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Abstract 

Thedecoherence effect, which is responsible for vanishing 
macroscopic quantum interferences, has only been established on 
special models though it is presumed to be universal (at least when 
some dissipation may occur). A general theory of the effect is 
proposed in this work. A master equation for the' relevant quantity 
(reduced density operator) is established by two different methods, 
a direct one, which is also the simplest one, and another, more 
general, 'relying upon Balian's theory of irreversible processes. It 
shows that decoherence is essentially an irreversible process, not 
very different from more familiar ones as far as theory is 
concerned. 

The master equation is worked out in detail when there exist 
convenient collective observables (for which a criterion is given), 
selecting a preferred basis for the effect to take place. The 
previously proposed models, includJ.ng_Jhe c{¥~~!um. difflisrojl-'----~' 
model, are found to be special applications of the 1theory., 
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1. Introduction 

The decoherence effect is a mechanism destroying quantum 
interferences at a macroscopic level. Like an irreversible process in 
thermodynamics, it can only be seen in a macroscopic system. It 
does not affect the full wave function of an isolated system but 
occurs in the observation or consideration of a subsystem, which is 
most often associated with classically meaningful (collective) 
observables. The need to. select a "relevant" subsystem and the 
resulting character of decoherence as a law emerging at a high level 
of complexity is obviously reminiscent of irreversible statistical 
mechanics. 

One may think of the wave funct~on of a macroscopic system as a 
fUnction 'I' (x, y), where- x can be reached by observation (the 
position of a pointer or similar collective quantities), whereas the 
totality of the very numerous variables y cannot be measured. One 
can then express grossly the decoherence effect by considering the 
various functions of y one obtains for every fixed value of x : They 
tend to become orthogonal as time increases, essentially because 
they are too complex for keeping mutual coherence, if they had 
any. The destruction of quantum interferences in the observation of 
x is a direct consequence of the effect, which is often described by 
saying that Schrodingerls cat must then be either dead or alive. A 
convenient mathematical formulation consists in introducing the 
density operator D = I 'I' >< 'I' I of the whole system and the reduced 
density operator 

Pc(xl, x) = J",(Xl, y) '1'* (x, y) dy =< Xl I TreD I x >, (1.1), 

where the formal subsystem that is described by y is called the 
"environment" and Tre means a partial trace over it, expressing a 
lack of observation. 

Although some effect of that sort had been suspected [1] and 
even partly investigated [2] since a long- time, the decoherence 
effect was clearly identified by Zeh [3] who made clear the 
distinction between decoherence and the noise coming from the 
environment. One may consider as an example the case when the 
total hamiltonian of the system IS 

H =Hc®Ie + Ic®He + HI (1.2) 

Ic and Ie being the unit operators in the Hilbert spaces ;J{c and 9ie, 
where the index c denotes the relevant (or collective) subsystem 
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and e the environment. The interaction coupling HI is then 
responsible for noise, dissipation and decoherence. This relation 
between the first two effects results .in the fluctuation-dissipation 
theorem [4-5]. Other similarities also exist for decoherence. 

These similarities were exhibited by the solution of some specific 
models [6]. Particularly important is a model where the 
environment is represented by a collection of harmonic oscillators 
and HI is linear in the canonical variables (p, q) of the oscillators 
[7-14]. This model can be solved because of the simple properties of 
harmonic oscillators, and particularly the possibility of explicit 
Feynman path integration [15]. Decoherence results fronl a "master 
equation" one finds for Pc in these models: 

< x' I Pc - i~ [Hc, Pc ] I x> = - 11 (x' - x)2 pc<x', x) 

- 'Y (x' -x) (ajax' - aJax)pc(x', x) (1.3) 

The "decoherence coefficient" Jl is very large and it is related to the 

friction coefficient "( (occuring in the classical relation v= - 'Y v) by 

(1.4) 

in the special case where Hc = p2J 2m + Vex), T being the absolute 
temperature (supposed to be high enough) in energy units. This 
occurrence of T and the proportionali ty of the two coefficients of 
decoherence and friction show the intimate relation between 

decoherence and dissipation. The very small term b2 in a 
denominator shows the tremendous efficiency of decoherence : 
Pc (x', x) becomes very rapidly "almost diagonal"? Complete 
diagonality in the x-basis is however forbidden by energy 
conservation and it is limited in Eq.(1.3) by the effect of the 
commutator in the left-hand side [ 16, 17]. 

The importance of a preferred "pointer" basis where 
diagonalization takes place was made clear by Zurek [18-20], who 
related it to measurement proc.esses. Another important 
contribution was made by Joos .and Zeh [21] who considered 
another model of environment, made by an external gas of 
molecules (atmosphere) or photons. They obtained a master 
equation very similar to Eq.(1.3). In view of the very different 
environment models that' were used, these converging results 
strongly suggest that there should exist a general theory of the 
effect, with no detailed assumptions about the environment, except 
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for its large number of degrees of freedom. One would expect some 
sort of decoherence-dissipation theorem as an outcome of such a 
theory. 

The need of such a general theory is motivated by the essential 
role of de coherence in some of the most general interpretations of 
quantum mechanics [22-24], by the discussions around the meaning 
of decoherence in "fundamental" physics [25-28] and, of course, the 
experimental evidence for the effect. It was often said that 
decoherence is the most efficient effect in physics, to a point where 
observation always comes too late, after the effect ~as reached 
completion. Some strong indications· of the effect in action had been 
seen however with SQUID's [29]. It has now been observed 
unquestionably in quantum optics [30]. The aim of the present 
work is to propose the necessary general theory. 

