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Abstract 

Although quantum relativistic physics gives a central role to invariance 

by the Poincare group P, it still seldom uses the Fourier transformation on 

this group. It is shown here that this transformation is a natural tool of 

quantum relativistic kinematics. Some basic notions are recalled: the Fourier 

transform of a function defined on a group G ; an operator-valued measure on 

the dual G ; the inverse Fourier-Stieltjes transform of such a measure. The 

state of a system of n free particles is represented by a statistical operator 

W, which defines an operator-valued measure on pn (P is the dual of the 

Poincare group). The inverse Fourier-Stieltjes transform of that measure is 

called the characteristic function of the system ; it is a function on pn. The 

main notion is that of global characteristic function: it is the restriction of 

the characteristic function to the diagonal subgroup of pn ; it represents the 

state of the system, considered as a single particle. The main properties of 

characteristic functions, and particularly of gloOOl"ChaTacteri:strcil1n'ctitrnS',':tre"j,.. ,_. ".~, , . , '. " -.,,~. "-,, '.~-... 
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I. Introduction 

By the usual Fourier transformation, a function is represented as a combination 

of exponentials. Why exponentials, and not another family of functions? Because 

the function eiwt defines a unitary representation of the translation group. In the 
! 

frequency analysis of a signal, there is indeed an implicit reference to the signal 

passing through a linear filter, invariant by the translation group [1]. 

In a physical theory invariant by a group G larger than the translation group, 

one 
l 
should therefore expect to meet the Fourier transformation on G. The Fourier 

transformation on a gr911P has been long known to mathematicians [2, 3]. Up to 

now, however, physicists hardly used the resources of this mathematical theory. It 

will be shown here that it is a natural and necessary tool of quantum relativistic 

kinematics. The relevant group G is the universal covering group P of the Poincare 

group (or inhomogeneous 8L(2, C)). 

First some basic notions on Fourier transformation will be recalled. Then the 

characteristic function [4, 5] of a one-particle state will be defined: it is a function 

on P, which turns out to be the inverse Fourier-Stieltjes transform of the operator

valued measure on the dual P, defined by the statistical operator (usually called 

"density matrix") of the state. 

The characteristic. function..ofan..n..particle.$.tate.will.bedefined in. an. analogous 

manner : it is a function on pn. The restriction of this function to the diagonal 

subgroup of pn is the global characteristic function [5] of the state. Its physical 

meaning is simple and important: it characterizes the global state of the system, 

i.e. the state of the n particles, considered as a single particle. This notion is an 

elementary quantum mechanical one ; particle physics uses it implicitly, especially 

in the study of resonances in production reactions, but it does not seem to have ever 

been explicitly defined. 

An appendix shows that the two types of characteristic functions which have 

been introduced belong respectively to two mathematical objects - the Fourier al

gebra and the Fourier-Stieltjes algebra - which play an important role in harmonic 

analysis. 
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II. The Fourier transform 

A. The Fourier transform of a function 

The mathematical properties stated in this article are meant to be applied to 
! 

the case where the group Gis P = inhomogeneous SL(2, C) (the universal covering 

group of the Poincare group), or else a direct power pn of this group. (One might as 

well consider the case where G also contains discrete symmetries like P, C, T, and an 

int~rnal symmetry group. About T, see paper II). They will be stated mostly under 

a rather general form ; the groups P and pn, as well as their extensions to discrete 

and internal symmetries, belong to the class of groups which will be considered. 

(For brevity's sake, P will sometimes be called simply the "Poincare group"). 

Let G be a separable unimodular type I Lie group [6]. The invariant measure on 

G (Haar measure) is defined up to a factor ; this factor will be chosen once for all, 

and the so fixed Haar measure will be denoted by dg. 

