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A particularly interesting class of processes in perturbative QeD is represented by the 

semi-inclusive ones. These can be defined with a sum over the final states taken with a given 

energy or angle resolution. This limitation corresponds to introducing, in addition to the hard 

scale Q2, of a second much smaller scale Qi, A2 «Ql «Q2. The restriction of the allowed 

phase space that follows spoils the inclusive nature of the reactions and has the important effect 

that the Kinoshita-Lee-Nauenberg Theoreml ), that assures the order-by-order cancellation of 

the divergences associated with the real and virtual contributions, is no longer applicable. The 

main consequence of this is that within the perturbative expansion do appear contributions that 

are now unprotected from the cancellation of the real virtual singularities under the form of 

logarithms of the ratio of the two, very different, scales. These logarithms are therefore large. 

They originate from soft and collinear configurations, and order-by-order make larger the 
effective coupling constant. For each power of as' depending on the particular kinematical 

configuration, a maximum of two logarithms are present. Therefore one has a class of dominant 

double logarithmic corrections. Less leading configurations do also appear as single logarithmic 

correction as well as further less dominant constant corrections. This peculiar behaviour is not 

new in gauge theories. It is named after Sudakov since was found by Sudakov2) for the 

electron form factor and a similar form was also found in the quark form factor3). 

In order to get reliable theoretical predictions these perturbative contributions need to be 

resummed. For the process of the electron-positron annihilation this is, for example, the case of 

the initial state electromagnetic QED radiative corrections, around the peak of the ZO resonance. 

The main part of the radiation emission is represented by photons that are soft with respect to a 

given resolution scale ~ within the process. The shape and the size of the resonance peak is 

modified by these large double logarithmic corrections that have to be resummed. The 

particularly effective formalism of the electron and photon structure functions can be introduced 

to sum these corrections4). The "bare" Born e +e - -+ Zo cross-section is modified by a 

"radiatior" that represents the initial state radiation so that the corrected cross-section may be 

written as 

o(s) = Jdx H(x, s) 0 ((1 - x)s)
0 

whose x represents the ratio of the emitted photon energy with the total energy 2E and the 

radiatior H(x, s), given by the convolution of the electron and positron structure functions, can 
1 

be written to order O(a2) as He(x, s) = J D(z, s) D(l ~ x, s)~
I-x 

All 1 2 . A.t'n(1-x)
He(x, s) =A(s) ~ xtr - '2 ~(2-x) + 8" ~ [(2-x) [(3 .t'n(l-x) - A .t'n x] - x - 6 + xl 
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where p=2« (.tn s2 - 1) and the ftrSt tenn represents the exponentiated soft photon radiation 
1t IDe 

contribution with the virtual COtTeCtion fac10r A(s). The obtained expression can be extended to 

include also next-to-leading contributions and lepton-pair prcxluction to all orders5). 

The features described above are shown by a large class of processes when the semi

inclusive limit is enforced. If z defmes the semi-inclusive region of the phase space. The limit 

z .... 1 represents the boundary where parton radiation is strongly inhibited. 

Examples are : 
- Transverse momentum distributions of the lepton pair in the Drell-Yan process as 

well as the W± and zOPt distributions in pp collisions for small transverse momenta i.e. when 

A2 « P: « ct with ct the total (mass)2 z =1 _P:1Q2, 

- Higgs production at small transverse momenta by the gluon fusion mechanism, 

- Drell-Yan cross-section at large values of the z =ct/s .... 1 with s total center of 

mass energy squared, 
4m2 

- Heavy quark production near threshold when z =p =-s- .... 1, 

- Deep inelastic Scattering for large values of the Bjorken variable z =XBj .... 1, 

- e +e - annihilation. Energy-Energy correlation in back -to-back configurations, 

Thrust distributions for large Thrust values, jet distributions for small jet masses, etc. 

From the point of view of the perturbative treatment of these processes. Several new 

questions have to be considered : 

- The standard Renormalization Group approach is no longer sufficient. The 

additional soft logarithms need a separate treatment. Therefore new algorithms have to be 

developed in order to recover the perturbative expansion. 