A misconception that still seems to exist should perhaps be 
mentioned for appreciating the need of a general theory. It 
originated in an interesting remark by Caldeira and Leggett ( in [9], 
Appendix C) . When considering a superconductor, they noticed that 
one can formally associate an oscillator with each energy level of 
the environment. Because there are so many levels, the ideal 
oscillators must be be in their ground state or first excited state 
(which represent a non-occupied or occupied energy level) and 
they have a negligible probability to be in a higher excited state. 
One must be careful however not to extend this remark outside the 
very special case where it holds. Though the representation of the 
environment itself by oscillators is always correct, the coupling HI 
is almost never linear in the oscillators (p, q)'s, as one may check in 
the case of a gaseous environment: It would be therefore an error 
to believe that the oscillator model has a wide range of applicability 
and, too often, the success of its results have been wrongly 
considered as justifying its validity. It will be shown here that, on 
the contrary, Eq.(1.3) is representative of most practical cases, if not 
all, and its range of validity much exceeds the very restricted range 
of the oscillator modeL .-­

It may be useful, as a preliminary to more formal considerations, 
to think of a simple example. A gedanken piston, with mass m, has 
only one degree of freedom, which may be taken as its position x. A 
spring acts on the piston so that He =p2/(2m) + U(x). The piston is 
in a gedanken cylinder (a geometric abstraction) containing a gas, 
which constitutes the environment. The piston can maintain the gas 
molecules on one side if o"ne takes for the interaction hamiltonian 
HI = L vex - xj), where the summation is over the gas molecules 

j 
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and v is a sufficiently repulsive potential. This example will be 
helpful for making some ideas clearer. 

The theory will be approached in two rather different ways and 
it will first be described along the easiest one, which is how it was 
found. The idea was to try using a density operator 

Do = Pc®pe,' (1.5) 

where Pc is the exact reduced density and P e is formally an 
equilibrium density 

Pe = exp[- ~ (He - F)]. (1.6) 

The quantities ~ and F are determined by the conditions 

Tre Pe =1 ; Ee == Tre(He Pe) =Tr(HeD), (1.7) 

where Tre means a trace over the environment Hilbert space !J{e 

and Tr means a complete trace. Eqs.(1.7) mean that the correct 
value of the environment energy Ee is obtained from Do. One should 
notice however that. this energy, in our example, fluctuates because 
of the inelastic collisions of the piston with a molecule (or a small 
bunch of mutually interacting molecules). The parameters ~ and F 
therefore fluctuate. Their time average may also change more 
slowly because of dissipation. It should be stressed in any case that 
one does not assume the environment to. be really in thermal 
equilibrium and Pe is no more than a mathematical device. 

A theory, however "general" as it pretends to be, must make 
some assu.mptions. The present one'- will assume an interaction 
small enough for being considered as a perturbation. Our example 
shows however that this assumption would be much too strong if 
applied to HI: the repulsive potential v between the piston and a 
gas molecule must be large for the piston to be worth its name. One 
therefore introduces the average 

(1.8) 

It can be interpreted in our example as giving the pressure force 
exerted by the gas on the piston. The remaining interaction 

Hl1 = H1- LllIc®Ie, (1.9) 
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is a small quantity. It represents in our example the fluctuating 
part in the collisions. The basic assumption of the theory will be 
that H'1 is small. 

It will be shown in Section 2 how one can derive a master 
equation for pc from this assumption, by using second order 
perturbation theory in Hl1 for the basic evolution equation 

i D =[H, D], (1.10) 

(in units where h = 1). It might look rather surprIsIng that a 
perturbation calculation can work, because the quantity 

D1 =D - Do, (1.11) 

inevitably entering in the calculations, cannot be smalL It will be 
found however to act small. 

The master equation might be used for interesting investigations 
but, as shown in Section 3, it becomes much simpler when there 
exists a preferred basis. A simple sufficient criterion for this will be 
given : A complete set of commuting observables X in the collective 
Hilbert space :J{c will be called "microstable" if 

[ X, H l 1] = 0. (1.12) 

Another way of expressing this is -to say that the time derivatives 
of X one obtains from the full hamiltonian or the effective one 
coincide, namely 

[H, X ] = [Hc+ Lllic, X ]. , (1.13) 

In our example, this, is true for the piston position and both 
quantities (1.13) coincide with P/m. More generally, a microstable 
observable is one pr~serving the usual proprtionalitybetween 
momentum and velocity. The center-of-mass position of a piece of 
solid or fluid matter is of that type and this explains why classical 
mechanics, when derived from quantum mechanics, can be 
described in ordinary three-dimensional space. This argument is 
not completely new [20, 31]. Another interesting example will be 
given for an induction circuit. This will show that microstable 
observables can be sometimes extended from classical mechanics to 
some other domain of classical physics, but not to every domain 
and not for every problem. This opens an interesting new field, 
which we have not explored. 



7 

The master equation derived from this in Section 4 exhibits the 

main features one suspected from the models, though it is of course 
much more general. The relation of decoherence to friction is shown 
in Section 5. Though the theory trivially agrees with the results of 
an oscillator model for the environment, the fact that it also 
encompasses the particle model [21] and therefore acts truly as a 
common framework, is much less obvious. This is considered in 
Section 6. Section 7 will sum up the various assumptions that are 
introduced in the construction and indicates which result depends 
on what assumption. 

This balance of assumptions and results shows that the 
framework we used is not yet general enough. A realistic quantum 
measurement cannot be properly represented by this theory, 
because the collective, or relevant observables can change with 
time. In a bubble chamber for instance, every new-born bubble 
asks for its share of a new Hilbert. space !J{c. Consistent histories 
could deal with this situation but, their consistency would follow 
from decoherence and this remains to be shown. There are also 
some questions about the theory itself : Why does the guess (11.5) 
work; why does Dl act small though not being small? To improve 
the theory, one must understand the key of its success. 

There exists fortunately an answer to these expectations and 
these questions. It is offered by the general theory of quantum 
irreversible processes [32, 33], to which we shall turn in Section 8. 
It will be shown in Section 9 that the initial approach is in fact a 
special case of these methods. If one recalls that the larger 
framework is not restricted in principle to systems that are near 
equilibrium nor to a family of fixed relevant observables, it seems 
that one has really obtained the correct framework for a general 
theory of decoherence. 