The set of the equivalence classes of irreducible continuous unitary representa

tions of G is called the dual of G, denoted by G. (In the following, we shall say 

"representation" instead of "unitary continuous representation"). In each equiva

lence class we shall choose a certain representation, hence Gwill be considered as a 

set of representations. In the representation X E G, the element 9 EGis represented 

by the unitary operator UX,g ; the space of this representation is denoted by llx' 

The Plancherel measure on Gwill be denoted by dX ; its normalization is fixed 

as soon as the normalization of the Haar measure is chosen. 

The definition of an operator field on Gamounts to giving, for almost all X E G, 
an operator Ax on the space llx' Let 4> be a complex valued function on G. If 1 is 
integrable, the Fourier transform of 1 is the operator field on G defined by 

(1) 


(For reasons to appear later, the names of variables will be written as indices). 

If the function X -t Tr[T(1)xUx,g] is integrable on Gfor any 9 E G, equation (1) 

can be inverted : 
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(2) 


B. The inverse Fourier-Stieltjes transform of an operator-valued measure 

! 
Mathematicians usually start with a function on a group and define its Fourier 

transform, which is an operator field on the dual; the inverse Fourier transformation 

allows one to come back to the function. But for the problems of interest here the 

statting point is an object on the dual. The statistical operator which describes the 

state of a particle is indeed related to an irreducible representation of the invariance 

group, and therefore to a point of the dual. We shall also introduce states which 

have a mass spectrum (the global states) ; here we shall have an operator field on the 

dual. The notion which includes these two different situations is an operator-valued 

measure on the dual, which has an inverse Fourier-Stieltjes transform [5, 7]. Let us 

now proceed to define these notions. 

Let J.L be a positive scalar measure on G, and let F be an operator field defined 

on the support of J.L : to any X E supp(J.L) there corresponds an operator Fx on ?-lx' 

The couple M = (J.L, F) defines an operator-valued measure on G. If the operator 

Fx is positive..and trace class. J.L-almost everywhere, and.if the function X :-7 Tr(Fx) 

is J.L-integrable, one says that the operator-valued measure M is trace class. 

If M = (J.L, F) is a trace class operator-valued measure on G, its inverse Fourier

Stieltjes transform </.> is defined by a Stieltjes integral: 

(3) 


If the measure J.L is absolutely continuous with respect to the Plancherel measure, 

one can assume without restriction that it is equal to the Plancherel measure; the 

operator field F then appears as the spectral density of the operator-valued measure 

M with respect to the Plancherel measure (otherwise stated, as its Radon-Nikodym 

derivative). If J.L is equal to the Plancherel measure, definition (3) becomes 

</.>g = fa Tr [Fx UX,g-l] dX (4) 

and we get back formula (2). 
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We shall need also another particular case: the case when f.l is a Dirac measure 

at the point X E G, whereas the field F reduces to a single positive trace class 

operator W on ?-lx' The operator-valued measure thus defined will be called the 

Dirac measure W at the point X. Its inverse Fourier-Stieltjes transform is given by 

(5) 

c. Examples 

8U(2) 

For a compact group such as 8U(2), the dual is discrete; in equation (2), the 

integration reduces to a summation. The natural normalisation of dg is defined 

by putting the total measure of the group equal to 1 ; as a result, the Plancherel 

measure of a representation is equal to its dimension. 

For 8U(2), the Haar measure is defined by 

where 0::, /3, I are the Euler angles. 

The dual is the set of the possible values of the angular momentum: 

G= {O, 1/2, 1,3/2,,, .} 

The Plancherel measure consists in masses 2j + 1 at the points j : 

Pj = 2j + 1 (6) 

For any j E G, the space ?-lj has dimension 2j + 1 and the operator Uj,g is defined 

by the matrix 

< mlUj,glm' >-' D~m/(g) 

where the D~ml are the well known matrix elements of the j representation of 8U(2). 

