram (b). we write the piece of the 
Lagrangian thai describes the interaction of &he Z with fennions in the fonn 

Lz = -'~i L iy,J.A + B1sY + ~""Vf.]
'''''~tlllJTlr 

where 

~'- .,z= 2cosBw 

A == 13 - 2Qsinl Ow • 

B --13 

Therefore. for the electron. 

A, == 
-IT + 2sin1 Bw • 

B,=! 
The conlribution to the self-energy from Diagram (b) is 

http:Eq.(2.53
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-;r~:J =(-;gZ)2Y'L! d 
4

p ~-I)Tt{iS'f{p)r,AA. + B..r~)J
(21l",. - ml 

4r~:J= 4.dAeJd p fJL/hJ2 m2)'lF(P'U)
ml (21l",. 

g2Ae( _ \ ...,
= ne-ne~ 

4ma, (4.29) 

As already mentioned, Diagram (c) is relevant only ir there are neuttinos in the background. 
In that case its contribution can be obtained from Eq.(4.27) by making obvious 
substitutions. 

For the electron neutrino the selr-energy is given by the sum of Eqs.(4.27) and 
(4.29), while for the other species it is given by Eq.(4.29) alone. In terms of the 
coefficients a and h introduced in Eq.(4.2) 

a = 0 (for all species). 

g2
h = ~I + AeXn.- n.) (for v.) • 

4ma, 

g2
h = --Ae(ne - ne) (for V"I v..) • (4.30) 

4ma, 

The dispersion relations are simply 

QJ=K±b (4.31) 

with the + (-) sign holding for the neutrino (antineutrino). In the context of neutrino 
oscillations in matter. the term pmponional to Ae gives a common phase in the solution to 
the evolution equations. and it is permissible to discard it. If this is done, and we introduce 
an index of refraction by 

n =K.
QJ' 

&J.(4.31) yields. for the electron neutrino. 

n;;:: I b_ = I - fIGF(nc _ Ii,.) • (4.32) 
(I) Cd 

which reproduces the well-known rcsuhsll21. 

This calculation abo shows that, to leading order in the inverse W mass, the wave 
runction renormali7.ation f<letor NK , given hy Eq.(4.22), is unity. I~utltion (4.31) also 
illustrates th:.. in nCI'T-nsyrnull'Irit' hackgrmmd the dispersion relations for the antineutrino 

and antineutrino are different. On the other hand, if the chemical potentials are zero, then 
~ ,. n. and the dispersion relations are the same. Finally it should be noticed that 
Eq.(4.JO) holds for a relativistic or non-relativistic, and a degenerate or non-degenerate 
electron gas. 

4.4 EleclromalneUc properties 

The effects of the medium can have great innuence on the electromagnetic 
propenies of neutrinos. For example. in the vacuum, the electric- and magnetic- dipole 
operators are odd under CPT. 1berefore. the dipole moments of a Dirac neutrino are 
opposite to those of its antiparticle while t~ dipole moments of a Majorana neuttino vanish 
because this particle is its own antiparticle[13). In a medium the situation can be drastically 
different(14). In leneraI, the effect of the medium pves rise to CPT asymmetries in the 
effective electromapetic interactions of the neutrinos. These asymmetries manifest 
themselves as new terms in the effective action which are identical for a panicle and its 
antiparticle. and therefore can be non-zero even for a Majorana neutrino. The conditions 
under which this can happen were analyzed in Ref.(14). Apart from qualitative differences 
such as the one just mentioned. there can be important quantitative differences as well. For 
example. consider the radiative neutrino decay. which has been studied extensively in the 
context of various astrophysical and cosmological problems. It is well known that in the 
vacuum the rate is suppressed. by the Glashow-Iliopoulos-Maiani (GIM) mechanism. 
However, a medium that contains electrons but not muons or taons is not 
navor-symmetrlc. Therefore, in such • mediUl'li the background-dependent part of this 
amplitude is not GIM~suppressed. As a result. the decay rate could be much larger than in 
the vacuum. 