2. A master equation for decoherence 

One will assume that the environment I~ in thermal equilibrium 
at an initial time 0, which implies Dl (0) = 0. Though this 
assumption is not necessary, it allows one to dispose of some 
uninteresting terms that have nothing to do with decoherence. 

One may first notice three consequences of the definitions, 
namely 

Pc =Tre D, (2.1) 
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d(~F)/dt - (d~/dt) TrpeHe = d(~F)/dt - (d~/dt) Be =0, (2.2) 

Tre[H'l, Pe] =0, (2.3) 

Tre Dl =O. (2.4) 

The first relation IS the definition of the reduced density operator 
Pc. The second ·one follows from Eq.(1.6) and the third one from 
Eqs.(1.8) and (1.9). The last one follows from Eqs.(2.l), (1.5) and 
(1.11). 

Taking the trace of Eq.(l. 10) over the environment, one gets 

i Pc = [Hc + Mic, Pc ] + n, (2.5) 

where 

n = Tre [H'l, Dl ]. (2.6) 

Proof : The time derivative of Pe in TreD 0 vanishes because of 
Eq.(2.l). One has Tre[Hc, Do] = [He, Pc] and Tre[He, Do] vanishes as 
the trace of a commutator. Then Tre[H 1, Do] = [.6.Hc , Pc] from 
Eq.(1.8). One has Tre[Hc, Dl] = 0 because of Eq.(2.4) and Tre[Hc, Dl] 
= °as a trace of commutator, so that Tre [H, Dl] is reduced to n. 
Similar straightforward algebraic calculations will be omitted from 
there on. 

The density operator Dl occurring In n is a priori very 
complicated. The basic equation (1.10) becomes in fact an equation 
for Dl when using Eqs.(l.ll), (1.5) and (2.5). This gives 

i Dl = [H, Dl] + [H'l, Do] + A, (2.7) 

A = - i ~ (Ee - He) Do + Pe®n. (2.8) 

The quantity [H'l, Do] is of first order in the small quantity H'l. 

Though ~ can be considered to be small, at least when there are 
.microstable observables as shown in the Appendix, one has no 
idea of the importance of the second term in Eq.(2.8) since one does 
not know n, except that it is at most of first order according to 
Eq.(2.6). One therefore introduces an auxiliary operator D'l through 
the equation 

http:Eqs.(l.ll
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. . 
i (D'l - D1) - [H, D'l - D1] = Pe®Q. (2.9) 

Since D 1 (0) = 0, one has Q (0) = 0 and D'l (0) can be taken to be zero. 
Using D = Do + D1, together with Eqs.(1.5), (2.1) and (2.3), Eq.(1.10) 
becomes 

i D'l = [H, D'l] + B, (2.10) 

B = - i ~ (Ee - He) Do + [H'!, Do] (2.11 ) 

To solve Eq.(2.9), one introduces the evolution operator 

U(t, t') = T exp( - i 1H(t") dt" ) (2.13)
t' 

where T means a time ordered product. Similar evolution operators 
U e and Uc are defined by replacing H respectively by He and Hc + 
L.\ H c. One thus gets 

D'l (t) = - i 1U (t, t') B(t') ut (t, t') dt', (2.14) 
o 

Eq.(2.9) gives, at first order in perturbation theory 

D'l - Dl = JU(t, t') Pe® Q (t') ut (t, t') dt'. -(2.15) 
o 

Introducing the quantity Q I =Tre [H'l, D'l ], Eq. (2.15) gives 

Q' - Q = - ( iIh) Tre { [H'lt, fU(t, t') Pe®Q(t')ut(t, t') dt' ]}. 
o 

The integral is necessarily of a higher order than n because of the 
occurrence of H'1 and therefore n =n, up to corrections of a higher I 

order. The quantity Q' is obtained from the auxiliary density 
operator D'l, which in view of Eq.(2.14) is a small quantity of first 
order so that Q itself is of, second order. This is a very remarkable 
result since it means that in some sense, D1 acts small though it is 
not small. As a matter of fact, there are certainly some operators 0 
in the complete Hilbert space that would have an average value 

http:Eq.(2.14
http:Eq.(1.10
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TrOD 1 of the order of their norm 110 II, which is a reasonable way of 
expressing that D 1 is not small. However, as it happens in 
irreversible processes, the matrix elements of D 1 are extremely 
numerous and do not favor the collective observables. This is at 
least an intuitive manner of understanding the present result. 

Finally, one has obtained a master equation that is, up to terms of 
third order and ·higher 

Pc + i [He + Lllic, Pc ] = 

JTre {[H' I (t), UcU e(t, t') [H'I (t'), Do(t')] utcute(t, t') ]} dt'. 
o 

(2.16) 

One has replaced D(t, t') by Dc(t, t')De(t, t'), abbreviated here as 
D cD e (t, t'). This master equation contains the two effects of 
decoherence and dissipation and one nlust now extract this physical 
meaning. 

3. Microstable bases and their. meaning. 

The master equation (2.16) is not transparent. One can get 
however an inspiration from the ideas of Zurek [18-20] and from 
the results of known models. This suggests to look for convenient 
bases. One therefore introduce a complete set X of commuting 
observables in J{c with eigenvectors I x > together with the basis In > 
of the eigenvectors of J{e in He. As a matter of fact, the most useful' 
basis in J{cmay be sometimes of a different type and it was found 
convenient, in the case of the electromagnetic field, to use the 
overcomplete basis of coherent states [14]. We shall not consider 
this case however, nor shall we try to investigate the master 
equation in the most general case. We shall rather develop the 
consequences of this equation when there exists what was called in 
the Introduction a set of microstable observables. This is defined as 
a complete set of commuting observables satisfying the 
commutation relation 

[H'l, X] =o. (3.1) 

The observables X may have a continuous or a discrete spectrum. 
When discussing a spin' measurement, for instance, the spin 
observable that is measured should be included in the set X (Hc 
containing the interaction hamiltonian, between the spin and the 
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rest of the collective system). The discussion will be limited 
however to ordinary collective observables, with a continuous 
spectrum. The physical meaning of the assumption (3.1) is made 
clearer if one writes it as 