The Fourier transformation sends the function f on G onto the operator field defined 

thus: to any j corresponds the operator 
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(7) 

The Fourier inversion formula expresses the function f in terms of the operator field 

7(f) : 

(8) 

It can be obtained directly by using the orthogonality relations of the matrix ele

ments of the representations of SU(2). The form of equation (8) makes obvious the 

fact that it is a particular case of equation (2). 

But we shall need, rather than the inverse Fourier transform (8), the inverse 

Fourier-Stieltjes transform of an operator-valued measure, especially that of the 

Dirac measure at the point j. This transform is a particular case of equation (5) : 

(9) 

Poincare group P 

The above defined group P is locally compact, but not compact: its total Haar 

measure is infinite. Hence the dual is not discrete. In physics one uses most often the 

part of the dual which corresponds to the irreducible representations with positive 

squared mass and energy. Let us remark at once that the representations which 

differ from the ones just mentioned only by having a negative energy are as simple, 

they can be obtained for instance by taking the complex conjugate of the operator 

for positive energy. These two classes of representations are relevant for the study of 

vacuum (article II) ; hence their products (which contain some representations with 

m2 < 0) are relevant also. The following considerations hold for all the mentioned 

classes of representations. However, we shall always take as examples the well known 

representations with m2 > 0 and positive energy. 

In order to define the Haar measure and to fix its normalization, let us write 

with Nghiem [8, 9] an element of SL(2, C) under the canonical form 
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In this equation U denotes an element of SU(2) ; Hk is the unique hermitian positive 

matrix which sends the vector k onto the vector (1,0,0,0) ; finally, k is the image of 

the vector (1,0,0,0) by A-I. We can now define the Haar measure on SL(2, C) : it 

is given by 

where d3 U is the Haar measure on SU(2). Hence the Haar measure on P is given 

by 

(10) 

This normalization of the Haar measure fixes that of the Plancherel measure. In 

particular, the latter reads on the representations with positive m2 thus (8 denotes 

the spin value) : 

(11) 


The Fourier transform of a function on P is the operator field on P defined by 

equation (1). The Fourier inversion formula is given by equation (2). The extension 

to the case G =pn is straightforward. 

Practically, to compute the operator T(</»x and to evaluate the trace in equation 

(2) one uses an improper basis in the space 1ix ' See reference [5], and for more details 

Nghiem's papers [8, 9]. 

Finally, the inverse Fourier-Stieltjes transform of the operator-valued Dirac mea

sure W at the point X is given by equation (5). 

III. Characteristic functions 

A. One particle , 

Let us first consider a spin j, i.e. a particle of spin j, of which we consider only 

the spin degrees of freedom. Its state is defined by a statistical operator W on the 

space 1ij (whose diInension is 2j 1) of the representation j of SU(2). To this state 

one may also associate the Dirac operator-valued measure W at the point j. 

7 



I 

We define the characteristic function of the state as the inverse Fourier-Stieltjes 

transform of the latter operator-valued measure. This transform is the function ¢ 

given by equation (9). As W is trace class, the function is defined everywhere on 

the group; the trace of W is equal to the value of the characteristic function at the 

neutral element of the group: 
! 

Tr W == ¢e (12) 

The positivity of the operator W is equivalent to the fact that ¢ is a positive-definite 

function [6, 10]. 

It should be noticed that the characteristic function is not the inverse Fourier 

transform of the operator field defined by putting W at the point j, zero elsewhere; 

the latter is given by equation (8), not equation (9) ; it is the same function, but 

multiplied by (2j +1). The choice made will be justified later; let us already remark 

that it alone can be extended to a non-compact group. 

Let us now consider a particle transforming according to the representation X of 

the group G == P. Its state is represented by a statistical operator W on the space 

?-lx' The associated operator-valued measure is the Dirac measure W at the point 

X. Again, we define the characteristic function of the state as the inverse Fourier

Stieltjes transform of the latter operator-valued measure. It is given by equation 

(5). As W is trace class, this function is defined everywhere on G. 