In this section we present a summary or the calculation or the 
background-dependent part of the wr vertex for the case in which the medium consists of 
a gas of electrons( IS). As usual. the electron las is assumed to be embedded in a uniform 
positive-ion background. However, since the background-clependent terms tum out to be 
proportional to the inverse of the eleclron mass in the classical and non-relativistic limit, the 
effect of the ions is negli,ible in most cin:unatances. 

The off-shell vertex function is defined in such a way that 

(v(i1lit'(0)lv(i') -I(i,)r,.u(i) 

The diagrams that enter in the calculation lie shoWn in Pi,. 4. We assume as before that 
the temperature is such that there are no IV or Z bosons in the background. Therefore, 
only the electron propagator has a backpound-dependent term. The calculation or the 
background-dependent pan of r,., which we denote by r'", •is simplified by making the 
rollowing observations. Since the intevals involved are cut-off by the electron-positron 
distributions, the diagram marked as (W') pves a contribution which is suppressed by an 
extra power of IImw1 relative to the other two ~~ Therefore, to leadin, order In the 
inverse W mass, only the diagrams marked as (W) and (Z) need to be calculated. In the 't 
Hooft-Feynman gauge, the diagrams in which the Ws are replaced by the unphysical 
Higgs fields ~ also suppressed by exira powers of IImw1 and therefore do not contribute 
to r,., to leading order in IImw1. In addition, this also implies that the leading tenns (in 
l/mw2) that arise from the diagrams marked (W) and (Z) are gauge invariant. This 
contrasts with the situation in the vacuum. where the leading tenn cancels by the (JIM 
mechanism and the next term receives contributions from every diagram. 

http:Eq.(4.JO
http:Eq.(4.22
http:Eq.(4.29
http:Eqs.(4.27
http:Eq.(4.27
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Fi,. 4 Dia,rams ror the ncUlrino-neutrino ..... watex. 

With these preliminaries. our task is reduced to the calculation of the following 
quantities: 

2 
4 ~ I 

'r,(W) = eg d P rzUSAp - q)r,JS,(p)r. (1- p)'l- mi (4.33a) 
-I " 2 (2KfI 

4 
-;1~7.) =~1'LI d p Tt[iSf{p - q)r"iS,(p)rafA. + B.~)l (4.33b)

q2 ml (2Kf 

Notice (hat the coupling of the electron neutrino to phorons is given by the sum of these 
two tenns, while only the second one contributes to ahe other flavors of neutrinos. In view 
of what was argued above. we retain only the leading term in powers of IImw2• 
Therefore, we will neglect the momentum dependence of the Wand Z propagators. 

We will calculate only the real part of the amplitude; thus, the eleclron propagator 
to be used is the I-I element. When it is substituted in Eq. (4.33), several terms are 
produced. The terms that are independent of the electron and positron disuibutions 
contribute only to the standard vacuum part and we drop them. The rest of the terms 
contain either one or two factors of the discribution functions. However. those involving 
two factOl'S of the distribution functions contribute only to the imaginary pan of the 
amplhude. and we also drop them. Therefore. we retain only those terms involving one 
factor containing the distribution functions. In addition. the integrals are interpreted as their 
principal-value part. 

The expression in Iii. (4.33a) can be rewrillen using the Fierz-type identity 

1'/..11,1. =-Tt(AraL)tIL (4.34) 

which is v~did for tiny 4 x 4 matrix (see Appendix 8). We can then write both expressions 
in Eq. (4.3~) in lhe form 

:CW.Z) _ r(w.7.)rvL , (4.35)1" - "V 
where 

T!Z). gil tJ4p T(CI-4 + ml1ll + m)y.{A. + B.~)]
'''' mj (2., 

x. [8[(, - q1 - m2]t{(p - q}" ] + (e2 - m2)rh,."n (4.36)
p2_ m2 (p-q)'l- m2 ] 

and T~~ is given by an expression that il obtained from this by making the following 
replacemeats: 

.d-+ £.-, A. -+ ! . B. -+ -! (4.31)
mj 2m. 