- i X == [H, X ] = [Hc + Lllic, Xl (3.2) 

When X represents a set of position coordinates {Xi} with a 
kinetic energy (1/2) (M-1 }ij Pi Pj, this means that the familiar 

relation Pi = Mij Xj remains valid ·in spite of the presence of the 
environment. The assumption is therefore valid in ordinary 
mechanics, when a macroscopic system that is made of solids parts 
and fluid parts is described, a la Newton, as consisting of small 
macroscopic parts. The relation (3.2) for the center-of-mass 
coordinates X of these small parts and their momentum follows in 
that case from the fact that H can be written in terms of all the 

constitutive particles a (electrons and nuclei) as 

L (Pa 2/ 2m a + va(3). Since classical physics is known to follow 
from decoherence, the present theory implies that classical 
mechanics can be described as taking place in three-dimensional 
space. This remark would look trivial if one did not realize that 
semi-classical physics has only reached presently a description of 
classical physics in configuration space (See however [31]), and one 
did not remernber how surprised Schrodinger was to find that wave 
functions are defined in a configuration place . 

~ , 

Another interesting ex.ample is offered by an induction loop, such 
as ,the ones that are used in a superconducting quantum 
interference device [29]. The role of X is taken by the magnetic flux 
<I> through the loop, P being -CV where V is the potential difference, 
across the terminals of the loop and C the capacity [34]. The relation 
between momentum and velocity is given by V = - d<I>/dt ~nd this 
is insensitive to the presence of an environment, since it is a direct 
consequence of Maxwell's equations, so that the magnetic flux is a 
microstable observable. 

When X ismicrostable, Eq.(3.l) implies that H'l is diagonal in Jlc, 
namely 

<x niHIl I x' n'> = o(x-x') Vnn' (x). (3.3) 
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The master equation (2.16) suggests the introduction of 

convenient correlation functions that are defined by 

F(x', x, t , t') = Tre{V(x',t) Ue(t, t') vex, t') Uet(t, t') Pel (3.4) 

G(x', x, t - t') = Tre{V(x',t) PeUe(t, t') Vex, t') Uet(t, t') } (3.5) 

One does not need to take care in these expressions of the 
slightly fluctuating character of P e nor of its regular variation with 
time, which is slow. These are second-order effects. We shall not 
consider moreover the possibility of short-time hysteresis, as it 
may occur in solid friction [35, 36], so that these functions depend 
only upon t- t'. More explicitly, one has 

F(x', x, t - t') = LV nn'(X', t) Vn'n(X, t') Pn e-iron'n (t- t'), 

nn' 


(3.6) 
with Pn = exp[-p(En - F)], En being an eigenvalue of He. One may 
also notice the useful relations 

G( x' , x, 't) =F (x, x', - 't) = F*(x', x, 't), (3.7) 

One -will be particularly interested in values of x and x' that are 
macroscopically close. One expects the correlation functions to 
behave typically in a standard fashion : F(x', x) depends only 
slowly, i. e. on a macroscopic scale, upon the gross position of the 
system (which is described by (1/2)(x' + x) for degrees of freedom 
in space). It depends -strongly however upon x-x', and moreover 
upon (x'-x)2, in view -of simple invariance arguments (More 
properly, it depends in general upon the differences (x'i - xi)2 for 
the' various degrees of freedom). As for its dependence upon time, 
the typical time scale of F(t-t') is given by fluctuations, for instance 
the time between successive collisions in the case of an external 
environment. This is most often extremely short. In any case, the 
present remarks about F(x', x, t - t') sho~ld not be considered as 
universally, valid and they must be checked against the real physics 
of the system under consideration. ,They have been mentioned here 
for a better understanding of probably the most frequent cases. 



1 3 

4. Decoherence 

The existence of a microstable basis will now be used to extract 
the effects of decoherence and dissipation from the master equation 
(2.16). The right-hand side of this equation involves the collective 
propagation operator Uc(t - t'). Because of the very short time scale 
of the correlation functions, the approximation 

U c (t - t') =:: I - i (Hc + ~Hc) (t ~ t') (4.1 ) 

is certainly sufficient. One can moreover keep only the ternlS in 
Eq.(2.16) that are at most linear in t - t'. One can therefore write the 
master equation as 

Pc + i [Hc + ~c, Pc ] = Rd + Rf, (4.2) 

where the index d stands for decoherence and f for friction. These 
two terms correspond respectively to the leading terms one 
obtains in Eq.(2.16) by putting Uc(t -t') = I and to the terms linear 
in t - t' resulting from Eq.(4.1) We shall first consider the 
decoherence term Rd, which is given by 

<x' IRd I x> = - IK(x', x, t - t') pc(x', x, t) dt', 

o 


where the kernel is given directly in terms of the correlation 
functions by 

K(x', x, 1:) =F(x', x', 1:) - G(x', x, 1:) - G(x, x' , - 1:) + F(x, x, - 1:). (4.3) 

In view of the relations (3.7), this can be written in terms of a 
unique correlation function as 

K(x', x, -r) =F(x', x', -r) - F*(x', x, -r) - F(x, x' , -r) + F*(x, x, -r). (4.4) 

One can. introduce the real and imaginary parts of the function 
F(x', x, 'C) by F = Fl + i F2 , with the symmetry properties following 
from Eq.(3.7) 

Fl (x, x', - -r) = Fl(x', x, -r), F2(X, x', - -r) = -F2(x', x, -r). (4.5) 

The explicit expression of these functions, in view of Eq.(3.6), is 

http:Eq.(2.16
http:Eq.(2.16
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F 1 (x', x, t - t') = 

; I,Vnn'(x', t) Vn'n(x, t') (Pn + Pn') e-icon'n (t- t'), (4.6) 
nn' 

F2(x', x, t - t') = 

iiI,V n n ' ( x :, t) V n ' n ( x, t') (p n' - P n ) e - icon' n (t- t')' (4.7) 
nn' . 