As for a spin, the positivity of W is equivalent to the fact that ¢ is a positive

definite function. The trace of W is again given by equation (12), where e denotes 

the neutral element of G. 

B. Several particles 

Let us now consider the case of n spins jt,. ", jn. The state of the system is 

represented by an operator W on the space 

This case is analogous to that of a single spin : one should only replace the group 

SU(2) by SU(2)n, a group whose elements read (g1 ... gn). The elements of the dual 

8 



of SU(2)n read (jl,' .. ,jn) ; the operator Uj1 ''' jn ,91 ...gn is the tensor product 

The characteristic function of the state W reads 

A..g 9 = Tr {W [U. . -1 -1] } (13)'f/ 1 •.. n J1 '''In,gl ···gn 

As in the case n = 1, this equation defines the inverse Fourier-Stieltjes transform of 

an operator-valued measure, namely the Dirac measure W at the point (jb' .. ,jn) 

of the dual. 

Let us consider now n particles, corresponding to the irreducible representations 

XI,' ", Xn of the group P. The state of the system is represented by an operator W 

on the space 

This case is analogous to that of a single particle : one should only replace the 

group P by pn, a group whose elements write (91 ... 9n). The elements of the dual 

of pn read (Xl, ~ .. ,Xn) ; the operator UX1 "' Xn ,91 ...gn is the tensor product 

(14) 

The characteristic function of the state W reads 

]} (15) 

As in the case n = 1, this equation defines the inverse Fourier-Stieltjes transform of 

an operator-valued measure, namely the Dirac measure W at the point (Xb"', Xn) 

of the dual. 

IV. Properties of the characteristic functions 

The properties and the physical meaning of characteristic functions have been 

studied in detail in reference [5]. Let us recall here some essential results. 
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A. Meaning of the characteristic function 

As shown by equation (5), the value of the characteristic function </> of a state 

at the element 9 of the group is the expectation value in this state of the operator 

UX,g-l. This definit~on is analogous to that of the characteristic function of a random 
itXvariable X : its val~e at t is the expectation value of e . Furthermore in the case 

G = P, the restriction of </> to the translation subgroup, a -+ </>( a, e), turns out 

to be the characteristic function (in the usual sense of probability theory) of the 

enetgy-momentum vector. If indeed we write an element of P under the form (a, A) 

with a E T (the translation subgroup) and A E 5L(2,C), the operator U(a,e) 

can be written exp(iap.PP.). (The neutral elements of P and of 5L(2, C) will be 

both denoted·by e). Hence the expectation values of the components of the energy

momentum vector are given by 

(16) 

(We did not assume that the statistical operator is normalized ; we have used equa

tion (12)). 

More generally, the expectation values of the dynamical variables of the system 

can be obtained by applying to the characteristic function suitable differentiable 

operators, which correspond to elements of the universal enveloping algebra of the 

Lie algebra of the Poincare group. 

Let us define the partial Fourier transform [9] (on the translation subgroup) of 

the characteristic function </> : 

- f ika 4</>k,A = e </>a,A d a . 

As </>( a, e) is the characteristic function (in the probabilistic sense) of the energy

momentum vector, the restriction of ~ defined by putting A = e is the (unnormali

zed) probability density of the energy-momentum vector. 

Let us now consider the restriction of <!> defined by giving to k a fixed value and 

restraining A to the little group of k, i.e. to the subgroup of the elements of 5L(2, C) 

which leave k fixed: Ak = k. It can be shown [5], thanks to Nghiem's results [9], 
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that this restriction gives the spin characteristic function (cf. Section IILA) of the 

particle. Explicitly, the spin characteristic function is given by 

(17) 

where Hk has been! defined in Section ILC, and 9 is an element of 3U(2). 