- A richer structure of the perturbative series emerges given by leading double 

logarithmic and non-leading single logarithmic contributions. It is therefore natural to consider 

classes of contributions according to their place in the logarithmic chain. Therefore the various 

terms are more easily classified according to the power of the logarithm (~sJL m where m = 

2n gives the leading contribution for each n, m = n the next-to-Ieading and m < n the entire 

class of non-dominant terms. 

The perturbative evaluation of semi-inclusive quantities requires the summation of these 
large logarithmic contributions6,7,8). The fIrSt successful attempt of Parisi and Petronzi09,lO) 

to take into account the correct leading behaviour of the quark form factor, has been followed 

by a systematic study of the collinear combined with the infrared11 ,12,13) singularity 

structure. 
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Together with the factorization of the soft radiation 14) and the infrared logarithmic 

structureI5). A systematic program to calculate down to next-to-Ieading accuracy semi

inclusive quantities was started 

The particular case of a semi-inclusive distribution as the energy-energy conelation for 

hadrons near the back-to-back configuration or, equivalently, at small relative transverse 

momentum Qj.« C; showed that a next-to-leading evaluation of the quark fonn factor, which 

controls such configurations, is possibleI6). The final distributions in tenns of the collinearity 

angle e~ 1800 takes the form, by transforming to the impact parameter space, 

_1_ do =~ I b db 10 (bQ sin ell) exp [T(Qb)] +F(Q. e) (1) 
O'tot dcos e 

where F(Q, e) contains the O( as) contribution not taken into account in the exponentiated first 

tenn. 

with b = 2 e-1E and o 

(3) 

Here N f is the number of the flavours and the A (i) and B (i) coefficients correspond to a 

perturbative expansion of the fonn A = ~ An (asJ and B = ~ Bn (aJn of the exponent. 
n;;;Q 7t n;;;Q 7t 

The two-loop coefficient A (2) allows the sum up to the next-to-Ieading (asL)n logarithms. The 

knowledge of other coefficients A (n) (n > 2) and B(n) (n > 1) would pennit the inclusion of 
nfurther non-dominant logarithms of the form an ..en -k (k > 0). More generally the distribution 

in eq. (1) can be written as 
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(4) 


where 0'0 is the Born cross-section and C = 1 + ~ U~ C takes into account the constant terms 
n=1 n 

co n+l n 
in the development ~ = exp {~ ~ Gnmu CnLm} gives the form factor of eq. (1) and the 

n=1 m=1 s 

co 
additional term F = ~ U~ fn takes into account conuibutions that vanish for ~ ... 0 i.e. in the 

n=1 

semi-inclusive region. The universal structure of the logarithmic corrections in eq. (2) and eq. 

(4), is conflnned by the evaluation of the Drell-Yan PT distribution as for example for the 

W±zP production at the pp collidersl7) with the explicit appearance of the leading and next-to

leading coefficients of the logarithmic tenns A (i) and B(i) in the final distributions. 

A similar structure at the next-to-leading accuracy can be also found in the gluon form 

factorI8), which, apart from the different spin structure dependent B(I) term can be obtained 

with the change CF ... C A from the quark form factor. 

The study of the leading and next-to-leading singularities in the large x (x ~ 1) region of 

the deep inelastic and Drell-Yan distributions has further confmned this universal behaviour. 

Mter a first approach 19) a complete evaluation of the exponentiated next-to-leading logarithmic 

structure has been carried20). 

In ref. (20) the followings exponentiated structure has been demonstrated to take place for 

deep inelastic and Drell-Y an processes: 

. Deep Inelastic Scattering 

For large values of the Bjorken x variable the Mellin transform of the structure functions 

NF(x, Q2), FN(Q2) = I
1 
dx x -1 F(x, Q2) are given by the expression 

o 

with A and B given by the same eq. (3). 

'. 
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. Drell-Yan 

According to the mass singularity factorization theorem20) the DY cross-section is 

(6) 

(forlarge values of t '" ~ variable) in tenns of the moments W N(cr) '"J~ dt t N-1 W(t, cr). 