with COn'n = En' - En, the eigenvalues of He being denoted by En- At 
temperatures high enough for having ~con'n « 1 for the significant 
contributions, it may be noticed that 

F 2 (x', x, t - 1') ~ - .p' ". . . 
2iI,v nn'(x', t) Vn'n(x, t') (Pn + Pn' ) con'n e-icon'n (t- t'). 

nn' 
(4.8) 

The decoherence effect is most easily seen if one takes advantage 
of the sort memory of the correlation function for integrating 
directly F(t- t') over t' in Rd. In view of the assumed dependence of 
the correlation function upon (x - x')2 and letting the slow 
dependence upon (x' + x) unwritten, one has 

00

JFl (x', x, 't) d't = f «x'i - xi)2) (4.9) 
o 

For x and x' macroscopically close and when retardation effects are 
negiigible, one has 

00

f K(x', x, 't) d't = J-Lij (x'i - xi).(x'j - Xj), (4.10) 
o 

the decoherence coefficients J..Lij being given by 

J-Lij =2 f"ij (0). (4.11) 

The contribution of the leading terms In the master equation is· 
therefore 

< Xl I Pc + i [Hc + Lllic, Pc ] I x > = - J-Lij (x'i - xi).(x'j - Xj) < x' I Pc I x >. 
(4.12) 
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It will soon be shown (and already known from models) that the 
decoherence coefficients are large, except when there is no 
dissipation. Considering only one degree of freedom, it is then clear 
that the reduced density operator will behave as 

< x' I pc(t) I x > =: < x' I Pc(O) I x > exp( - f..L (x' - x)2 t) (4.13 ) 

and become practically diagonal, except for values of x and x' so 
close that the effect of [Hc + ~Hc, Pc] becomes comparable to the 
decoherence effect (4.12) or larger [16, 17]. 

5. Dissipation 

One must now evaluate the second term Rf in the master 
equation, which was attributed to friction and comes from the 
terms linear in (Hc+ ~Hc) (t - t'). It is given according to Eq.(2.16) 
by 

Rf= 

i JTre[H' i (t), [H'c, Ue(t, t') [H'i (t'), Do(t')] ute(t, t') ]] (t - t') dt') , 
o 

(5.1) 

where we have written H'c for short in place of Hc+ ~Hc. 

This quantity is easy to evaluate if one makes the following 
assumptions : (i) One can neglect the time dependence, of F1 and F2 
coming directly from the products Vnn'(x', t) Vn'n( x, t'). (ii) The 
temperature is high enough for Eq.(4.3) to be used. (iii) Hc + ~Hc 
can be written as (1/2) (M-1 )ijPiPj + VeX). The conjugation of these 
three assumptions is somewhat restrictive, though still frequently 
met, but our aim is only to clarify the meaning of the results. 
Specific applications to cases where these--assumptions do not hold 
should better be investigated for their own sake. 

We shall make the calculation for only one degree of freedom. 
One can first replace H'c by its kinetic part in Eq.(5.1). The various 
parts of the triple commutator can be evaluated by using 

a2 

< x'I p2 A I x> = - ax'2 < x'I A I x'>, 


http:Eq.(2.16
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a2 

< x' I A p21 x> = -ax 2 < x' I A I x>. 


One notices that decoherence is much n10re rapid than dissipation. 
Although this result will be a consequence of the present 
calculation, one may anticipate it and consider that Rf is noticeable 
only after de,?oherence has reduced the matrix elements Pc(x', x) to 
a quasi-diagonal form. This means that one can write 

00

f F2(x', x, 't ) 't o't = a + (M'Y/4) (x' - x)2, (S.2) 
o 

still leaving aside a possible smooth dependence on (x + x'), and 
neglecting tem1S of higher order in (x' - x)2 that are suppressed by 
the exponential decoherence factor in Eq.(4.I3). The meaning of 'Y in 
Eq.(S.2) will soon become clear. A straightforward algebraic 
calculation gives 

Rf = - 'Y (x' - x) (a/ax' - a/ax) Pc(X', x). (S.3) 

When this is used to evaluate the rate of momentum change 
(noticing that Rd does not contribute), one gets the familiar 
expression of friction 

d<P>/dt = - <av/ax> - 'Y <P>. (S.4) 

Using Eqs.(4.6) and (4.8), one gets on the other hand 

00 00

f F2(x', x, 't) ~ d't = (~/2) fFI (x', x, 't) d't. (S.S) 
o 0 

and since 

J.l. =2 
00

f a 2 /axax' FI (x, x, 't) d't, 

o 


one has J.l. = 2MT'Y. Reintroducing explicitly. Planck's constant and 
several degrees of freedom, one obtains 

(S.6) 


http:Eq.(4.I3
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6. The connection with previous works 

The results one has obtained agree, as one would expect, with the 
special case of the oscillator model. The master equation (2.16) 
invol ves also the kind of double commutator that was postulated in 
the quantum diffusion model [37- 40]. In this model, the stochastic 
character of H'l (t) is described by a brownian noise and the 
quantum diffusion model can therefore be considered as belonging 
mostly to the present theory. 

This is not so obvious for the results of the external environment 
model [21], though their coincidence with those of the oscillator 
model was the main hint for the existence of a common 
background. To obtain them from the present theory, one may 
proceed as follows : The relevant system is an object that is 
surrounded by a gaseous environment made of particles. In the 
case of molecules, the interaction between the object and a 
particular molecule is a potential, which the sum v of the 
interaction potentials between that molecule and all the atoms in 
the object. Considering for simplicity that the molecules do not 
interact together (or each molecule is considered during its last 
mean free path towards the object),- each colliding molecule can be 
individualized within the environment. The summation in Eq.(3.6) 
can then be split into independent summations over the various 
molecules. 