B. Transformation law 

Let us consider a one-particle state defined by its statistical operator Wand 

by its characteristic function ¢> ; let X be the irreducible representation associated 

to the particle. The element I of the invariance group transforms this state into 

another one, whose statistical operator is 

Equation (5) then gives the new characteristic function ¢>' : 

and finally 

This transformation can be generalized to the case of an n particle state. If 

ther~ is no in~eraction between the particles, we might consider pn as the invariance 

group G, because in this case the dynamical variables relative to each single particle 

are separately conserved. However, the interesting cases are those where there is an 

interaction somewhere; for instance, the state might be an asymptotic ingoing or 

outgoing state. The invariance group is then the diagonal subgroup Gd of G, defined 

by 

g1 == ... == gn 

The transformation law reads 

¢>' == ¢> -1 -1 (18)91 "'9n 'Y 91 'Y"''Y 9n'Y 
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c. Inclusive characteristic functions 

Let us note finally that the characteristic function of a system of particles also 

allows one to express the inclusive characteristic functions. An inclusive state of 

a system of n particles is obtained by neglecting some of them, for instance those 
! 

numbered by p + 1,"',n. One has to take the partial trace of the n particle 

statistical operator with respect to the degrees of freedom corresponding to the 

(n - p) neglected particles. This operation becomes very simple with characteristic 

funttions : 

(19) 


One puts equal to e (the neutral element of the group) the variables corresponding 


to neglected particles. 


V. Global characteristic functions 

A. The state of a global particle 

Let 'us'consider"a'system of n -particles- deseribed-·by.-·irreducible---representations- -

of the invariance group. What are the properties of this system, if we consider it as 

a single particle? (In the following, this particle will be called the global particle). 

This problem is often approached, although not quite explicitly. For instance, one 

-may study the motion of the center of mass. One may also consider the total 

angular momentum of the system, or else its effective mass (i.e. the mass of the 

global system) ; the latter case occurs in the experimental study of resonances in 

production processes. 

To get the state' of the global particle, one has to take the partial trace [11] of the 


statistical operator of the n particle system over all degrees of freedom, except those 


which correspond to the global motion. This operation, however, is not always easy 


to carry out. Let us show that it is very simple if one uses characteristic functions. 


Let ¢ be the characteristic function of the system: it is a function on pn, defined 


by 
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(20) 


Let us now consider the restriction ¢glob of ¢ to the diagonal subgroup. Clearly, this 

is the characteristic function of the global particle (or, as we shall call it, the global 

characteristic func~ion). Indeed, the restriction to the diagonal subgroup means 

that one considers only the combined motions of the system. Besides, definition 

(20) implies that the expectation values of the dynamical variables PJJ.' MJJ.ln which 

correspond to elements of the Lie algebra of the group, are obtained by adding 

the expectation values of the n single particle variables. (See equation (16) for the 

variable Pp.). 

To study the global characteristic function in more detail, let us consider the 

operator field which is its Fourier transform: 

Px = fa ¢glob 9 UX,g dg (21) 

This field is the spectral density of an operator-valued measure. Let K be a Borel 

part of G : the operator-valued measure assigns to it the operator 

W(K) =1: p"dX (22) 

on the space 

(23) 


The operator W(K) will be c~lled a conditional statistical operator (it is conditioned 

by [<). 

The operator-valued measure just defined is another representation of the state 

of the global particle. The mathematical object which has an immediate physical 

meaning is not the 'density of statistical operator Px, but rather the operator W([<). 

The latter is dimensionless, as are the probabilities computed from it, whereas Px 

has the dimension M-4 because dX has the dimension M 4, see equation (11). On 

the dual another measure than the Plancherel measure might be used, for instance 

dm2 
; in such a case the density of statistical operator would be modified, but W(K) 
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would not be. From this point of view, the expression (22) of the statistical operator 

is analogous to that of the power radiated by a source in the frequency range [111, 112] : 

This equation exp~esses the fact that the radiated power is an additive function 

of the frequency interval. If instead of the frequencies one uses the wavelengths, 

the spectral density of power becomes dWld). = (112 Ie) (dWld1l), but the radiated 

power is of course not changed. 

