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Abstract 

Assuming that vacuum has energy-momentum zero, we describe it in terms 

of particles. These particles are virtual; some of them have negative ener­

gies ; their states are global states, which generalize those described in paper 

(I) because their statistical operators have infinite trace. Any system of va­

cuum particles is a part of a keneme, i.e. of a system of n particles which 

can, without violating the conservation laws, annihilate in the strict sense 

of the word (transform into nothing). The kenemes will first be studied for 

themselves. A keneme is a homogeneous system, i.e. its state is invariant by 

all transformations of the invariance group. But a homogeneous system is not 

necessarily a keneme. In the simple case of a spin system, where the inva­

riance group is SU(2), a homogeneous system is a system whose total spin is 

unpolarized ; a keneme is a system whose total spin is zero. The state of a 

homogeneous system is described by a statistical operator with infinite trace 

(von Neumann), to which corresponds a characteristic distribution. Then one 

studies vacuum. The characteristic distributions of the homogeneous systems 

of vacuum are, defined; their elementary properties are studied. 
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I. Introduction 

In the present article, the results of paper [1] are applied to the description of 

vacuum. (In the following that paper will be denoted by (I)). 

We shall assume that vacuum contains particles, and that they belong to systems 
I 

whose total energy-momentum (and other quantum numbers) are zero. Hence these 

systems contain particles with negative energy. The particles of vacuum are virtual 

particles ; their states are global states, which generalize those described in (I) 

betause the statistical operators have infinite traces. 

The central notion is.thatof keneme, i.e. of. a system of particles which can anni­

hilate in the strict sense of the word. Any subsystem of a keneme is a homogeneous 

system, i.e. its state is invariant by the transformations of the invariance group. 

Hence the density of the statistical operator which describes a particle belonging to 

a keneme is a multiple of the identity operator; therefore it is not trace class. 

This is why we have to take again the notion, due to von Neumann [2], of a rela­

tive statistical operator, which allows to compute relative probabilities. To give this 

notion a more precise meaning we use the analogy between quantum mechanics and 

probability theory. Renyi [3,4] has generalized probability theory to make it able to 

define relative probabilities, which he calls conditional probabilities (in a sense which ' 

is a generalization of the usuaLone). Analogously"we,defineo.conditional statisticaL 

operators and we show that one may attach to them characteristic distributions, 

which are a generalization of the characteristic'functions defined in (I). The charac­

teristic distributions of homogeneous systems and of kenemes are studied, and the 

relations between those two types of systems are specified. 

Then, in Section VI, the results achieved are applied to the study of the charac­

teristic distributions which describe vacuum. 

II. Vacuum as a state of zero energy-momentum 

A. The energy-momentum of vacuum 

In quantum field theory, one describes most often vacuum as a state of energy­
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momentum zero [5]. When cosmological considerations bursted into particle theory 

this definition was challenged. Thus Zeldovich [6] remarked that the case of a vacuum 

with energy-momentum tensor TfJ.l.I proportional to the metrical tensor gfJ.l.I cannot be 

excluded a priori; such a vacuum of course has infinite energy. Futhermore in quan­

tum field theory, if one seeks to unify gravitation with other interactions between 
! 

particles it becomes difficult to put equal to zero the energy of vacuum, because 

on a riemannian manifold one cannot define normal products of field operators [7]. 

On the other hand, if one takes literally the {1/2)hv of the electromagnetic field 

oscillators one gets for the energy of vacuum a huge value, which should bring about 

gravitational effects; the latter are not observed.- To compensate these effects, one 

may introduce into. the equation of general relativity a cosmological constant. But 

the value which should be given to this constant is some 120 orders of magnitude 

larger than that which is compatible with astronomical observations. Otherwise 

stated, to be in agreement with experimental and observational data the two terms 

of the effective cosmological constant should cancel to about 41 decimal places, or 

even much more (see Weinberg [8] ; for elementary discussions, see references [9] and 

[10]). 

We shall leave these problems aside, and we shall consider that all the vacuum 

particles belong. to systems whose energy:-momentum, as .well as other quantum 

numbers, are zero. 