In order to take care of the time distribution of the collisions, one 
may consider the scattering of one molecule on the object. In the 
summation over the indices nn' that was written in Eq.(3.6), one -can 
use two different bases for nand n'. The basis n, used in Pn, is' 
made of free incoming plane waves <t>p(x) = exp(ipy), if y represents 
the position of the molecule. For the basis n' however, one uses the 
full scattering waves 'lip. The matrix elements H'lnn' are therefore 
given by < <t>p I V l'lIp' >. According to t]:le well-know Lippmann­
Scwinger relation in scattering theory [41] , one has 

41t ,
< <t>p I v l'lIp' > = -2 m f(p, p), (6.1) 

where m is the mass of the molecule and f(p, p') is the scattering 
amplitude for a collision where the momentum p goes to p'. This is 
how the scattering amplitude is found to enter the calculations in 
the present theory, explaining the central role it plays in the 
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approach by Joos and Zeh. Since there on, the calculation can 
proceed as it was done by Joos and Zeh. 

One cannot fail to mention a most important aspect of 
decoherence, which is very frequently a semi-classical behavior of 
the collective subsystem. This question has been considered 
however with great care by Gell-Mann and Hartle[ 31] and there is 
nothing essential to add to their work. 

7. Summarizing the results 

One may conclude this first approach to the theory of 
decoherence by recalling the various assumptions that were made 
along the way and which results hold under what conditions. 

1. The choice of the collective subsystem is made once and for all. 
2. The hamiltonian can be separated as in Eq.(1.2). 
3. The fluctuating part H'1 of the coupling is small enough to be 
treated as a perturbation. 
4. One can use the test density Do given by Eqs.(1.5) and (1.6). 

One then obtains the master equation (2.16). 

5. There exists a system of microstable·;· collective observables X. 

The decoherence effect is then described by Eqs.(4.2) and (4.4). 

6. The correlation functions have the behavior (4.9). 
7. Retardation effects are negligible. 

The decoherence effect is then described by Eq.(4.12). 

8. The assumptions made in section 5 are used. 

At a time when decoherence has already taken place, friction 
effects can be written as inEq.(5~3) ~and the coefficients of 
decoherence and friction are related by Eq.(5.6). 

One can now evaluate and criticize each assumption. Assumption 
1 is convenient for discussing simple models of a quantum 
measurement, for instance the von Neumann famous model [42] to 
which one adds an interaction of the "pointer" with an environment. 
It does not apply to realistic measurements, when for instance new 
bubbles or any other macroscopic real records are created. 

http:Eq.(4.12
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Assumption 2 : One would prefer to select only Pc as a relevant 

quantity and this does not necessarily demands the expression (1.2) 
for H. It often happens that the environment hamiltonian He 
depends upon the collective observables. : In the example of the 
piston, He depends in fact upon the piston position. 

Assumption 3 seems to be essential for the whole approach and 
it also looks'. quite reasonable, as long as no counter-example is 
found. 

Assumption 4 does not hold when the piston is submitted to the 
action of a gas pressure on both sides. One should then make room 
for two different "temperatures" on the two sides and, more 
generally, resort to an expression of the test density Pe analogous to 
the one describing local thermal equilibrium rather than full 
equilibrium. It seems that this is only a technical complication with 
no special difficulty. 

Assumption 5 is known to be wrong for an electromagnetic 
collective system. one can use 'however a basis of coherent states 
that will play the role of our microstable basis. There exist certainly 
more general situations, which would require a more systematic 
investigation of Eq.( 4.9). 

From there on (Assumptions 6 and 7), our analysis was only 
meant for some clarity rather than generality. Specific examples, 
where the assumptions do not hold, should be treated for their own 
sake. One could write in particular a more elaborate relation 
between the coefficients of friction and decoherence at low 
temperature, but it is not very illuminating. Here again, the 
peculiarities of a specific application should be preferred. 

To go further, one should also understand better why the present 
method works, if only to remove some unnecessary assumptions. 
This will be our next topic. It will be shown that, at least in 
principle, one can overcome the limits ~{ Assumptions 1 and 2, 
which are too narrow for a full theory of measurement. The general 
theory of irreversible processes [32' - 33] will be used for that 
purpose. Though this second approach is much more general, it is 
well known that the mathematical techniques for using the 
formalism of irreversible processes must be adapted to every 
special problem one wants to investigate [33]. This is why we shall 
only consider the essentials by recasting our first approach in the 
new framework (with Assumptions 1 and 2 explicit), to obtain 
again the same master equation. Even if this is a very limited 
achievement, it shows that this second way of looking at the theory 
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provides the right framework for a thorough treatment of 
decoherence. 

8. An approach using the theory,; of irreversible processes 

The theory of irreversible processes is now far from being 
restricted to systems near thermal equilibrium. We shall rely upon 
its formulation by Balian and coworkers [32 - 33]. The idea is to 
select some "relevant" quantities for which to obtain an evolution 
equation while leaving ignored the details of other quantities, much 
larger in number. This is also. obviously the basic idea of 
decoherence. Rather than recalling the theory itself, we shall 
reconstruct it as it applies to the present problem, which has some 
peculiar features that are more easily grasped in that way. 

We still keep the structure of two coupled systems e and c, with 
the hamiltonian (1.2), all the notations being kept the same. A basis 
Ix > in!J{c is introduced, not necessarily associated with microstable 
observables nor necessarily observables with continuous spectra. 
One considers the algebra of operators in the full Hibert space H 
and the dual space of densities made of operators that are not 
necessarily supposed to be positive nor with trace 1. Duality (linear 
functionals) is expressed by a "scalar product" between an operator 
A and a density ~ denoted by 

(A ; ~) == TrA~. (8.1) 

The relevant observables we shall use are 

AXX' =I x >< x' I®Ie, Ae =Ic®He, (8.2) 

collectively denoted by Ai. Though I x >< x' I is not an observable, it 
is a combination of the observables (1/2)(1 x >< x' 1+1 x' >< x'l) and 
(1/2i)(lx><x'l - I x' >< x I) and it is more convenient to take it in that 
form. The averages of these quantities with the exact total density 
D are 

ai =TrAiD, i. e., aXx' =< x' Ipc I x >, ae =Ee. (8.3) 

Balian's theory starts with the introduction of a reference density 
op'erator Do that is defined by 

Do =exp(- Ai Ai >, (8.4) 
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the parameters Ai being determined by the conditions TrAiD 0 = ai. 
It coincides in the present case wi.th 'our previous Do with Ae = ~ 
(see Eq.(1.5). Though Eq.(8.4) is usually motivated by information 
theory, Eq.(1.5) is enough to show that Do is the simplest reference 
one can use for acceeding to the reduced density operator and this 
will be enough for our purpose. 