On the other hand, the dynamical variables of the global particle are represented 

by operator fields of the form 

Q : X -+ Qx 

The expectation value of the dynamical variable Q is given in terms of the statistical 

operator (22) by 

(24) 


If we use another measure on the dual, the operator field Q will not be modified. 

This is due to the fact that Qx depends on the X (the mass and spin, say) of the 

global particle, whereas W has the additivity property characteristic of a measure: 

if ]{l and K2 are two disjoint Borel parts of G, one has 

Qx is analogous to physical quantities like the refraction index or the absorption 

coefficient, which are not densities of additive functions of the frequency interval, 

and which are therefore independent of the measure used on the frequency axis. 

The representa~ion of a state by an operator-valued measure on the dual of the 

invariance group is not a familiar one; it is, however, unavoidable for a system like 

the global particle, which has the same dynamical variables as an elementary sytem 

[12], but is described by a reducible representation of the invariance group. 

Indeed, the definition of the global particle implies that its algebra of observa

bles is isomorphic to that of an elementary system. Now the center of the universal 

enveloping algebra of the Lie algebra of the Poincare group is generated by the 
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elements pttptt and Wtt Wtt . For an elementary system, the representation of the 

group is irreducible and the operators which represent pttptt and Wtt Wtt are multi

ples of the identity operator. For a global particle the representation is no longer 

irreducible, it is only multiplicity free; but the operators which represent the ele

ments of the center of the universal enveloping algebra still commute with all the , 
dynamical variables (in other terms, they still belong to the center of the algebra 

of observables). Physically, this means that Pttptt and WttWtt are superconserved : 

they define continuous superselection rules. Hence any state of a global particle is 

an incoherent superposition of states with fixed values of x. This is indeed precisely 

what is expressed by equation (22). Besides, if'we take for ]{ the whole dual we get 

an unconditional statistical operator : 

(25) 

In the just mentioned formalism of the algebra of observables, all observables are 

represented by operators on the same Hilbert space, which could be here only the 

unconditional space 

(26) 

Such a-representation- is useful in.. certain cases, ,-but- here it-would oblige us to as

sign to dynamical variables spectral densities, which are devoid of direct physical 

meaning. 

Let us point out at last that the formalism just introduced fits in well with the 

methods of experimental analysis of global particles, which are used for instance in 

the study of strong processes. In such a case the measurements are conditioned by 

the choice of an interval of effective mass, and often also by the choice of a value 

for the total angular momentum of the system. This was especially conspicuous, for 

instance, in an experiment by Baton and Laurens [13] : they studied dipions 7r-7r0 

in the mass region of the p meson ; their statistics was high enough to allow them 

conditioning their measurements by different mass intervals, whose width was most 

often smaller than that of the p meson. But for any value of the mass width chosen, 

the measured dynamical variables are always functions of the mass of the global 

particle, whereas the elements of density matrix which can be measured depend 
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additively of the mass interval. 

For those reasons the dynamical variables must be represented by operator fields, 

and the state must be represented by an operator-valued measure on the dual which 

allows conditional statistical operators such as (22) to be defined. 

! 
B. Conservation of the global particle 

The value of the characteristic function of a particle (simple particle or global 

particle) at the element g-1 of the invariance group is the expectation value of 

the operator of the representation of the invariance group. For a simple particle 

this operator is UX,g ; for a global particle it is given by the tensor product of the 

n irreducible representations, i.e. by equation (14) (where one must put every gi 

equal to g), or equivalently by an operator field X -+ UX,g . Now the operators 

of the representation of the invariance group are conserved quantities, as are those 

which represent the elements of the Lie algebra (the former are the exponentials 

of the latter). Hence the expectation values of those operators are also conserved 

quantities. This implies that in any tranformation process, the global characteristic 

function of the system is conserved. We shall use in article II a particular case of 

this : if n real particles transform into a virtual particle, the characteristic function 

of the virtual particle is equal to the global characteristic function of the initial n 

particle system. 