B. Negative energy particles 

If one is willing to give a particle description of a vacuum with zero energy­

momentum, one immediately meets the fact that some particles must have negative 

energy. But the energies of observed particles are always positive; why, then, do par­

ticles with negative energies remain confined in vacuum? Here we shall not answer 

to this question. It should be remarked, however, that even in quantum field theory 

it is not possible to have all energies positive: for a free scalar field, the energy 

Po is positive, but the component Too of the tensor density of energy-momentum is 

not positive definite. The same result holds for any field which satisfies the usual 

postulates of local field theory [11]. 
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c. Kenemes 

In a system of particles with zero total energy-momentum, there are particles 

with both signs of energy_ We shall use the notion of a keneme (from the Greek 
I 

kenos, empty) : it is a system of particles which can transform into "nothing" _ If 

the particles AI, -.. ,An form a keneme, the two inverse processes 

(1) 

are possible, i.e. they are compatible with the c6nservation laws~ , The symbol 0' 

stands for "nothing". 

From the notion of keneme emerges an intuitive one for crossing, independent of 

field theory. To cross a particle is to take it from one side to the other one in one of 

the equations (1), and to apply to its state the operation peT. (Here T is not the 

anti-unitary operator defined by Wigner, but the naive time reversal, represented by 
! 

a unitary operator; it reverses the sign of energy. This is why we stated ((I), Section 

ILA) that to add T to the invariance group does not set any special problem). The 

physical idea is that if vacuum contains the keneme (1), all reactions which derive 

from (1) by crossing are possible. Such is the case, for instance, with the process 

(2) 

where Ai is deduced from Ai by crossing. 

III. The problem of the description of vacuum p'articles 

By definition, the vacuum contains no real particle. Vacuum particles show 

themselves only by their interactions with real particles, which means that they are 

virtual particles. 

How can one describe the state of a virtual particle? The Landau-Lifchitz 

treatise [12] defines a virtual particle as an intermediate state of a process. They are 

concerned with a process whose graph can be cut into two disjoint parts by cutting 

a single line. 

4 



Let us consider for instance, in quantum electrodynamics, the two second order 

graphs which describe negaton-positon scattering. The Bhabha type graph describes 

a virtual annihilation (in the usual sense) of the pair. The state of the virtual photon 

is the global state of the incoming (or outgoing) negaton-positon pair. For the other 

graph, the photon has a spacelike energy-momentum vector; if we cross, for instance, 
I 

the outgoing negaton line, we get an ingoing positon line and again, the state of the 

virtual photon is the global state of the pair constituted by the ingoing negaton and 

the ingoing positon obtained by crossing. (To cross still means to apply peT, see 

ab6ve). 

We have seen ((I), Section V.B) that the global characteristic function is con­

served in a transformation process. Hence if a virtual particle is the intermediate 

state of a process, its state is the global st~te of the ingoing (or outgoing) particles. 

We shall assume that the state of a virtual particle can always be characterized thus. 

Summarizing: the vacuum particles are virtual particles} and their states are global 

states. 

Now if we describe vacuum with one particle statistical operators, two particle 

statistical operators, etc., in analogy with statistical mechanics, what has just been 

said implies that these statistical operators will describe global particles. 

The one-particle state of vacuum will be described by an operator-valued measure 

of the form 

W = k$ Px dx (3) 

(see (I), equation (25)). 

How does the operator W transform by an element 9 of the invariance group G? 

It becomes the operator 

(4) 

with 

(5) 

The invariance of vacuum by the elements of G now implies that for almost any 

X one has 
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Px 
I = Px (6) 

Hence for almost any X E {j and for any 9 E G, Px commutes with UX,g' This 

implies (by Schur's lemma) that Px is almost everywhere a multiple of the identity 

operator: 

(7) 

where Ix denotes the identity operator on the space ?-lx, and ux is a scalar. 

As for almost any X the space ?-lx has infinite dimension, the operator-valued 

measure is not trace class (see (1), Section lLB), hence it has no inverse Fourier­

Stieltjes transform, at least in the sense defined in (1). 

