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Problems and hopes.

These lectures were planned as some introduction to current
understanding of the low x problems in framework of perturbative
QCD. 1 hope, that I'i be lucky to elucidate you the main theoretical
ideas as well as the phenomenological situation in this extremely
interesting region. First of all, why this particular kinematical
region, namely, x — 0 is so interesting. The answer is very simple.
We faced a lot of theoretical problems here, which are difficult.
However we need to solve these problems since we cannot reach
the understanding the structure of the typical inelastic event
without this job.

I am trying to convince you that we have a chance to achieve a
full and theoretically self-consistent description of the main
properties of large cross section processes at high energy in QCD
at the same level of understanding as is reached in QED. So my
statement is very simple. | would like to emphasize, that the
principal properties of soft processes are not further away from
the fundamental features of our microscopic theory - QCD - than
the popular study of hard processes at high energy.

The theoretical background for the above statement is based of
the consideration of the deep inelastic structure function in the
region of small x. | hope, that these lectures can help the readers
to understand better our two reviewsl!: 2] which are really too
difficult for reading in spite of our efforts to write them as
simple as possible or to be absorbed in current situation of the
problem, that was perfectly reviewed in two meeting last spring,
namely, "Hadron Structure Function and Parton Distributions”
{April, 1990, Fermilab) and Low x Workshop (May, 1990, DESY).



Lecture 1 : Two examples from QED where pp = py + Pp and pg = qq + Go. It is obvious that d*K - %l de

2 2
dp del where S = (pp + pB)2 if S is large enough, e.g. S >> mp, Mp.
| would like to start my first lecture from two very simple

ex.—?\mples u'1 elec.trodynamlcs t.o clear up for your sevefal physical For non relativistic particles py = PA s =l’_B and we can use the

points, which will be very important for understanding of the 2 2

evolution equation at low x. 8-function in eq. (1) to produce the integration over o and B. Indeed
Let us consider the interaction of two neutral systems in Born ’

approximation in‘ QED. Let us assume that each of them consists of (p2 i K)2 - BS2+ Ki

two charge spinless particles, which are heavy enough to be

discussed in non relativistic way. In this case we can easily to
express the inelastic cross section of such interaction or the
amplitude of this interaction at transferred momentum t = 0
through the wave function of our systems (see fig. 1a). Indeed the
diagram of fig. 1a can be written in the form

(q1 + K)2=uS/2+ Ki . (2)

Taking into account the fact that our nominator can be rewritten in * -.
very simple way if we try to calculate the contribution which is

2 the most important for high S. Indeed
» » (p2+p2'K)“(q1+q2+K) -
et [wAlP) v > : 200 - K. 20« + K\ =1S- {oa K\ + (o K\ - .
K (2r2 - K. 241 + K) =5 S - (pg K) + (P K) .‘
-K2=‘§s-°‘2_8+2—s-aﬁs.xi (3)
4 2
¥a®) @ o205 (pp - K)2 - m)
(2x)
2 m2 K2 -
dadp 2n8f(qy + K)2 - my| . (1) 2 ) 2 17
since (p2 - K)2 =my and (qq + K)* = m, we see that o =
Here yp and yg are wave function (1) of our systems. (2p, - K), mg . K21
and (2 K),, are the expression for electric current of spinl
(@py + )“ - ° r ' nt of spiniess and p=———— . So at high S, we can neglect the contributions of
particles. To produce the integration let us use the Sudakov S

variables, namely, let us rewrite the momentum K as m? K2

aS, BS, offS and Ki terms in eq. (3) within accuracy ?or 5

So for high energy, finally the diagram of fig. 1a can be
reduced to the form

K=app+Bpg+K;
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d2K
@om-S-2. j — Ga(0) Gg(0) (4)

K.L
where  GA(0) = [y A(P) WA(P) dp = 1
Gg© = [ v vp(@ da =1

is the form factors of the composite particles A and B at zero
momentum transferred.

Of course to get the full answer we should sum all diagrams of
the fig. 1a type. Such diagrams are shown in fig. 1b. Finally, we can

express the cross section for this interaction as follows (Im A = S
o, - this is the form of our optical theorem)

‘o =20t 2x2 | [GA(O) -GA[4 Ki] ] [GB(O) - 63[4 Ki) ]

d%K,
4

Ky

(5)

where

GA(O)-GA(4 Ki]= [w*(p) wip) dp - [w'(p + K) wip - K) dp

Now let us look more carefully on the formula (5). We see that we

have no infrared divergency since at K; — 0 GA(0) - GA(4Ki) =

2 2
<RA> K..L

4 ———and Gg(0) - Gg(4 Ki) -4

2
<RB> 2
5 K 1 Of course the above

expressions reflect the fact, that our neutral system can emit
photon with large wave length A = 1/K; > R where R is the size of

the system. Only if it has dipole moments which is proportional of
course R. So, we face here with dipole radiation. However, | would
like to draw your attention to the very interesting property of this

interaction. Indeed, if we assume, that the sizes of our interacting -
system are quite different, for example Rp >> Rpg, we can easily to

see that there is specific region of integration, namely

Rp >> Ay>>Rg (6)

4 <R2

In this region Gg(0) - GB(4Ki) is still equal Ki. but GA(0)

- Gpl4 K_ZL) tends to 1. Indeed Gp(0) = 1 and G (4 Ki) - 0 since Ki

>> 1/Ri. So, in the kinematical region (6) we can reduce our

integral (5) to the form

.

2 2
2 4<RB> 1l:(:H(_L
op=8om .[

6 .2
2 K
1IRA L
2 2
- aemT n!n? . (7)
Rg



Thus we get some log contribution which can compensate the

R
smaliness of the coupling constant o, if —é—»t

Let me sum up the lessons that we have learned from this
simple example. V

1. If two neutral systems of particles interact with each

other through exchange of photon or any massless vector particle,

we have large contribution to the total cross section from the

R2

: 2 2 A
region 1/R K2 1/R hich is proportional a £n —.
g B > L > A Wwhic S p p o Rg

2. At high energy, the main contribution comes from
polarizations of photon (or any massless vector particle) which are
longitudinal.