For a process described by an S matrix, one can give a formal proof of the 

conservation of the global characteristic function. Let 9 -+ Ug be the tensor product 

of the n irreducible representations corresponding to the n initial particles. The S 

matrix commutes with the Ug • The initial global characteristic function reads 

The final characteristic function reads 

¢(out)g 	 - Tr (Wout Ug-1) 

- Tr (SWin S-1 Ug -:-1) 

-- Tr (Win S-1 Ug -1 S) 

Tr (Win Ug-1) = ¢(in)g 
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c. Some details about the meaning of global characteristic functions 

In reference [5] it has been checked by elementary calculations (with use of the 

explicit forms of the matrix elements of the representations of SU(2) and P, respec

tively) that the res~rictions of the characteristic functions to the diagonal subgroups 

describe indeed the global state. These computations will not repeated here, but we 

shall now recall their main results. They show how the restriction of the characte

ristic function to the diagonal subgroup is reflected on the statistical operator, on 

the10ther side of the Fourier transformation. 

Example 1 : SU(2) 

Let us consider first the case of two spins jl and j2. The complete state of the 

system is described by a statistical operator W which can be written either in the 

basis of individual states Imlm2 >, or in the basis of global states IJM >. To go from 

one basis to the other one one uses the Clebsch-Gordan coefficients < mlm21JM >. 

In the basis 1JM >, the operator W is not diagonal in general. To pass from W to 

Wg1ob , we must eliminate the elements which are non-diagonal with respect to J : 

(27) 


with 

< MIWJIM' >=< JMIWIJM' > (28) 

Otherwise stated, the operator Wglob is obtained from' W by diagonal truncation 

with respect to J : if we call IIJ the projector onto the subspace defined by the 

value J for the total angular momentum, one has 

(29) 


If one computes the characteristic function f corresponding to the operator (27) : 

(30) 
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one can see that it is equal to the diagonal restriction of the complete characteristic 

function. 

Let us now consider the case of more than two spins. We have to do with a 

degenerate case : the common eigenspaces of J2 and Jz are now more than one

dimensional. We shall denote the vectors of the collective basis by IJM a >, where a 
I 

stands for one or several degeneracy parameters. The vectors of the individual basis 

will be denoted by 1m! ... mn >, or I(mi) > for short. The equations analogous to 

(27)-(28) read: 

(31) 


with 

< MIWJIM' >= La < JMalWIJM'a > (32) 

Here going from W to WJ is more complicate: equation (29) is replaced by 

(33) 


We have taken the partial trace with respect to the degeneracy parameters a. 

Here again, one can check explicitly that the characteristic function correspon

ding to the operator (31) is.equal to the diagonal restriction of the complete char

acteristic function. 

Example 2 : Poincare group 

The main difference with the SU(2) case is due to the fact that the dual is no 

longer discrete. In the definition of the global statistical operator Wglob, the direct 

sum of equation (27) is replaced by a direct integral [4, 6] : 

(34) 


To make explicit the definition of Px, we shall use continuous pseudobases in the 

spaces Jix ' We shall use the results and the notations of Joos [14]. Let us take 

the case n = 2. A one-particle state will be denoted by \k >, where k stands for 
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both the energy-momentum and the spin or helicity index. Similarly, a two-particle 

state will be denoted by Ikl k2 >. As we have almost always a degenerate case (the 

only exception is the case where at least one of the spins is zero), a global state 

will always be denoted by IXk1] >, where 1] stands for one or several degeneracy 

parameters. The ~lebsch-Gordan coefficients (whose explicit expressions are given 

by Joos) will be denoted by < kl k21 Xk1] >. The expression of an element of the 

global pseudobasis is 

where one has put 

here k stands for the space part of k ; 2:sp denotes summation over the spin indices 

contained in Iklk2 >. 