We henceforth concentrate on the evaluation of r"Z) only. The resulls for rf,W) can be 
recovered at any SIaIC by USinl the substitutions given in Sq. (4.31). 

Makinl the change of variable p -+ p + q in the fmt intelra. of Eq. (4.36) and 
carrying out the InlCeS, we then obtain 

T~ZJ == ~J~ (AN + i2p,l'" +",pflv + q,l'v) - g".p'q +(q -+ -q)]
mj (2.)'2£ J t q2 + 2p.q 

-BJ/- j)Epvul1l""1 I + (q -+ -q)j) . (4.38) 
q2 + 2p.q 

where 
plJ=(£,p) ,£=4p2+m2 . 

The remainder of the calculation can be conveniently organized by making use of the 
following observations. Elccttomagnetic gauge invariance implies 

ql¥f"v= 0 

From Eq. (4.38) it is easily verified that both T~':) and T~~ separately satisfy this equation. 
However. from Eq. (4.38) we also see that both of these tensors have the additional 
property that they are Iynmetric under the simultaneous interchanle 

#tHY. q-+.:.q 

Therefore. T"v also satisfies 

q"TlJv =0 
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Moreover. from Eq. (4.36) or (4.38) we can see that with the approximation of keeping 
only the leading terms in l/mw2• Tpv does not depend on 1 and t· separately. but is a 
function only of q. The most general form of Tpv that is consistent with all these 
properties is 

Tp,,' =TrRpv + TLQpv + T,.Ppv 	 (4.39) 

where 

Rpv = gpv - Qpv. 

UpUv 
Qpv= •u2 

Ppv ==- hEpvu(1laU~ . 
(4.40) 

We have defined 
Rpv == Rpv _ q,Av

q2 
and 

Up == Rp~v 

Further. the coeffICients T T. TL. TP. are functions of the vuiables 

!l == q'" • 

2 
Q == '" n _ q2 • I' (4.41) 

the latter of which also appears in Ihe definition of Ppv in Eq. (4.40). 

The lensof!l R pv. Qpv. P,1v• have the u5eful property that when one of them is 
coolracled with the other5 the resull is zero. while 

RpvR"v = 2 • 

QP~'Q"v = I • 

P''''/',IV = -2 . 	 (4.42) 

The form faclo~ TH.}' can Ihus he ohlaincd by projecting as follows: 

1'1' =~R'IVT"V = #TPp - U~~~Tpv J . 
_ u 

'1"1, :-: (1,,,.T"V = u!!u-~T
il 2 "v. 

-I
TL IS --;j:PpvTPv . 

(4.43) 

Applying this to the expression for Tpv given in Eq. (4.38). we obtain 

Tr~~!lA1A-~. 

T(Z) ". 4e,iA~ 1L 
L 	 mi il2 ' 

T(Z) 	 ~"iBp = 0 ~QC
mi · 	 (4.44) 

where 

! d3p 	 ]A= 	 ~+f12m2 -2p·q +(q-+-q) • 

(2.)11£ q2 + 2p·q 


d3p ~2(P'U)2 + 2(p·u)(q·u) - p.q ]B= + +(q-+-q)

(2Af-\11£ q2 + 2p.q •
!~

c=!A='t-Jp·ill I +(q-+-q)j'
(2.)11£ 1\ il2 q2 + 2p.q . 

(4.45) 

The expressions for T~~ can be obtained from Eq. (4.44) by making the substitutions 
indicated in Eq. (4.37). . 

The integrals in Eq. (4.45) must be interpreted as their principal value. as 
mentioned before. The convenience of expressinl the form factors in this form lies in the 
fact that A. B. and C are scalars. so that the integrations can be performed in any reference 
frame. in particular in the rest frame of the medium. In an ubitrary frame the distribution 
functions are expressed in the form 

/= I .i=---1 	 (4.46) 
I!/Jp.• - a + I I!/Jp.• + a + I 

If we denote the components of pP in the rest f~ of the medium by 

pP = ('L, tpJ, 
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then the expressions for f and j become simply 

/= I .i=---1 (4.41)
ell$-a+ I ,M:+a+ I 

In this fashion it is straightforward 10 cUI} out the intepals for A. B. C. This has 
been done in Ref. (IS) in considerable detail. In Iddition, Ref. (IS) contains several 
applications of these calculations, such as as a very simple mlerivation of the known 
formulas for the plasmon decay rate into neutrinos. Amon, ocher thin,s, those examples 
serve to show the way to calculate other, similar decay processes in a medium. One 
panicularly interesting case is the neutrino radiative decay, to which we now tum our 
auenlion. 