2. Now let me consider the second example, namely the radiation of
photon by electron-positron pair which was created with the angle
6 between electron and positron as shown in fig. 2a. Let us denote
8' the angle of the emitted photon and Z the fraction of its energy
(see fig. 2a). The difference of energies between the (e”y) state and

the e~ before emission is equal to

2
AE2=»\/22p2+Kt +»\/(1 -2)2 p2 4 Kf -p=

2 2 2

K K K

“22p 21 - 2)p 22(1 -2)p '

(8)

. Ky Ky Kt
since 0'= — + =
L (1-2Z)p Z(1-2)p

account the fact that all angles are small here). YWe can see that

(see fig. 2a, we take into

AE =% 022(1-2p . (9)

Due to uncertainty principles, the time of emission

At = 1/%9'2 Z0-2p . (10)

During this time the et and e can fly away from each other on the
distance

6

Abgig- ~ Ot = ——
:‘2-0'2 Z(1 - 2)p

(11)

If we want to emit a y, we should demand that the distance
between the e* and e will be larger than the photon wave length AY
~ 1/K;. If it is not so, our photon will feel the total charge of et

and e~ which is equal to zero. Thus we have some evident
constraint

Abg+e- > Ay = 1Ky . (12)

Eq. (12) means that

L

— s =K (13)
1,2 ’

¥

So eq. (13) we can reduce to restriction
6>0 (14)

if we take into account that K; = 6' 2 Z(1 - Z)p.

For angles 6' > @, photon is emitted coherently by e*e” pair and
feels only their global charge, which is zero. Of course, the
constraint (14) can be proved more accurately, but | hope, that the
physical meaning of this condition have become clear. | would like
only to recommend the reviewl3] for all details and the
generalization on acol3l,
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The straight hold generalization leads to the ordering of the
angles in any subsequent decay. Namely, for the case of fig. 2b we
have '

91 >92 s > ei_1 > Oi e (15)

The main lesson from this example is very simple. For the process
of the jet decay (e*e~ annihilation for example) we have constraint
(15) for dominant contribution in the cross section instead of eq.
(6) which defined the essential kinematical region for scattering
processes.

However | would like to stress that the physical meaning of

both constraints (eqs. (6) and (15)) is really the same, namely, the
wave length of the emitted gluon should be smaller than the size of
radiation or

Aby > 1/K, (16)

but for scattering processes Ab, ~ R, where K is the radius of the

_system of partons that emit detected gluon with momentum K,
while Ab; for decay processes should be calculated using the
expression (11). Of course, this difference has very simple
kinematical explanation which is seen directly from figs. 3a and b.
In fig. 3a three stages of the development of a parton cascade in
deep inelastic process are shown. The partons multiply in the
region limited by the transverse dimension of the parent hadron.

The same three stages look quite differently for jet cascade in
a e*e~ annihilation process. Each jet lives in its own cone and
decays into jet with smaller opening angles due to angular ordering
condition (15).

11

Lecture 2 :
Deep Inelastic Structure Function in the region of small x
(Double Log Approximation)

Using condition (16) we are ready now to receive the so-called
evolution equation for any hard process. lLet us concentrate our
efforts on deep inelastic scattering in region of small x. | prefer to
leave out the discussion what means the deep inelastic structure
function and so on. The only thing which, | hope, everyone knows,
that the cross section of virtual photon (y-) is equal to ’

07.=?52£‘-x F(x, q2) ) : (17)

Here the first factor is the cross section of interaction of y* with

the charged parton. x F(x) = Z ei x q(x) where eq is the charge of

quark q and x q(x) is the probability to find quark with virtuality

smaller than photon virtuality (q2).
The problem which we are going to solve can be formulated as
follows. How can we calculated in QCD the probability to find

parton with fixed virtuality (transverse momentum), q2, and the
fraction of energy x if we know this value at smaller q2 (say, q2 =

2
QO)-

In QCD also, as in QED the probability to emit gluon "i" is
proportional to

2
gw. os N dxi 47Ky

' 2 X 2
n I Kit

(18)

N is the number of colours here and ag is the coupling constant QCD
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o ,___ﬁ‘..__ and b=1lN-gnf
b £n K2/A2 3 3

ng is the number of flavours.

I would like to postpone the discussion why W is proportional
to N others factors in eq. (18) are obvious and follows directly

from dimensionless coupling constant of our microscopic theory
(QCD). Using W; we can very easily to calculate the probability to

find gluon at least at x — 0. Indeed, if x'G(x', K2) is probability to
find gluon with fraction of energy x' and transverse momentum K,
the probability x G(x, q?') should be equal to

X G(x, q2) = jd W, x* G(x’ K2) =
2
, dK N
- [ —zt 28 G K (19)
n

K

(see fig. 4a). Now let us chose the essential integration region in
eq. (11) using the above lesson from Born approximation. First of
all A = 1/q should be smaller than the typical size of emitter,
which is the gluon which proper size is equal to 1/K;. So A << K1_ or
t
q; >> K;. From energy conservation of course x' > x, but even the
slight glance on the equation (19) shows you that we can get a
large contribution we assume that x' >> x. So finally our equation
can be reduced to the form

2 2
a° 4K
cofxa?) - [ L8
X 2 Kt
99

— x G(x‘, K2) (19')

Solution of eq. (19) is evident for fixed ag,

13

X G(x q2) = [dy [Jar s Nx' G(x', Kz)
y r %

Herel‘=£nq2/qg ,  y=4£n 1x

or — — xG{x, r) =
oy or

N
9 2 % e (20)
T

assuming that x G(x r) = F(\}y I') we can rewrite eq. (20) as usual
differential equation, namely, (t = vV yr),

2
dF, 1 dF _esNp, (21)
di2 4t dt

Eq. (21) has solution

ag N
F=1p|2 " yr (22)

which tends to 1 at I — 0.