Let us call, as in equation (24), p the operator field "density of global statistical 

operator". The (improper) matrix elements of Px can be expressed in terms of those 

of the complete statistical operator W : 

(35) 


As shown by equation (21), the characteristic function corresponding to the 

operator-valued measure whose density is Px is the inverse Fourier transform of the 

field p. It can be checked explicitly that the latter is equal to the diagonal restriction 

of the complete characteristic function. 

The cases n > 2 differ from the case n = 2 only by some complications ; 1] 

becomes a continuous parameter. The Clebsch-Gordan coefficients for any n have 

been computed by ,Klink and Smith [15, 16]. 

Let us point out that all the results stated about the global state and the global 

characteristic function follow from the sole assumption of relativistic invariance. The 

properties of these objects are elementary kinematical properties. Their meaning 

did not appear clearly in references [4, 5], where they were mixed with a dynamical 

assumption about resonances. 
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Appendix: Functional spaces 

We have introduced two types of characteristic functions. The functions whkh 

describe one or several particles are the inverse Fourier-Stieltjes transforms of Dirac 

measures on the dual of a group (the invariance group, or a direct power of it) ; 

the functions which describe global particles are the inverse Fourier transforms of 

operator fields on the dual of the invariance group. Let us show that these two 

types of functions belong respectively to two types of functional spaces. These 

spaces, which play an important role in harmonic analysis, have been introduced by 

Eymard [17] in 1964. (For a recent review, see Eymard [IS]). 

The Fourier-Stieltjes algebra B(G) of a . locally compact group G is the vector 

space of the functions over G defined by : g ~< elUg l17 >, where U is a representa

tion (not necessarily irreducible) of the group. This space is also a Banach algebra, 

for a product and a norm which need not be specified here. 

The Fourier algebra A( G) of a locally compact group G is the closure in B(G) 

of the intersection of B(G) with the space L(G) of the continuous functions with 

compact support on G. All the functions of A(G) tend to zero at infinity (reference 

[17], proposition (3.7)). 

These definitions may look somewhat abstract; they will become more familiar 

by specifiying the relations of A(G) and B(G) with the operator fields and the 

operator-valued measures on the dual. 

Let £1 (G) be the vector space of the trace class operator fields on G, i.e. of 

the operator fields X ~ Ax such that the function X ~ Tr( lAx I) exists and is 

integrable. The relation of almost everywhere equality (for the Plancherel measure) 

is an equivalence relation, and the space of classes modulo this relation is denoted 

by L1 (G). We sha~l say for simplicity's sake that L1 (G) is the space of integrable 

fields on G. 
It follows immediately from the definition that an integrable field has an inverse 

Fourier transform: 

Let M - (p, F) be a trace class operator-valued measure on G (see Section 
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ILB), and let M( G) be the space of all trace class operator-valued measures. We 

know that M has an inverse Fourier-Stieltjes transform. 

We can now characterize A(G) and B(G) by using Fourier transforms. The 

Fourier algebra A(G) is the image by the inverse Fourier transformation of the 

space Ll (G). The Fourier-Stieltjes algebra B (G) is the image by the inverse Fourier
! 

Stieltjes transformation of the space M (G). 
It follows then from Section III that the characteristic function of an n particle 

state (n 2: 1) belongs to the Fourier-Stieltjes algebra of the nth direct power of the 
. I.
lnvanance group. 

According to equation (21) the global characteristic functions are the inverse 

Fourier transforms of elements of Ll (G). Hence they belong to the Fourier algebra 

of the invariance group. 

The difference between the two cases is due to the fact that the characteristic 

function of an n particle state corresponds to' fixed values of the masses ; on the 

contrary, a global particle has a continuous mass spectrum. 

We can see thus that the Fourier and Fourier-Stieltjes algebras might have been 

tailor-made for quantum mechanics. 

-. 
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