We must therefore answer two questions: 

1) Can one give a physical meaning to an operator-valued measure of the form 

(3), when the operator Px is not trace class? 

2) Can one define, in a more general sense than that given in (1), the inverse 

Fourier-Stieltjes transform of an operator-valued measure, when it is not trace class? 

IV. Conditional statistical operators 

A. Conditional random variables and characteristic distributions 

To answer the first question we shall draw our inspiration from Renyi's solution 

[3] of the analogous problem in classical theory of probabilities. Here the aim was 

for instance to be able to define a random variable uniformly distributed on the real 

line, which is impossible in the classical theory of probabilities. 

A real random variable is a measurable mapping X : n ---+ R of a probability 

space (n, g, P) into R. To the random variable X there corresponds a measure I-' 

on R, defined thus : for any Borel part B of R, one has 

p(B) = P [X-1(B)] 

Henceforth we shall forget the initial probability space; our only concern will be 

the probability space (R, A, 1-'), where A stands for the u-algebra of all Borel parts 
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ofR. 

In the usual probability theory Jl is a finite measure, which can be normalized 

if one puts Jl(R) = 1. Renyi's generalization is concerned with the case where Jl is 

not necessarily finite, but must be (i-finite (this means that R is a countable union 

of parts with finite measure). 
! 

Let 13 be the set of Borel parts of R whose measure Jl is finite and non-zero. 

Such a part will be called an admissible condition. 

Let B be an admissible condition. For any A c A, let us put 

• P(AIB} = Jl(AB)/ Jl(B) .. , (8) 

where AB stands for the intersection of A and B. P(AIB) will be called the probabi­

lity of A, conditioned by B. The triplet S = (R, A, Jl), where Jl is a (i-finite measure, 

will be called the complete conditional probability space defined by the measure Jl. 

(See Renyi [4], definition 2.2.4). The measures Jl and CJl (c > 0) define the same 

space. 

If Jl is a finite measure, S is a usual probability space and P(AIB) is the usual 

conditional probability. 

Let B be an admissible condition. For any A, let us write 

(9) 

Then PB is a usual probability on R. The (usual) probability space (R, A, PB ), 

denoted by SIB, is called the restriction of S to B. In SIB the event B is certain, 

and the events incompatible with B are impossible. 

Thus it turns out that a conditional probability space S can be considered as 

a family of usual probability spaces SIB; one gets the whole family when Bruns 

through the set 13 of all admissible conditions. An important property of this family 

is that it is compatible, in the following sense. Let C be an admissible condition. 

For all spaces SIB such as C C B, the probability of A conditioned by C, computed 

according to the usual formula (recall that PB is a usual probability on SIB) 

(10) 

has the same value; it is equal to P(AIC), computed according to definition (8). 
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For a usual random variable one defines a characteristic function which depends 

only on the probability space (R, A, J.L). Similarly, for a conditional random variable 

one defines a family of conditional characteristic functions. The expectation value 

of the conditional random variable X, conditioned by B, is by definition 

Then the conditional characteristic function of X, conditioned by B, is defined as 

the function ¢B : 

'. (11) 

Now for a conditional random variable one may also define a single characteristic 

distribution. Renyi (reference [3], chap. 26, Section 9) defines it directly from the 

measure J.L, in analogy to the definition of a usual characteristic function: 

(12) 

where ;=-1 denotes the inverse Fourier transform. (It is known that the distribution 

thus defined exists provided J.L is a measure with slow growth, i.e. the product of a 

finite measure by a polynomial; see Schwartz [13]). 

But the distribution F can also be defined as the limit. of a sequence offunctions. 