Now | would like to solve this equation in slightly different
way. Namely, let us introduce Mellin transform of x G(x, %) = F,
namely,

Flo,1) = [ &Y F(y, T) dy

+ioo
D=L | Fone®do . (23)

-joo

Of course, the contour in eq. (23) should be located to the right of
all singularities in F(w, I'). It is easy to see that F(o, I') is nothing
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Lecture 3 : Double Log Approximation (continuation) ©0
(. 12 X Py » X —— yri =
n=0 (nn2 =
In this lecture | am going to discuss the accuracy of DLA for e N
deep inelastic scattering and show you that situation in decay =lp|2 ——yr (34)
processes as e*e” annihilation is quite different from DIS.

Let us return to the equation (19') and let us discuss what

small parameters were really used to get this equation. First of So our equation we really have received in so-called double log

all, we suggested that dW; has the simplest form of eq. (18). Even approximation. In this approach, we consider the parameter
more the answer (30) corresponds to the probability of production ag N 2
"n" gluons which is proportional ~—&n 1/x £n g—m 1 (35)
0
n
- Pn~ in1 aw; . (31) but all other parameters such as
ac N 2
_Indeed, in eq. (19') was really included the following strong S £nL <<
9rdering in x; and Kit : n Q(Z)
(IS N
£n i/x << 1
(32) .
1
Xq >> Xg >> Xg ... >> X { >> X} >>X 1) ag << (36)
1 2 were assumed to be small.
ﬁhf"’ Kyp << Kop << Kgp << Ki g p << Kjp << . (2) Let us try to understand in more transparent way the origin of
the conditions (36). Assume for example, that we have lost one log
. Na
Using eqs. (32) we can calculate F, and we can see that integration over d2K; in dW;. So W, = —Syr+ AW; and AW, is
n
. N ag . . . .
y Yn Yo proportional only to £n 1/x. Putting this expression for W; in
b4
Fn= JOdYR Jody"'1 Jodh ) {31) we immediately get that
2 N r Iy Io o
S [dr, [ orgq.. [ dry= Po~—T1 W= T [—Syr +a w,;| andso
~ Ty o To n! n 12 r

(s NT, (33)
(nn2 =
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AF =AY P =AW ¥ 0Py =AW <n> Fx ——
. Nas yr

x

’ N
butn = ilig’——yl‘ just from explicit form of eq. (34). Now we are
14

ready to estimate the accuracy of our equation. Indeed

AF

— = AW<n> | 1
F

Nag

<< 1

yI

T

N
%S " enix<<T . (37)

or
R

In the case when we have lost the log integration over dx, it is
ag N
obviously, that AW is of the order of S "r and instead of eq. (37)
n

we have

asN

TF<<£ntix . (37°)
r

Of course, the two above constraints for constant ag can be

rewritten in the form (36), but | would like to draw your attention
to the fact, that if you take into account the running coupling
constant ag in QCD you can see that egs. (37) and (37"} can be

4n
reduced to =—
(ag bl‘)

£n 1/x << % r2 (37

and

21

4
= << £n 1/x
b <<

Eqgs. (37") can give us very interesting information. Indeed, for
running ag two above cases give quite different constraints. We

should be very careful with summing all (€n 1/x)" contribution
with better accuracy than in DLA equation, because only log
integration over K leads the strong restriction of the region of x
(the first one from eq. (37")). However, more careful integration
over x when we collecting (£n q2)" contribution lead to more
precise answer only in limited region of x, which defines by the
second inequality in eq. (377).

You can see the picture in figs. 4c and 4d, which show the
kinematical regions where DLA gives the correct answer. You see
the obvious difference between two cases : running ag and ag =

const. The full presentation of the DLA selection is the following

Nagy nagl
Fly,T)=|1+ O —=1+0 . Fly,T)
T xYy DLA

(38a) .

It should be stressed that eq. (38a) gives you new way, how we try
to understand the accuracy of our solution. We estimate the
AF

relative precision of our solution . The answer in the form (38a)

is valid even when ag £n q2 1/x >> 1. This fact is the most

important for future. And the main our goal now is to improve

double log approach in such way, that we would like to get the
solution of the problem within accuracy (Fp o(YT))

Fly, T)2 = (1 + o(@) Fiy D) (38b)
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Double Log Approximation for e*e" annihilation
For decay processes it turns to be more convenient to rewrite
dW; of eq. (18) in slightly different way, using 6; instead of Kit’

since for these processes we have the strong ordering in angles
(see eq. (15)). After that we can use expression (31) for p, if we

take
2
(lsN del dXi
dw; = — (39)
Oi !
So
y Yn Y2
Pn = .[ dyy, .f d¥p.1 - Idy1, (40)
Yo Yo Yo
2 2
S ] —
emin en en en-1 92 91 )

Thus the answer for structure function in this annihilation process
is the same as for deep inelastic scattering, namely

4N
F(X,ez,emin)=2pn=t0 - sx‘.’n 21 eZn 1/x
Omin
(41)

and the only problem to understand the value of 8.,.,. Of course,

this value depends on our point of view on the hadronization since

the decay of jet comes to the end namely, the hadronization stage.
Perturbative QCD can be applied only at the stages when Kj; > p >

(Khadron and 0t(uz) << 1. It means that

23

Bmin = 2WxQ . (42)

So the result can be described by expression

= 4N o 2
S 1 4
F(x, emin) =|0 VT"‘zn ;fn ;é%)’é‘ =

8N
=|0[—\/ “Szn‘—(zn-a—-zn 1_] . (43)
n X 2u X

Comparing eqgs. (43) and (39) we immediately see that in the region
of x ~ 1 when £n 29— >> £n 1/x, the structure functions are
1y

coincided for both processes, but for small x the behaviour of
structure functions looks absolutely different. F goes to zero and
we have maximum in inclusive spectrum of hadrons in ete”-
annihilation, just as F for deep inelastic scattering grows very
rapidly, namely, at small x.