4. 5 Neutrino radlatin decay 

In this section we calculate the rate for the rattialive decay of a heavier neutrino to a 
lighter onet 161: 

\1(1) -+ v'(l') + )(q) 

We begin the calculation by assuming that the dispersion relations of the panicles are not 
significantly affected by the medium, so that we can use the relations valid in the vacuum. 
In order to be self-consistent, we should then lake the wave-function renormalization 
factors associated with the extemallines equal.., unity. In effect these assumptions imply 
that we consider only the transverse polarization states of the photon. In addition, we 
assume that the mass of the final neutrmo vanishes. or at least that it is so small compan::d 
to the mass of the decaying neutrino, that it can be neglected. 

The matrix element for the process can be written as 

iM =-iJl(l')rafI(l)t....(q) , 

where u(l, denotes the Dirac spinor with momentum 1 and r' denotes the polarization 
vector of the photon. We have used the primes on ", and r to indicate that we will 
consider their background-dependent part only. Following the notation of Eq. (4.3S) we 
can write 

r~ =U;vU:v'Tall-,'L, 

where U is the lepton mixing matrix. As already mentioned. we assume that the 
background contains electrons but not muons or taons, nor any W bosons for that maUer. 
As discussed in the previous section, to the lowest order in Ilmwl the most general form of 
Tallis 

T"" = liRpv +TtQpv+ TpPpv 

The quantilies T11.)' arc given in lerms of the integrals A, 8, C defined in Eq. (4.45). In 
the present case we arc inleresled in the v:due of these functions for 

q2_0; n.a 
Since 

i 2 =_ .2 , 
q2 

it is easy to see from Eq. (4.4S) that C • 0 when q2 =- O. The expression for B in 
Eq. (4.4S) shows that. while It is not zero when q2 • 0, it hu a finite value. Since B 
appears in the formulu for TT,J.I' In the combination BRl2, it does not conttibute in 
~. (4.44). n.ereron:. the non-zero form faclOl' in .the present case is 

TT.-~J~)+jtp)] (4.48)2mi (2.., 
wheR 

p". (E,p) with E • ..fp2 +".2 

and f. i are liven in Eq. (4.46) and (4.41). Uain, 

,2!Bmi •GFIf1, 
we thus obtain 

Tr·) S! - (ltGFnJ".. (4.49) 

in the case of a non-reladvisUc backlJOUnd ofelectrons. and 

r,.D) S! - tGFT2/3(l (4.SO) 

in the extremely relativistic case, when the temperature is much greater than the electron 
mass. so Ibat posillOnS are also Pft*IIL 1be square of the matrix element can be evaluated 
easily usin, the poIarizaIkIt sum 

L e:J.ql)tJl-qA,) :II: - R~ 
A - ......... nr.ada 


Thus, 

IM'F = "'~U:vU.,,·ITTJ(A: + 1'~u _L] , (4.Sl)11 n 2111 

where ". is the mass of the decayin, neutrino. The differential decay rate in any frame is 
given by 

dJ1' d1q 
dr' =M2J1')4s4(i -1'- q~M'r(2J1')J21'o (2J1')12qo210 

If the background contains photons we should put a factor of 
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1+--"-­
e/Jt·· - I 

on the right-hand side of this formula to take into account the stimulated emission of 
photons. Since this factor is always larger than unity, this will Increase the rate further. 
Similarly. if the background contains neutrinos. we should also include the Pauli-blocking 
factor on the right-hand side. In the presence of both, neutrinos and photons, the inverse 
process must also be taken into account. In our estimates we have neglected all these 
effects. . 