WN(cr) 
It can be shown21) that the coefficient function Il.~cr) '" ~ has in the t -+ 1 (N-+ 00) 

N(cr) 

limit the following expression 

(7) 

that at 0(a;) takes the explicit fonn : 

as(Q2) 2 ] (as(Q2)J[r1.en ~(Q') '" It CF.e n N - ~2 - 2 'YE ).e n N + It CF 

[It 13 0 .en3N + (i K - ~ It 13 0 + 3 'YE It 13 0 ).en2N + O(.en N)] +O(a~) (8) 

33 - 2Nf
with 13

0 
= and YE the Euler gamma constant. 

121t 

The coefficients in eq. (8) coincide with the corresponding ones to O(a) and O(a;) with 

the fmite order expression in ref. (22) and ref. (23). 

The exponentiated two-loop expressions in eq. (5) and eq. (7) constitute the all-order 

extension of the two-loop evaluation for the structure and coefficient function in deep inelastic 

and Drell-Yan processes24) needed to describe the boundary region of phase space for these 

processes. Recently the problem of the resummation of leading and next-to-Ieading 

contributions to event shape variables has been also considered. 

In particular the case of the Thrust distribution and of the heavy Jet Mass have been 
considered25). For large values of the Thrust the appearance of large corrections of the type as 

.en2(1 - T) and as.en (1 - T) in the large Thrust region T == 1 corresponding to the two jet 
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configurations can spoil the penurbative expansion until these are not taken into account and 

resummed. Also for this case as for the9,15,16) case and the deep inelastic case21) a suitable 

integral transform given by the Laplace transform considerably simplifies the problem25). In 

fact for fmal states corresponding to a large value of the Thrust it can be shown that, with next

to-leading accuracy in this region the Thrust cross-section a(t) =Jl dT:: can be written as 
I-t 

where, as in eq. (4), the C, 1: and F contributions have a series exponents in terms of a (Q2).s

The exponentiated l: factor can be written by taking the inverse Laplace transform as 

with 

and 

B(I) A (I) 'YE 
. [2,en(1 - 130 asL) -,en (1 - 2130 asL)] + CF-.tn (1 - Po asL) - 2CF-

x~o x~o 
A (1) ~1 

[ ,e n (1 - 13 0 asL) - .t n (1 - 2 ~0 asL )] - CF 3 
x~o 

2[ £ n (1 - 2~ 0 asL) - 2£ n (1 - ~ 0 asL) + ~ £ n (1 - 2~0 asL) - £ n 2(1 - ~ 0 asL ) ] 

+ O(as(asL)S) 

" 
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153 - 19Nf 3 
with L =.en N, a. = a. (1l2), ~1 = 24x2 and A (1) = I, B(I) = -"2 and A (2) as givens s

by the eq. (3), thus confllllling the universal behaviour of these coefficients. By comparing 
with the known fmite O(a ) analytical results26) also the finite CI and FI(1:) coefficients can bes
determined and a numerical estimate can be obtained of the C2 and F2(1:) coefficients by 

comparing with the numerical two-loop result27). 

The obtained distribution in eq. (9) does therefore contain the finite order one and two

loop results and, resumming the large contributions at large Thrust values is also finite at the 

border of the phase space. A comparison with the experimental data particularly also shows that 

a good description of the data can be obtained by using the value of the renormaJization scale J.l2 

=C; 25,28). This same behaviours for this renormalization scale choice is shown by the 

resummed "k.l" jet algorithm29) allover the jet resolution region. This also shows that the 

contrary to what happens with the "Jade" algorithm30) where the resummation of large 

logarithms is not feasible31 ) the dynamical content of the soft and collinear configurations 

sizeably improves the over-all perturbative description of the results. 

The value of a (Q2) that can be extracted from the data is affected by this analysis32)s

even if there are the large non-perturbative hadronization effects that still playa relevant role all 

over. 

The non-leading accuracy obtained and the ability to resum to all-orders next-to-Ieading 

contributions have put the perturbative description of these processes on a fmner basis. 
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