We could see this property just from condition (15) : indeed,
the angular ordering means that

K; i
b L B SR (44)
Xj-1 X

x4 = % - 1 from the above expression follows the ordering in
Kt as for deep inelastic scattering, but in the region of small x,

situation changes crucially and we have to use only angular
ordering.
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Lecture 4 : Leading Log Approximation

Double Log Approximation gives us the understanding of the
main qualitative properties of QCD solution ir the region of small x
and large (really very large) virtualities. But for DIS the constraint
(16) does not depend on x and leads to ordering in transverse
momentum (virtuality). We can use this property and develop two

different approaches. In the first one we refuse to get large log
-1/x contribution. So the smallness of ag is compensated by large

log q2 in this approach. The second on the contrary uses only large
log 1/x contribution and could be applied to small virtualities.

ribov-Li v-Altarelli-Parisi i

We shall start from the first, which is so-called Leading Log
(q2) Approximation. We use here the following set of parameters

2
ag £n 62/qg ~ 1

ag £n 1/x << 1
ag<<1 . (45)

This approach was firstly suggested by Gribov and Lipatovm for
all field theories with dimensionless coupling constant. Lipatov
even gave the partonic interpretation of LL(qz)A equations. Then
the case of QCD was specially reconsidered by Altarelli and Parisi
in the West(®] and by Dokshitzer in my country. Altarelli and Parisi
used quite different technique to prove the LL(q2)A in comparison
with Gribov and Lipatov and formulated the equation and the
problem as a whole in the way which allowed to develop the
systematic approach the deep inelastic scattering processes. Here,
| do not want to discuss this approach in any details, because it
was excellently reviewed by pDTI6l. | would like only to tell you a
little bit about space-time picture of the parton cascade in this

25

case. To illustrate this picture let us consider the decay of a

parton in the parton cascade (see fig. 5a). If we would like to have
large log of K;, we really consider the case that is shown in fig. 5a.

One large parton which radius is of the order of 1/K; 4y decay into
two small partons. Their proper sizes are of the order of 1/Ky. (r;

2
~ 1/Ky). So our log Kri 1 here, is the result of integration

r-
i-1
r¢
j —ri . Since ‘he distance between two parton after decay is
i
large enough and much larger than their proper sizes. We can
neglect interaction between partons. It means, that the structure

of equation here remains to be the same as in DLA (see eq. (19)).
The only change is the fact that dW; now has more complicated

dependence on x;. So the equation has the form

2
X G(x, qz) = gqo %—NP(%)dx'x G(x', q2) d—::; . (46)

The second modification is also trivial, we should take into
account not only gluon structure function but quark and antiquarks
one. The third modification looks more complicated from the first

sight. Namely we should subtract in the right hand side of eq. (46)
2

q
2 o N
~ the terms 2 I dq'® J S P(Z) dZ . xG(xqz). So the final

Qq Q'z r
structure of the GLAP equation is shown in fig. 6b. The first term
describes the change of the transverse momentum of quark (gluon)
results from quark (gluon) decay on quark (gluon) and gluon. The
second one accounts for the fact that the parent parton that decays
into softer ones ceases to exist. The solution of GLAP equation can
be found in the form eq. (28) and the only difference that y,

becomes more complicated function on "n".
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At the moment we have large practice in numerical solution of
this equation. So we understand all values which are important in
this case. However, | would like to emphasize once more, that this
equation has, theoretically speaking, very restricted kinematical

2

2
region where it was proved, namely large g< > o but x ~ 1.1 am

going to return to discussion of GLAP-equation in the next lecture.
1 would like to draw your attention to the fact that the second
term in evolution equation violates the probabilistic interpretation
of the deep inelastic process or may be better to say, the
probabilistic interpretation demands reformulation what is the
parton in our parton cascade. The situation is very simple. Each
produced parton is accompanied by a lot of sufficiently soft gluon
and we should redefine how many from such gluons our trigger
measures as one parton. After such the redefinition, of course, the
gluon in our Feynman diagrams should also to be reconsidered, and
its propagator should contain some factor that renormalizes its
- propagator. But unfortunately, such redefinition inside the parton
approach depends crucially in the value which we would like to
calculate and on the process which we are considering (or on the
-kinematical region).

Kuraev-Lipatov-Fadin _equation!”]

The second generalization of DLA is also now understandable.
We would like to preserve the £n 1/x contribution and neglect ag

log q2/q(2) corrections. So the set of parameters for such so-called

Leading Log 1/x Approach is evident

ag £n 1/x ~ 1
2
ag £n q2/q0 << 1 . (47)

as<<1
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In kinematical region (47) the space-time picture for the parton
decay looks as shown in fig. 6a. So here we cannot avoid the
interaction between partons in the final state. Our large
contribution comes in this approach from the ordering in x. To
clarify the problem let us consider the simplest diagrams of fig. 6b
for high energy quark-quark scattering. The Born Approximation for
this process is the diagram of fig. 6b and using the experience in
calculating the Born Approximation diagram in QED it is easy to
understand that this diagram is equal to

2 2
20 4o

A(6b) = S | t
2 4

N< -1 Kt

(48)

if N is the number of colours. Let us consider

N2 - 1
where Co N
now the emission of one extra gluon (see diagrams in fig. 6¢). It is
easier to consider the diagram for emission of gluon with
momentum q and after that calculate the amplitude which is equal
to square of the emission amplitudes. Thus the contribution of the
diagrams of fig. 6¢c is equal to

2 4
M, . .5(q2) 979 . (49)
I 23 (q ) (21)4

Let us consider this integration assuming that all transverse
momenta are restricted. Introducing Sudakov variables, we can
express q through af and q;. indeed

q=app+Bpg+q

so q2=aﬁS+q12 ; S-2(pA pB)
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d*q = d?qy do o % :
Integrating over dfj we see that exp (49) can be rewritten as

1 2
2 d qy da
My —— - (50)
'2 a
K™

S

The lower limit of integration we can calculate from the condition

2 2
Aq+ pB)2 > K't ora S>> Ky . From eq. (50) it is obvious that log 1/x

contribution (or £n a) appears only if the amplitude for the
production of new gluon q does not depend on a. This is so for

diagram of fig. 6¢c (1). First of all, let us note that K2 and K2 are
2 2
equal to K; and K. Indeed (pp + K)Z = 0 and (pg - K') = 0.