To do this, let us first notice that the conditional characteristic function can be 

written (using its definition (11) and the definition (8)-(9) of PB) : 

¢B(t) == [J.L(B)]-l keita: dJ.L(x) • (13) 

Let us now consider a family {Bn} of admissible conditions such as 

if n > k (14.a) 

and 

(14.b) 
n=l 

One might believe that the distribution F is the linlit of the sequence of functions 

¢Bn' Such is not the case, however. Let us rather consider the "unnormalized 

characteristic functions" Fn : 
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Fn(t) = Il(Bn)¢Bn(t) = [ eit:c dll(X) (15)
lBn 

Then F turns out to be the limit, in the space Sf of tempered ditributions, of the 

sequence Fn : 

F = limFn (16)
(8 /) 

B. Conditional statistical operators 

1) Let 1i be the Hilbert space attached to a quantum system, and let A be the set 

of all projectors on 1i. A usual statistical operator is a positive 'trace dass ope~ator' 

on 1i. Let £(1i) be the von Neumann algebra of all bounded operators on 1i. As 

shown by the formula ¢(T) Tr(WT), a statistical operator defines a positive linear 

form on £(1i). According to Dixmier (reference [14], chap. I, section 4, theorem 1 

and exercise 9), this form ¢ has the following property : for any countable family 

{Ei} of pairwise orthogonal projectors, one has 

(17) 

This property, called complete additivity, is analogous to the a-additivity of pro­

bability measures. The analogy is a precise one, since in quantum mechanics the 

projectors represent properties of the system and correspond to the events of pro­

bability theory. 

2) In the simplest case a quantum-mechanical state is represented by a statistical 

operator W. Henceforth we shall not assume that our statistical operators are 

normalized. (Recall that in (I) we have represented the states by operator-valued 

measures on the dual of the invariance group; such a measure gives statistical 

operators W(K) which are not normalized). To any projector E E A, the state 

represented by W assigns the probability 

P(E) = [TrW]-l Tr[WE] (18) 

We shall use a result of the theory of measurement in quantum mechanics [15, 16] : 

if the state of a quantum system is represented by the (unnormalized) statistical 
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operator W, and if a measurement performed on the system gives the result that 

the property represented by the projector B is true, then the state of the system 

after the measurement is represented by the statistical operator 

WB =BWB (19) 

The notation WB stresses the analogy between measurement and conditioning : 

the operator WB allows to compute probabilities related to the system of interest, 

conditioned by the fact that property B is true. 

We may now carryover to quantum mechanics Renyi's generalization of proba­

bility theory. Let W be abounded positive operator, whose trace is noCnecessarily 

finite. -(The assumption analogous to·the~(T-finiteness of the measure f.l in-probability 

theory is automatically fulfilled, because in quantum mechanics one deals only with 

Hilbert spaces with countable basis). Let B be the set of all the projectors such that 

the trace of WB be finite and non zero. We shall call them admissible conditions. 

For any property A E A, and for any admissible condition B E B, the operator W 

allows one to compute the probability of A conditioned by B : 

P(AIB) = [Tr(BWB)]-l Tr(BWBA) (20) 

This probability derives from the operator WB, which will again be defined by 

equation (19) - now extended to the case wher~ W has no longer necessarily a finite 

trace. Hence we may write instead of equation (20) : 

(21) 


Instead of giving the operator W, we might characterize the state defined by W by 

the family of all conditioned operators WB ; one gets the whole family when Bruns 

through the whole ,set B of admissible conditions. 

Proceeding with our analogy, let us show that the family {WB, B E 8} is com­

patible. Recall that there exists an order relation between projectors, denoted by 

C :s; B ; it can be defined by the inclusion of images, ImC C ImB. This relation is 

equivalent to the property: B-C is a projector; it means that property C implies 

property B. It is also equivalent to the property 
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(22) 

Now let C be an admissible condition which implies the admissible condition B. 

Since WB is a statistical operator, we may compute the conditional probability 

PB(AIC) accordin19 to equation (20) : 

(23) 

BYlusing equation (22) we get 

(24) 

We see thus that the probability of A conditioned by C, computed according to 

equation (23) with all conditional operators WB such that C ::; B, has always the 

same value, which is simply P(AIC) computed according to equation (21). 