A significant remark should however be made. Balian indicates 
that it is convenient to include the identity operator I among the 
relevant 0 bservables and he insists upon the idea of introducing 
also every conserved quantity, which would be presently in 
practice the total hamiltonian H. The first requirement is already 
satisfied since I is a linear combinations of the AXX'. When 
considering H in the form Hc+ ~Hc+ He + H'l, one realizes that Hc+ 
~ H c is a combination of the AXX I so that the recommended 
reference density would be 

Eo =exp[- JAxx' AXx' dxdx' - ~ (He + H'I)] 

These two reference densities are related in perturbation theory by 

Eo = Do - ~ fDo l-u H'l Do u d u 

o 


+ ~2 J Dol-u-v H'1 Dou H'1 Dov d'udv 

with a similar relation giving Do in terms of Eo. When trying to use 
Eo, as is usually done in Balian's theory, one is inevitably led to use 
these cumbersome relations and the theory loses much of its 
elegance. Quite fortunately, it turns out that one can start directly 
from Do, which is much simpler than Eo, at the price of rederiving 
the equations that will follow rather than using directly Balian's 
formulas. This is our main reason for starting from scratch, with the 
advantage of not supposing the reader faII!iliar with the theory of 
irreversible processes. 

The basic evolution equation (1.10) for D is conveniently written 
in the form 

D=LD, (8.5) 
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where L is a (Liouvillian) linear operator acting linearly in the 
space of densities (superoperator). Acting on an arbitrary density 
~, it gives 

L ~ = (IIi) [H, ~]. (8.6) 

One can then introduce a set of densities si that are defined by 

Si =aDo/aai, i. e. sxx' = Ix'><x]®Pe, Se =Pc®(He- Ee) ~2. (8.7) 

They satisfy the orthogonality relations 

(8.9) 


In view of Eq.(8.9), the superoperator 


P =Si Ai, P ~ =si Tr(Ai ~) (8.10) 


(with the usual convention of summation over repeated indices) is a 
projection operator, i. e., p2 =P. The operator Q= I - P (I~ = ~) is 
also a projection operator and one has 

p2 = P, cE = Q, PQ= Q1'= O. (8.11) 

Explicitly, one has 

P~ = Pe Tre~ + Pc (He - Ee) (1/~2) TrHe~. (8.12) 

Our previous densities Do and D1 are given by 

Do =PD, DI =QD, D =Do + DI. (8.13) 
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9. The master equation 

Differentiating Eq. (8.13) with respect to time and using Eq.(8.5), 
one gets 

(9.1) 

. .. 
Dl - QL QDl = - P Q Dl - PDo + QLPDo. (9.2) 

where one used Q = - P and Eq.(8.11). Usually, when one starts 

from the total hamiltonian H, rather than He, one finds that P Q = O. 
This is not so in the present case and one has (as shown in the 
Appendix). 

II' Q A = - i (1/AEe2) Pc (Ee - He) Pe Tr([H'IHe] A). (9.3) 

The occurrence of H'1 implies that this is a small quantity that can 
be treated as a perturbation. 

One can then solve Eq.(9.2). Putting D2 = - P Do + QL P Do and 
. . 

using PDo = Do, which gives PDo = Q Do, one gets 

D2 = Q ( - Do + L Do), (9.4) 

Eq.(9.2) becomes 

(9.5) 

One may notice that Q D2 = D2. Introducing- the operator(b) 

'W(t, t' ) '" T exp( JQL Q(tn
) dtn

), (9.6) 
t' 

the solution of Eq.(9.5) at first order In H'1 (which will turn out to 
be enough), is given by 

(9.7)Dl =Da + Db, 

http:Eq.(8.11
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Da = J'W (t, t' ) Q( t') D 2 ( t') d t' , (9.S) 
o 

Db = Jdt' 'W (t, t' ) (­ P Q(t')) J'dt" 'W(t', tOO) Q,(t") D2 (tOO). 
o o 

(9.9) 

It may be noticed that the choice of a definite direction of time in 
the integrals marks the place whre irreversibility enters. Since D2, 
as given by Eq.(9.4), is expressed in terms of Do, the introduction of 
Eq.(9.7) into Eq.(9.1) gives the required master equation (at second 
order in H'I), 

. . 
Do - P L PDo =P L (Da + Db) + P QDa. (9.10) 

It does not look particularly simple. It might also be noticed that,· 
since P and Q, according to Eq.(S.12), depend upon Pc, the master 
equation looks non-linear. Non-linearity is in fact an intrinsic 
feature of irreversible processes in general, but it does not occur in 
the present case. As 'a matter of fact, the linearity of the evolution 
equation for D together with the relation Pc = TreD imply that the 
present equation must be linear, which is of course verified by the 
explicit calculation to follow. 

As a matter of fact, one is not directly interested in Do but in Pc = 
TreDo. This gives the reduced master equation (see the Appendix) 

Pc-(l/i) [Hc + Lllic, Pc] = (IIi) Tre[H, Da + Db] + (IIi) Tre[H, PQDaJ. 
(9.11 ) 

The calculations indicated in the Appendix,~_ to second order in H'I, 
show that this equation coincides with the master equation (2.16) 
one already' obtained by a direct method. 

http:Eq.(S.12
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10. Conclusions 

Two different methods have been proposed for obtaining a 
master equation for decoherence. The direct method was explained 
in the Introduction and a rather detailed summary of its results 
was given in Section 7. The second method, though applied here 
with the same assumptions, relies on a general theory of 
irreversible processes, showing that the method can . cover, at least 
in principle, the problems one must solve for a realistic and 
complete account of 'quantum measurements. The effect of 
decoherence has thus been shown to be a particularly interesting 
irreversible process, though only one such process. This is an 
important epistemic finding since it shows, as noted elesewhere 
[ 24] that the reflections about the "practical for all purposes" or 
"fundamental" meaning of decoherence [25 - 27] cannot be 
distinguished from the similar problems that arose in statistical 
mechanics since the work of Boltzmann. 