2
So BS + K =0 -aKS+K'f=o : (51)

o = - O.K + (!K- since O.K- << O

2
K

cakma Bm e b<e

so B =P

Thus from egs. (51) we have
K2=aKBKS+Kt2=aﬂKS+Kt2=

2 2 2 2
=-(th +Kt =Kt (‘l-ct)=Kt
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since a<<i

2

K‘2-aKlﬂKCS+K|t2HﬁK'i+K't"
q2

2 2 1] L2

AR o KR B

Let us calculate now the vertex for gluon emission in diagram of
fig. 6¢ (1). Using the usual Feynman rules for QCD we can calculate
the vertex for gluon emission.

Fg=191tpe PAy P, Tuve (51"
where T, =9,, (K+K);+9,5(-K-a)+gg @-K)

we need I'; only for ¢ which is perpendicular to ps and pg since "

gluon q is real (cg2 = 0). So it is very easy to get

Tg=i80he 5 K+Kho - (52)

Thus finally the diagram of fig. 6c (1) gives the contribution

28 . C's . 1
9% tik 19 fape Tiw 5 K+ K)o —5— (53)
Ky Ky

as you see in eq. (53) there is not any dependence on «, so if we put
this expression in eq. (50) we will get the log contribution.

Let us now consider the diagram of fig. 6¢c (2). At first sight
this diagram cannot give log integration, since the propagator (pp +
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2 2
2 2 G 2 at
K')2=I3K-S*K't =BS +K{ =- —+K{ =- — . Thus we have
o o
integral d-ﬁa — O(1). But the above statement is not correct. Let
o

us look more carefully on the nominator. The vertex of emission of
gluon from quark Y4 is equal to (2pp + K + K'),. The vertex g in

diagram of fig. 6¢ (1) also contains the longitudinal part namely T

2
= 18 fape 3 (K +K) 0. In My_, 3 we have the convolution 1+ ggrg T

PAos PBo' * PBs PAG 1 1 L .
- Oy = =2 ¢ A0, 9g's = Yo' + Ig'q- ONY g Can give
Pa DB)
the log contribution to our integral. It is easy to see that

_(K+K', pA) (pB, K+ K‘)

Yo' 9g's [0 = +
(a7
. +(2pA+K+K',pB)(pA,K+K')=
(PA PB)
_ (Pa pg) - ( Bk *Pk’) (Pa PR) (oK * oK) \
(Pars)

(pat) (2 wic o) (Pa%6) (O +Be)

('a%0)

+

(54)

From eq. (54) only the term 2<pp pg> (B + Bk') gives the
contribution that can compensate the smallness of the order of o
which appears due to the factor (p + K')2 in the dominator. But 2(pp
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pg) (Bk + Bk') = SB and cancels the propagator (pp + K‘)2. Thus to

get the answer we should calculate the whole sum of diagram in
fig. 6¢c. Instead of this procedure let us use some ftrick, taking into
account the gauge invariance in explicit form. Let us look on the

sum of diagrams 6c (1), 6¢c (2), 6¢c (3) as on the amplitude of
interaction gluon K' with the quark pp (see fig. 6d (1)). Due to gauge

invariance Ku Mu =0 or

(QK' pAu + ﬁK: pﬁu + K'tu) ME=0 . (55)

But let us note, that all particles inside Mp have a large projection
of their momenta only on py. However PAp Mu can be large only if
Mu has a large component along pg. It means that we can neglect
PA M’1 in eq. (55). So eq. (55) gives as the relation

Kl
_ Ky
Py My = _EBK' My (56)

Of course we can consider the sum of the diagrams 6c (1), 6¢c (4)

and 6¢c (5) as the diagram of fig. 6d (2) and apply the same trick to
the amplitude M',,. It gives us

Ky MYy

PAv My =- (57)

oK
Using eqs. (56) and (57) we see immediately that in the amplitude

Mll survives only the first diagram since others have no

longitudinal polarization and to this reason we cannot compensate
the smallness in the integral (50) coming from the propagator (pp

+ K)2. The same happens also in the amplitude M',. So the resulting

answer for the whole sum of diagrams looks very simple - the only
one diagram of fig. 6¢c but with the specific vertex for gluon
emission, that is equal
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2Ky, K'
. th Mty
I‘O = Ig fabC ‘——‘-X—B—é—-— pvo (58)
where T’ is given by usual Feynman rules for QCD. I'; looks very

Hvo
. 2 .
simple if we take into account the fact that aBS = q;. | would like

to miss here sufficiently long but simple ailgebra and rush out to
the answer.

. 2 (2 2
Ty =ig fabc;E(q Ky - K qc) (59)

using this expression we can calculate the integral (50) and the
final answer is

aa C
T2 Y 2Ky Ly Nas
A(6c) = [ dy . KK, KY (60)
e K kg
Here K(K, K') is equal to
2 2
Ky K'
K(K, K') = (61)
q

So eq. (60) gives us the very elegant answer for contribution when

we have three particle in the intermediate state or in the other
words for emission of extra gluon, but in the same order of ag

there are diagrams in which no secondary gluons produces (see fig.
6f). These diagrams describe the ag corrections to Born amplitude

(M2) and we can calculate the contribution to full elastic
amplitude as

33

@) (1) 43,

[ MaaM o — o2 (62)

2
The extra log contribution should be hidden in M(2—12 amplitude,

namely, in its real part. To extract this log we use once more one
trick, namely, we prefer to calculate the real part of m(2) using the
dispersion relation

Img M(2) Imy M(2)
RoWyy = [ To e [ T e (e)

and we can express Img M(2) and Im, M) as integral of

Img M(2) - j[M(‘)Fd Kt (64)
(2x)?

Of course the integral (6a) or img M(2) and im, M(2) s nothing’
more than our Born amplitude or in the other words the diagrams of

figs. 6f (1) and (2) but for transferred momentum Ktz. (In eq. (48)

we put this momentum is equal to zero). The expression (64) is the
function of transferred momentum K, which can be easily

calculated. This function
2
d< K
Zs(KQ)-——- f———5*Cs (65)
(K- K )t K'

where Cg is colour factor which corresponds to diagram 6f (1). X,
differs from ES only by coefficient C. Thus, the full answer for

M(2) we can easily to get just from eq. (63).
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Lecture 5 :
Main properties and solution of LL(x)A equation
(the “bare” pomeron structure Iin perturbative QCD)

1. Mai fies of LLG)A i

Here | would like to discuss the main properties of KLF
equation (see eqs. (75) and (74)).