3) All what has just been said - about passing from usual statistical operators 

(trace class operators on H) to statistical operators which are not necessarily trace 

class - could be repeated word for word about passing from statistical operators of 

the form 

(25) 

(see (I), equation (25)), where Px is almost. everywhere trace class, to operators 

of the same form where Px is not necessarily trace class. One has just to replace 

everywhere the trace by the integral of the trace over the dual, as in equation (24) 

of (I). 

Summarizing, we have given a sense to operator-valued measures on the dual G 
(Dirac measures or measures with a 'density), in the case where the operators are 

still positive but not necessarily trace class. 
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C. Characteristic distributions 

Let us now define the characteristic distribution of such an operator-valued mea­

sure. We have first the general result of Bonnet (reference [17], proposition (3.3)) : 

any positive operator-valued measure has an inverse Fourier-Stieltjes transform, pro-
I 

vided it is a measure with slow growth. As the latter condition does not look very 

restrictive, we may say in advance that all operator-valued measures that we shall 

deal with have inverse Fourier-Stieltjes transforms. 

'The characteristic distribution may also be defined as the limit of a sequence of 

Junctions. Let us consider a family {En} of admissible . conditions , such that 

if n > k (26.a) 

and 

lim En == I (26.b)
n-++oo 

where I stands for the identical operator. Then W is the limit of the sequence of 

( unnormalized ) statistical operators 

(27) 

The characteristic distribution of W is the limit of the sequence of the characteristic 

functions of the (trace class) operators Wn . 

v. Kenemes and homogeneous systems 

A. Characteristic distributions : transformations, elementary properties 

We have seen in Section III that if one describes the state of a vacuum particle 

by an operator-valued measure ofthe form (3), this measure cannot be trace class. 

That such a description is possible has been shown in detail in Section IV. Let us 

now explicitly define the characteristic distribution' which corresponds to such an 

operator-valued measure. As the latter has a density, the characteristic distribution 

is simply the inverse Fourier transform of the operator field X --+ Px' 
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Here we follow Bonnet ([17], definition (3.4)). Let f) be a test function belonging 

to the space V(G). Let us define the function if by 

(28) 

and let us denote1:>Y X ~ T (f))x the operator field, Fourier transform of the test 

function f) : 

(29) 

If T is a distribution, the number obtained by smearing it with the test function f) 

will be denoted by < T, f) >. This being said, the characteristic distribution of the 

operator-valued measure (3) (i.e., its inverse Fourier transform) is defined by 

(30) 

The extension of these definitions to the n-particle case is straightforward. We have 

to consider an operator-valued measure of the form 

(31) 

If we put for a moment G = pn, this measure can again be written in the form (3). 

The definitions (28) and (29) still hold, and the characteristic distribution is still 

defined by equation (30). 

If </> is a function over G, we shall call left translate and right translate of </> by 

an element, E G the functions, denoted respectively by (,)</> and </>(,) : 

(,) </>9 = </>,-19 

</>(')9=</>9, . 

If T is a distribution over G, its left and right translates, denoted respectively by 

(,)T et T(,), are defined by 

< (, )T, </>, >=< T, (,-I)</> > 

< T(,),</> >=< T,</>(,-I) > 
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These definitions will be used in the case where G is equal to pn, while I belongs 

to the diagonal subgroup Gd of G. 

With these notations, the transformation law of a characteristic function (see 

(I), equation (18)) reads 

I : if; -+ if;' (I ) if;(,) (32) 

The transformation law of a characteristic distribution is the same: 

(33) 

Finally, let us note that as the characteristic distributions are the inverse Fourier 

transforms of positive operator fields, they are positive-definite distributions [17]. 

B. Characterization of homogeneous systems and kenemes 

1) An n-particle state which is invariant by all the transformations of the in­

variance group will be called a homogeneous state. Let T be the characteristic 

distribution of a homogeneous state, it has the following property: 

for any lEGd , (34) 

An n-particle system which can annihilate has been called a keneme ; the state of 

a keneme will be called a closed state. (The term refers to the completion property, 

see farther). 