The quantity of interest is the decay rate in the rest frame of the medium, where 
u,. =(1,0). The integration can be canied out in terms of the momentum variables of that 
frame. in which we denote by v the three-velocity of the decayinl neutrino. or in terms of 
the variables in the rest frame of the decaying neutrino, In which case we have to bcKJst the 
velocity 4-vector of the medium. The result is of the integration is 

r# =~U;P4!,,.ITrPF(v) (4.52) 

where the function F is given by 

F(v)=(1 V2)'1i~~~:)-3]. (4.53) 

The crucial difference between Eq. (4.52) and the formula for the decay rate in the 
vacuumr 17, is that the laller contains the GIM suppression factor 

I L !!!lv;Plv·r
I,., t'.p.t' ma, 

while Eq. (4.52) is free from that suppression. This is just a consequence of the fact that 
the GIM suppression mechanism is not operative in ordinary matter. A more detailed 
comparison of the two rales is given in Ref. (16). 

Conclusions 

In these lectures I presented the approach that we have used to understand some of 
the properties of particles as they propagate through a background medium. with focus on 
the case of neutrinos. The application of Finite Temperature Field Theory to this class of 
problem provides a well defined selling to study general questions and gives efficient 
methods for canying out practical calculntions. 

I wish to thank Arnulfo Zepeda. Jos~ Luis Lucio and the organizers of the school 
for inviting me to give these lectures, and my friends Palash Pal and Juan Carlos O'Olivo 
for the collnborations that have led to most of the material that I have presented here. 
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Appendix A 

For Ulustrative purposes let us consider the consequences of CP invariance for the 
self-energy of a scalar field. Denotinl the CP operator by tI. the transformation of a scalar 
field Is 

8-1~)8. fl. ·(A -Ix) 

where A .. dia"I, -I, -I, -I). We assume that the chemical potentials are zero, 50 that 
Eq. (4.4) holds. Then by takinl the trace of the identity 

Z.·(y)~) - 8-1Z(Au)~A,).•(Ax)8 

we obtain 

.d12(x - y; u) :II .d21(Ay - Ax; Au) • 


where we have made explicit the dependence on the vector up, and we have omitted the 
prime and the subscript F in the euct propagator. Since 

.d1l(X - y) - .d21(x - y)~(x - ,).,,] + .dn(x - ,)~(y - x).,,], 

it follows that 


till(x - y; u) • till(A, - Ax; Au) , 


and a similar relation also holds for ~2. Therefore. CP invariance implies that the 
prop.ator ...Irix satisfies 

.de(x - y; ,,) =- .d".(A, - Ax; Au) 

or, in momentum space. 

A.r.<i). 4.(-i) 


The Inverse ~alator must satisfy a similar relation and, from Eq. (2.44), also the 
self-eneray mamx. Thus.. . 

Jr..,,{-k) :II Jr".(i) 

which in tum implies 

Jl(-k) -Jl(i) 


From the relation between Jr and Jr«IT liven In Eq. (3.11) we finally obtain that. if C P 
invariance holds. then 

Jr:~-l) =Jr.n(i) 

Similar considerations for the fermion case lead to Eq. (4.5). 
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Appendix 8 
References 

Lei ¥'I and '1'2 be IWo spinors. and let M be any 4 x 4 matrix. Consider the mattix 
element 

A !II ~ro.LMt'L"1 

If we denote by Ii a set of basis spinors. then 

A::: I: (~ro.LMtiltT1"L".) 
;·1.4 

I: (~rJ..",ltT1"LMt,) 
i .. I.4 

In the second line we have used the standard Ficrz identity 

(~roL.Ut'L¥',)=-(~rJ..",li1"L;) • 
with 

,=Mtiti·tT 
Now A can be wriuen in the foon 

A = -(~roL"l) I: Tr(t;tT1"LM) 
i .. 1,4 

=- (~raL¥'l)rr(t'LM) 

Since this is valid for any two spinors "1.2. we have the matrix relation given in 
Eq. (4.34). 
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