1) DLA
It is easy to see directly from eq. (75) that if we would like to
find solution for sufficiently large virtuality q2, we can restrict
ourselves only oversimplified form of the kernel K(qq") namely K{q,

q) = 1—2 , since q' << q. In this case eq. (75) can be reduced to the
q
form
de(y.q)_1 @sN (% 5 ¢ 5
b9 .1 [ da?o(a?) . (77)
Y o= F  qp

q
Due to eq. (76) }' dq'2 tp(q’z) - 42 73 x G(x, q2) so eq. (77)
Q9
can be written just for x G(x, y') namely

i.de(xq2) .laSNxG(x qz) (78)

or

msN

iy 9 Fy, 1) =——F(y, T) (79)

39

2
where F(y, T) = x G(x, 2), y = £n 1/x, T = £n 95 . Eq. (79) coincides
%
with eq. (20) which gave us DLA.

2) Qualitative difference between LL(g?)A and LI (x)A

As | discussed before the main qualitative difference between
LL(qz)A and LL(x)A really is reflected to different situation with
interaction in the final state. If in LL(qz)Avwe can neglect this
interaction (see fig. 5'a), in LL(x)A we have to take into account
such an interaction (see fig. 6a). However, KLF were very lucky,
since they rewrote this interaction in the final state in LLA only
through the reggeization of gluon. Indeed, the equation (75) looks .
as summation of ladder diagrams, but really it is not so, as | tried

to convince you calculating the diagrams of ag order. Indeed, if the

emission of gluon could be written as new ladder diagram with the
vertex which completely different from the vertex in usual ladder
diagram, the new set of diagrams should be taken into account
which was reduced to reggeization of gluon. Qualitatively new
kernel K(q q') differs from the kernel in GLAP equation, and has two
new properties :

1. There is no ordering in q. It means that if in GLAP q >>
q', here q' is of the order of q. Of course such enlargement of the
integration region in q' leads to increase of the structure function
of gluons in the region of small x.

2. Reggeization of gluons leads to new gluon propagator
which is smaller than the propagator of the perturbative gluon. So
reggeization as any interaction in the final state reveals itself in
some shadowing (screening) effect.

These two effects have the same order of magnitude, even
more they compensate each other strictly at the point q = q'. The
above discussion we can summarize as some table which gives as
the comparison between LL(q)A (GLAP) and LL(x)A (KLF) approaches.
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Table |
The comparison between LL(G2)A and LL(x)A

LL(gD)A LL(x)A
Y1 = Y22 Y3% . % ¥ Y1 >>Y2>> Y3 .. >>Y,
2 2 2 2 2 2 2 2
q1>>q2>>q3>>>>Cb q1=q2z q3z zqo

No interaction in the final state | Final state interactions leads to
luon_reggeization

" Even the slight glance on the above table shows you that
kinematics of LL(x)A is very close to the multiperipheral
_kinematical region. This question as well as detail structure of
LL(x)A solution will be discussed in the next sections of this
- lecture.

2. Solution of LL(x)A equation

Before discussing some new qualitative figures of LL(x)A let
us find the exact solution of this equation (see [8]). Anyone can

check that ¢; = (qz)f'1 is the eigenfunction of our kernel. Indeed,

after sufficiently long algebra we can see that

l— | K@ a) eg@) d2q' = x() e(a) (80)
where
x(f) = 2¢(1) - w(f) - y(1 - 1) (81)

and
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d £n T(f)

ot ,T'(t) is the Euler gamma function here.

v(f) =

Of course, the fact, that ¢ is the eigenfunction is clear just from
dimension estimates. Indeed, K(q q') is the homogeneous function of

2 {9
q (;Lz)

q'2/1q2. So we have some integral | K(q' q) d2 which

depends only on . Eq. (81) is the result of the calculation of such
an integral. | refer to original papers of Kuraev, Lipatov and Fadin
and Balitsky and Lipatov[7' 8 for all details. From the equation
{80) we can easily find the general solution of KLF equation. Using
double Mellin transform we can reduce the equation (72) to the
algebric form. Indeed

o(a2. y) - I""’ ‘"e“’ycp(r)ccm,n (82)

where T = £n qzlqg and the contours integration in respect to @ and

f are situated to the right of singularities of ¢; and C(w, f). For C(o,
f) our equation has the form

2
| Ka. @) qu'z Cho)  (83)

¢ q2

o Clo, f) = ’s

or taking into account the fact that Q)f(qz) = ol 1T we have

o Clo, f)-:

x(f) Clo,9) . (84)

Finally, the general solution of KLF equation is
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Re M), - S(Cs - Ck) 4ns 2(k?) . (66)

The colour coefficient has a very famous relation between them,

which is shown in fig. 6d (1). Using this relation we can easily
calculate Cg-Cy. Really this calculation is given in fig. 6d (2). Thus

()

Re Nb -3 has the same colour structure as one gluon exchange in

Born diagram. So we can rewrite the result (66) as the correction
to the trajectory of gluon, e.g. instead of giuon with propagator

1/K2.S we can write the new propagator 12- S"G(KZ), where a(K) is
K

equal to

o N 2 42u
uG(Kz) -1.%8 CJ K< d¢K (67)
1t2 (K - K.)Z sz
It is interesting also to mention than we can use another form for
aG(K‘?), namely

2 42

a2k

o8(k?) =1-28 :C [ i . (68)
e " k- kf [k2 (k- 602]

Thus the answer for whole sum of diagrams 6f is equal

2 2
ag Cy 2
A6 =S [ (o(x2) - 1)‘2';? : (69)

3
The full answer for A in ag order we can get summing egs. (61) and

(69). It can be represented in the form
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2 .2

e C
$T2 Y42k, d2 Ky N ag
A(2) =S [ oy ] K(KK') 5
N2-1 "o 2 kZ x
y=4£nS (70)
where
2

K(K"Kl) - _1_.= 1 1 K L

K2 (K-K)2 K2 (k2 [x2+ (k- K.)2] K2
' (71)
Using egs. (70) and (71) we can introduce function ¢(K) and rewrite

the total cross section for quark-quark interaction through this
function

c
cqq=—2——_f.§___J:p(y, q'z)/q'f dg? . (72)
an VN2 - 1

For ¢ eq. (70) gives the equation

y
N
@09 =25= [ oy [d%q Ka, @) oDy, ) (73)
x 0
where
N 1 , 1 q?
K(a, q) ¢(q) = 3 9(q) - o(q)
(a-a) (q'2 +(q - q')z) (q-q)?
(74)
@sCp 1

and ¢(1)=———::'—__-—-
4nvN2 -1 q2
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Really eqs. (73) and (74) give us the resulting answer and define
the equation which is correctly sum the (xg £n 1/x)" contributions.