One may add that decoherence had always been previously 
studied by very special models, leading to similar results. and 
unable to explain these similarities. The reason is that these results 
are in fact much more general and are now established on firm and 
precise foundations. 
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Appendix The proof of some intermediate results. 

S taightforward, even if tedious, algebraic calculations will no be 
given explicitly. There are however some intermediate steps that 
may require some care and they are given in the present Appendix. 

Why ~ does not affect decoherence (Section 2). 

Some terms involving the derivative ~ of the inverse 
temperature were neglected in Section 2. This is justified when 
there exists a system of microstable observables X. as follows. 

Deriving Eq.(1.7) with respect to time, one has 

Fe = - ~ [\2 =Tr He D= - i Tr (He [H, D]) = - i Tr (He [H'I, DD , 
(A.l) 

where [\2 = Tre (H e 2 P e) - Ee 2 and the last equality is easily 
obtained by introducing a basis I x n >. One writes D = Do+ Dl. When 
there exists a system of microstable observables X., the trace of He 
[H'I, D] vanishes. One can then use Eq.(2.7) for Dl, using the fact 
that A is negligible because Q, though depending upon Dl, is known 

to be a quantity of second order. As for the first term - i ~ (Ee - He) 
Do in A, it would only give a negligible correction to the equation 

(A.I) for ~ . One is thus left with 

i :01 =[H, Dl] + [H'I, Do], 

from which it follows with Eq.(A.l) that ~ is a quantity of second 
order. Another proof, following from the approach by irreversiblity, 
is a consequence of the calculations at the end of this Appendix and 
shows that the assumption of a microstable basis is not necessary. 

The proof of Eq.(9.3) 

One has obviously 
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. . . 
PQfl=Pfl-PPfl. 	 (A2) 

. 
One cannot easily use Eq.(S.12) for computing P because this would 

involve the unknown quantity P~. One therefore uses the definition 
(S.10) 	of P, w.hich gives 

(A3) 

This 	gives 

P Q fl = Si (TrAi fl - TrAisj. TrAi£1) 

+ si (TrAi£1 - TrAisj. TrAi£1). 	 (A4) 

The identities (S.9) remove the term in si . The time derivatives of 

operators are given by Ai = i [H, Ai ] and, using Eqs.(S.2) and (S.6), 
one gets Eq.(9.3). 

The' proof of Eq.(9.11) 

In view of Eqs.(9.10) and (S.12), one has 

Tre P £ £1 = (IIi) Tre[H, £1]. (A.S) 

This gives, in view of some vanishing traces, 

Tre P £ PDo = (IIi) [Hc + £1Hc, Pc]. 

According to Eq.(S.12), one has TreP A =.-Tre £1 so that Tre Q A = O. 
. 	 . 

Therefore, TreP Do = TreQ Do = O. 

Derivation of the master equation from Eq.(9.11) 

Using Eqs (9.4) and (S.6),' one finds 

D2 = (IIi) [H, Do] - (IIi) Pe Tre[H, Do] 

http:Eq.(9.11
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- A { Tr(HeDo) - (IIi) Tr(He[H,DoD } (A.6) 

with 

A = Do (He - Ee)/~2. (A.7) 

It will be useful to show that D2 is a quantity of first order in HI. 
This results from 

. . 
Tr(HeDo) =Pc Ee, 

and 

Be = Tr(HeD) = (iIi) Tr(He[H,D]) = (IIi) Tr(He[H'I,D]) . 

The coefficient of A in Eq.(A.6) is therefore (IIi) Tr(He [H' I ,D I]) . 
This gives 

D2 = (IIi) [H'I, Do] - (IIi) A Tr(He[H'I,DID , (A.8) 

which implies 

TreD2 =0 (A.9) 

and shows that D2 is of fIrst order in HI I . 

One must now compute F(t) == D aCt) = Wet, 1') D 2(1'). A direct 
calculation gives 

iF =i QLQ F =[H, F] - Pe Tre[H, F] - [H, Pe TreF] 

+ Pe [Hc+ ~c, TreF] - [H, A ]. Tr(H - Ee)F. (A.IO) 

This implies Tre F = 0 and in view of Eq.(A.9), 

TreF = o. (A.11) 

This leaves one with 
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iF = [H, F] - Pe Tre[H, F] - [H, A]. Tr(HF), (A.12) 

which implies 

itt Tr(HF) == - Tr(Hpe Tre[H, F]) == - Tre«He + MIe) ,Tre[H'l, F]) 

= -Tr«Hc + Lllic) [H'I, F]), (A.13) 

but from Eq.(A.7), one sees that TrHD2 is at most of first order in 
H' I so that Tr(HF) is also at most of first order. On the other hand, 
in view of Eq.(A.IO), one has Tre[H, F] = Tre[H'I, F]. Eq.(A.IO) 
becomes therefore 

iF - [H, F] = - Pe Tre[H, F] - [H, A]. Tr(HF) = - B, (A.14) 

where B is of first order in H'I. This equation can be solved at first 
order to give 

Da(t) =U(t, t') D2(t') ut (t, t') 

- (IIi) JU(t, t") B(t") ut(t, t") dt", (A. IS)
t' 

The end of the calculation is straightforward and it is convenient 
to use the expression (A.6) for D2. One finds that the second term in 
Eq.(A.IS) gives a negligible contribution to the master equation (of 
third order in H'I). Similarly the co~tributions (IIi) Tre[H, Db] and 

(IIi) Tre[H, IE QDa] to Eq.(9.11) are negligible. 

http:Eq.(9.11
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