If n = 1, one has a trivial keneme: a "particle" whose states transform by the 

trivial representation, denoted by w, of the invariance group G. This representation 

is defined by 

for any 9 E G , Uw,g = I . (35) 

Hence the characteristic function of the trivial keneme is constant ; one may say 

also that it is invariant by left and right translations : 

for any lEG , (36) 
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Let us now consider a non-trivial keneme (n > 1). As it can annihilate, its 

global particle is a trivial keneme. If its state could be described by a characteristic 

function </J, as would be the case if the group G were compact, the restriction of this 

function to the diagonal subgroup Gd would be a constant. Now we have a theorem 

(reference [18], corollary 32.6, p. 257) which says (with our present notations) : let 
! 

</J be a positive-definite function on Gn, and let Go be the set of the elements y of 

Gn such that </J(Y) = </J( e). Then Go is a subgroup of Gn, and the function </J is 

invariant by right and left translations by the elements of Go. From this theorem it 

follbws that if </J would be constant on the diagonal subgroup Gd , the latter would 

be included in Go ; hence the characteristic function </J would be. invariant ,by the 

right and left translations by the elements of the diagonal subgroup: 

for any, E Gd (37) 

The converse is obvious-: if </J has the· property· (37), it is constant on the diagonal 

subgroup. 

We know, however, that in fact the keneme does not have a characteristic func­

tion. (Because its global particle is a trivial keneme, its global state is described 

by a density of statistical operator which is a multiple of the identity operator, and 

which therefore is not trace class, see Section III). Not knowing a priori whether the 

restriction to the diagonal subgroup of the characteristic distribution of the keneme 

can be defined, we cannot be sure that it makes sense to say that this restriction is a 

constant. But property (37), which for a function is equivalent to being a constant 

over the diagonal subgroup, still makes sense for a distribution. Hence we shall 

adopt this property as a characterization of kenemes. 

Summarizing: kenemes are characterized by their characteristic distributions 

being invariant by left and right translations by the elements of the diagonal sub­

group: 

for any, E Gd (38) 

As to homogeneous systems, they are charact\erized by their characteristic distribu­

tions being invariant by internal automorphisms of the group Gn, induced by the 

elements of the diagonal subgroup: 
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for any / E Gd (39) 

c. Relations between kenemes and homogeneous systems 

1) The characteristic properties (38) and (39) immediately show that any kene­

me is a homogeneous system; the converse is false. 

2) Let us show that any subsystem of a homogeneous system is a homogeneous 

system. That would be trivially true if the characteristic distributions were func­

tions. "Recall indeed '(see (I), equatiori(19))'tnat if we have a system of n particles 

and if we neglect (n-p) particles among the n, one gets the characteristic function 

of the second system, from that of the first one by putting equal to e. (the neutral 

element of the group) the variables associated with the neglected particles. Now it 

is easily seen that if property (39) holds true for a function, it still holds true for 

the restriction of this function obtained by put'ting equal to e some of the variables. 

It will remain for us to discuss the existence of the restriction of a characteristic 

distribution to a subgroup defined by putting equal to e some of the variables. 

We shall say that the distribution T is localizable with respect to the variables 

gp+l, ... ; g'n if the restriction defined by putting. these variables equal to e exists. 

If such is the case we shall say that gp+l,"', gn are function variables, whereas 

gl, ... ,gp are distribution variables. Any function variable can be considered as a 

distribution variable; the converse is false.. 

To express conveniently this type of properties, we shall use one of the following 

two notations. 

Notation a. One writes only the function variables. The distribution T, lo­

calizable with respect to the variables gp+l, ... ,gn, will be denoted by T9p+l ... gn' It 

can be smeared over a test function which depends on the distribution variables 

gt, ... ,gp ; the result is a function whose value reads < T9P+l· ..gn, <P >. 

Notation b. One writes all the variables : the function variables as lower 

indices, the distribution variables as upper indices. The same distribution as above 
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will be written T:;;/~gn' Smearing it over the same test function as above, one gets 

the function of gp+l, ...,gn 

(one applies the Eipstein convention). 