We would like only to rewrite this equation in more convenient
form, namely

dcp(y =4£n 1/x, q2) ===ch

m Kas Jk@ @) o(y. a2) % (75)

where K(q, q') is defined by eq. (79). The gluon structure function
can be rewritten through ¢ in the following way (N = 3)

2

x G(x, q2) - jq tp(y - £n 1/x, q'2) dq24Va2 = . (76)
2

, a2

Thus, eqs. (72) (74) (75) and (76) give the full answer on the
question what is the squation in LL(x)A. This equation was firstly
received by Fadin, Kuraev and Lir.)atcw{71 and then discussed in
details in QCD by Balitsky and Lipatovle]. This equation can
describe the amplitude in the region when virtuality q2 is not much

larger than initial virtuality q%. So, speaking in physical termines,

this equation defines the structure of the pomeron exchange in QCD.
The resulting structure of the equation (75) looks as the
summation of ladder diagrams (see fig. 7). However, such ladder
diagrams are only effective representation the whole huge set of
diagrams which were really summed. | hope that | convinced you

that it is so in our the simplest example of the diagrams of ag

order. In this effective ladder the first part of our kernel K(q., q')
describes the emission new gluon with the vertex which differs
from the vertex of the Feynman diagram and which is defined by eq.
(59). The second term in the kernel K(q, q') (see eq. (74)) describes
the reggeization of gluon, which are vertical in t-channel.
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In next lecture I'll try to convince you that the simplicity of
the equation (75) is only at the first sight and it contains a lot of
new physical phenomena.
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N
?}xmquW

oa.y) =—— [e B(h) df (85)
(2mi)

where ¢(f) should be calculated just from initial condition namely
from the value cp(q2, y) aty = yg. Now, let us reproduce the DLA

solution using the general answer of eq. (85). Let us note, that the
kernel x(f) has some special behaviour at f — 0 (or f — 1). For f —

omne}

N
y+(o - p)T
so o(a2.y) - 12Ie nf Plo)df .  (86)
(2xi)

For large y and T we can use the steepest descent method to
calculate the integral.
The saddle point can be found from the condition
ag N

2
ufo

ag Ny
SO fn = - .
0 \, =T (87)

Putting eq. (87) in the integral (86) we see that

y+G=0 .

ag N —
2 SI‘y 3

f

2 1 T U - *lo
' = e e f 88
v(q Y) 22 o(fp) ag Ny (88)

So we reproduce the DLA solution. Of course, we can now find the
function E(fo) from initial condition, for example ¢ = 1 for q)(q2
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y=0) = 1 8( - I'y). Really solution (88) can be valid only in the

aSNy

n

kinematical region when g << 1 or << 1, 0r

N
%8 Tyer? . (89)

b1
Now let us try to look for the solution which could describe the so-

called reggeon region, which corresponds I' -Tg << I, and y >> yg.

Our guess in this kinematical region, is that important role in our
integral (85) will play f = 1/2 + iv and v will be small.
At f - 1/2, the kernel x has the following expansion

2 = 4 £n1-v2 14 E@3) + o(v3) . (90)

Here, E(3) is the Riemann zeta function [§(3) = 1.202]. Substituting
formula (90) in eg. (85) we have

ag N
S " (aenz-1 45(3)v2)y--1é— F4ivl
T
2 1 (-
olac.y)=—]olv)e dv
(% v) - 5]
(91)

we can easily calculate this integral once more using the steepest
descent method. The saddle point in the above integration is at v =

asN
vg = ,wheremo=—41.’n2
n

2A0)0y

A=14803) (92)
4 £n 2
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So vp << 1 forall wg y >> T or for all T up to wpy. The main region,

is, of course, T' ~ \/moy. The result of integration is evident,
namely

2
CI2 ) @o¥ - 4 0pg YA
\/ o 0
o(a?. y) - 2 e . (93)

q2 '\’411: wgy A

2 . .
Let me recall that T = £n qzlqo. The answer (93) is normalized by

" the condition that ¢(q2, y) = 8(T') aty — 0. So ¢(q2, y) in eq. (93) is
N
14 £(3) y.

Now let us discuss the main qualitative feature of this new
* solution which we can apply for reggeon kinematical region,
namely, for fixed virtualities and large y (high energy or low x).

20
the Green function of our equation for I' <<

3. Main_properties of EL(x)A equation (continuation)

3) Rapid_increase of the total cross section
Directly from eq. (93) one can see that ¢ ~. e®0Y at fixed T'. It
means that the cross section ¢ grows at high energies (small x) as

N.a 0=1/2) o
0~ (270 where wy =—2 SXOo=1/2) %S hpn2  (94)
q2 n n

if N, = 3.