Now let T(n) be the characteristic distribution of a homogeneous system of n 

particles. If T(n) is localizable with respect to the variables gp+b'" ,gn, we shall 

admit that the inclusive characteristic distribution (i.e., the distribution defined by 

neglecting the (n-p) last particles) reads in notation a : 

T(p) = T(n)9p+l=...=gn=e . 

The announced property immediately follows : if the system described by T( n) is 

homogeneous, the system described by T(p) is homogeneous. 

As an important particular case, any subsystem of a keneme is a homogeneous 

system. 

3) Let H(n) be the characteristic distribution of a homogeneous n-particle state. 

Let us define the distribution F(n +1), localizable with respect to the variable gn+l, 

by 

(40) 

This definition implies, as is readily checked, that F(n + 1) is invariant by left and 

right diagonal translations (see equation (38)). It can also be shown that if H(n) 

is a positive-definite distribution invariant by diagonal internal automorphisms (see 

equation (39)), then F(n + 1) is also a positive-definite distribution. 

F(n + 1) is a (right or left) translate of H(n) by an element of the diagonal 

subgroup. Its definition immediately implies that H (n) is the inclusive characteristic 

distribution defined by putting equal to e the variable 9n+l of F(n + 1) : 

H(n) = F(n + l)gn+l=e ( 41) 

Furthermore, one has the following unicity property: if a right and left invariant 

distribution F(n + 1) is related to H(n) by equation (41), then it is given in terms 
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Qf H(n) by the relatiQn (40). This is an immediate CQnsequence Qf the invariance 

prQperties Qf F. 

All these prQperties can be given the fQllQwing physical interpretatiQn : the hQ­

mQgeneQUS system described by H(n) can be cQmpleted into. a keneme described by 

F(n + 1). Thus we have shQwn that any n-particle hQmQgeneQus distributiQn can 
! 

be cQmpleted to. a (n + I)-particle keneme distribution. The distributiQn F(n + 1) 

defined by equatiQn (40) will be called the completed distribution Qf the distributiQn 

H(n). 

VI. The characteristic distributions of vacuum 

It must first be stressed that Qur fQrmalism is a purely kinematical Qne, which 

is essentially una.ble to., distinguish" between",a particlein the usuaL sense. Qf the.wQrd , 

and a glQbal particle, cQmpo.sed Qf particles Qf any kinds. In the fQllQwing, by the 

wo.rd "particle" it will be understo.Qd any Qbject which carries the dynamical vari­

ables related to. the invariance grQUp. 

A. The vacuum keneme distributions 

Here there is no. descriptiQn Qf vacuum per se nQr Qf vacuum as a who.le. Instead, 

to. all prQcesses invQlving N particles we assume that Qne can asso.ciate a unique N­

particle keneme. (See Sectio.n ILC). The characteristic distributiQn Qf this keneme 

will be denQted by F(N) and called the N-particle vacuum keneme distribution. 

As we kno.w, these distributiQns have the fQllQwing invariance prQperty : 

fo.r any 9 E G , (g)F(N) F(N)(g) = F(N) (42) 

F(N) is a positive-definite distribution; hence it has a FQurier transfQrm, which 

is an QperatQr-valued measure with slQW grQwth Qn eN (see reference [17], theQrem 

4.1). This measure defines a cQnditiQnal N-particle statistical o.peratQr, which will 

be deno.ted by Y (N) and called the N -particle vacuum keneme statistical operator. 

The measure in questiQn do.es nQt have a density. Indeed, as it describes a keneme 

it is cQncentrated Qn the part Qf, eN defined by the cQnditio.n : 
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Xl 0 ... 0 XN weakly contains the trivial representation w (43) 

(An irreducible representation X is said to be weakly contained in a representation R 

of the group G, if X is present when one writes R as a direct integral of primary repre­

sentations, i.e. of r~presentations which are multiples of irreducible representations). 

Equation (43) defines a part of {;N whose measure is zero; if there would exist a 

density it would be concentrated on a part of measure zero, hence equivalent to zero. 

B. The homogeneous distributions of vacuum 

The subsystems of the N-particle keneme will be represented by a set of statistical 

operators ZN(n) (n = 1"", (N - 1)). 

On the other hand in quantum statistical mechanics [19], the state of a system of 

N identical particles is represented by a set of n-particle reduced statistical operators 

(n 1"", N), denoted by W(n). The operator W(N) gives a complete description 

of the state of the system. Each operator W (n) is obtained by averaging over (N - n) 

particles. 

The main differences of the present formalism with statistical mechanics are 

the following: a) there exists no statistical operator which would give a complete 

description of vacuum; b) ZN(n) is defined for any (N,n) such that n < N ; c) 

Z(n) is not a usual statistical operator, but a conditional statistical operator, of the 

type studied in Section IV. 

As the operator ZN(n) describes global particles, the operator-valued measure 

defined by it has a density. (This means that vacuum contains no real particles: 

to them would correspond Dirac measures). The operator-valued measure will be 

supposed to be with slow growth, hence it has an inverse Fourier transform HN ( n), 

which is the characteristic distribution of ZN(n). 

The invariance of vacuum by the invariance group implies that ZN(n) and HN(n) 

have the invariance properties characteristic of a homogeneous system. Hence as we 

know, 

for any 9 E G , (44) 
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Among the various HN(n) for a given N, the distribution HN(N - 1) plays a 

special role: as equations (40) and (41) define a one-to-one correspondence between 

F(N) and HN(N - 1), the latter contains the same information as its completed 

distribution F(N), which is the N-particle vacuum keneme distribution. The dis­

tribution lIN(N - 1) will be denoted simply by H(N - 1), and it will be called 
! 

the (N - 1)-particle vacuum open distribution. Accordingly, the statistical operator 

ZN(N - 1) will be denoted by Z(N - 1) and called the (N - I)-particle vacuum 

open statistical operator. 

C. The case n = 1. 

We have seen (Section III) that as a result of the homogeneity of vacuum, the 

one-particle vacuum open statistical operator has the form 

(45) 

Here Ix stands for the identity operator on the space 1ix , and X -)0 ax is a positive­

valued function, which will be called the spectral function. 

The one-particle vacuum open distribution is the inverse Fourier transform of 

the measure defined by equation (45). Formally, it reads 

(46) 

But we know that the operator UX,g is almost never trace class, because the repre­

sentation X is almost everywhere infinite dimensional. This is why H(I) is not a 

function, but a distribution. 

The distribution which gives a meaning to equation (46) is called the character 

of the representation X. In the case where G is the Poincare group P, the characters 

have been computed by Joos and Schrader [20,21] and by Fuchs and Renouard [22]. 

Let us call ~x the character of the representation X, defined formally by 

Then the spectral representation (46) of H(l) reads 
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D. Simple examples 

1) Assume that the vacuum particles are without interaction. Then the N­

particle vacuum open statistical operator Z(N) is the tensor product of N one­

particle statistical operators Z(l). Likewise, the N-particle vacuum open distribu­

tion H(N) is the tensor product of N distributions H(l) : 

H(N)91"'9N- = IIN 
H(1)9i" (48)k 

i=l 

2) On the other hand, the simplest example of spectral density is a constant 

. spectral density, say equal to one~ The corresponding distribution H(l) is a Dirac 

measure at the neutral element of the group : 

(49) 

Indeed, by equation (30) the Fourier transform of this measure is the operator-valued 

measure (Px, dx) such that 

< 8, B>= Be = fa Tr [T(B)x Px] dX (50) 

But on the other hand the Fourier inversion formula for Breads 

and we have therefore 

8. = faTr [T(fJ)xl dX . (51) 

By comparing equations (50) and (51) one checks that the operator-valued measure 

which satisfies (50) is indeed 

Px = Ix . (52) 

A vacuum which has such a spectral function can be called a white vacuum. 
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The other extreme case would be to take for the spectral function a Dirac mesure 

at the point w of the dual. This would represent a desertic vacuunl. 

If, on the other hand, we would take a Dirac measure at the point X of the dual, 

we would no longer have to do with a vacuum, but with a gas of real particles. 
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