It is very important to mention that in QCD the cross section
grows rapidly with energy (oy ~ S®0) even for small coupling
constant, ag << 1. Of course, this is the direct consequence of the
fact that the gluon spin is equal to 1 and we have so-called long

range (in rapidity) interaction between partons in the parton
cascade. Such an interaction is one of the main differences
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between QCD and old naive parton approach. The increase of the
total cross section can be easily explained as a result of the
increasing wee parton (gluon) multiplicity. Indeed, the effective
ladder diagram of fig. 7 describes not only one chain of partons but
also the whole parton cascade, in which each parton can produce
its own branch of partons (see fig. 8). In such a cascade each gluon

oag N
is able to emit one more gluon with probability | s K(a'; a)
T
dq'2)dy in the rapidity interval Ay. So

N
where wg = as™ j L(q' q) dq'2 and so the total number of wee
n

partons (N) grows as N = Ny e®0Y, In other words the total cross

section is proportional to elementary one
2
og ~ 0g <r>> (96)

{where <r2> is the mean radius of the target) times the

multiplicity of the wee partons
oy=0cgexpeg£nS . (97)

Of course, directly from eq. (97) we can estimate the mean number
of cells in our "ladder", (Ai), namely

£n s\"
oy =0p Y, e90£NS g z(mo__)_
t=%0 0 nl

and A= wg£nS . (98)
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It is worth mentioning that n is proportional to the multiplicity of
wee partons in a single particular branch of the parton cascade
only (for example that one which is shown by double line in fig. 8e)

since the total "wee" parton multiplicity is about N ~ eﬁ, as seen
from fig. 8.

4) Random walk in the £n gtz plane

Another important property of the solution (93) is the fact

that it describes the diffusion motion of partons in the £n q?

plane. Such motion reflects the convergence of the kernel K(q', q) in
eq. (75) in respect to integration over q'2 both for small (q' < q) and
large (q' > q) q'2 for any function @¢ with 0 < Ref < 1. This means

that the essential q'2 in the integral is of the order of q ; being a
direct consequence of the fact that the QCD coupling ag is

dimensionless. Thus, we have no dimension parameters except g in
our equation. Therefore ' ~ q or the emission of each successive
gluon changes £n g by a value of the order of unity, i.e. £n g - £n
q'y= 1. For high energy (y = £n 1/x >> 1). £n q; can increase or
decrease with equal probability (A £n q; = 1). It means that after
emission of n gluon the £n q; of our particular parton changes in

the value

<£nq2>n=n<A£n o,(2>=nA (99)

where A = <|A £n qt;2> for one gluon emission.
Of course eq. (99) leads to typical diffusion distribution

2
-I'“/nA 2

N = N(r=0) e (100)

nhA
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The solution (100) coincides with the general solution (93) if we
take N(I'=0) = e" and remember that n = wqy. The equation (99) leads

us directly to the conclusion that the average £n g; of the parton in
our parton cascade depends crucially on energy (or xg) in our

process, namely,
<en2g?> =AwgenS . (101)

Such a diffusion is the quite new phenomena which we face in QCD
in comparison with the ordinary naive parton approach. Indeed, in

2
the naive parton model, <q; > is constant and cannot depend on the
initial energy. In QCD we see that mean g, grows remarkably with

the energy (see eq. (101)). This fact changes crucially our intuition

for so-called typical inelastic processes at high energy or small -
xg (in DIS).

5) Parton walk in_impact parameter plane .

As illustration the above statement let us consider the impact
parameter distribution of the parton inside of the parton cascade.
Here, | would like to discuss only qualitative picture of this
distribution and refer the reader to paper [2] for details.

It is well known, just from uncertainty principle, that the
typical shift in impact parameter plane Ab, is proportional to

1/q'y where g’ is the transverse momentum of the "n"th cell of the

LLA ladder. 1t changes significantly at each diffusion step. As
mentioned above the parton momentum g, can be changed in several

times from one cell to another, since £n q/q ~ 1. In momentum
space such variation of g, leads to diffusion in £n q;. but in the b,
plane this increase of £n g; results in a rapid decrease of the

typical shift in by. Indeed, directly from Aby gy ~ 1 follows

Abtz—vexp(~£n q'$)=exp ( \/n_A)-aO (102)
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In eq. (102) we use eq. (99).
Thus, all wee partons are frozen in by at sufficiently large n

and g; or in other words are located at fixed value of b;. A wee
parton shifts its position in by significantly only in the rare
fluctuation when the parton accidently comes to the region of
small g ~ Qg during its diffusion motion in £n g;. Such
propability is equal by definition to the ratios Wy =

2
N(£n 95 = 0)

%

2
_IN(£n 9—2) d£nq?

%

accordingly to eq. (100).
Thus the characteristic displacement of the wee parton in b’

and equal to 1NN Wy, = 1NN = 1/\/ gy

- is equal to

<q2(n)> -~ Wy n/o§ ~ xlﬁlog - ———“mgy . (103)
°)

Thus, we receive the behaviour <bt2> ~ Yn ~ ‘\j £n S instead of

<bt2> ~ n ~ £n S which was typical for old parton approaches. The

reader can find the direct calculation in ref. [2] which confirms the
above qualitative arguments and reproduces expression ([10}]) for

4
<ht2>' It means that in QCD the radius of the interaction R ~ ‘\Jﬁn S

instead of R ~~ Y £n S in reggeon approach.

If we look on eq. (103) we can see also some difficulty. Indeed
Qg here is the smallnest value of the transverse momentum of
parton. This value characterize the region in space that is occupied
by parton inside the initial hadron, but explicit form of eq. (103)
shows us that we face with infrared divergency of value of R. So
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the precise answer for interaction radius depends crucially on the
solution of the confinement problem, but energy dependence has so
transparent physical meaning that should be the same for all
solutions of this miracle problem.

6) Sinqularity in j-pl

Discussing the property of the high energy interaction, we
used to the structure of the singularities in angular momentum
plane. For simple pomeron exchange the right most singularity in j-
plane was pole with trajectory j = 1 + A att = 0. Here, we have
some cut (branching point} which starts from j = 1 + wg and goes to

the left. The character of the singularity is responsible for pre-
exponent factor in our asymptotics which is equal to 1 in reggeon
theory and gives additional 1I‘\j £n S suppression in the case of
QCD. This factor is not very important, but we should be very

careful when we are going to generalize even trivial properties of
reggeon exchange such as factorization, for example, in QCD.

7) Summary

The table Il gives us the comparison between properties of
QCD pomeron and old parton model approach.
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Table I
Comparison of pomeron structure in QCD and old parton model

Parton (multiperipheral model) QCD (LL(x)A)
Y1>Y2>Y3 .- >Yp Y{>>Yo>>Yo ...>>¥,
2 2 2 2 2 2 3 2
4G =G =03 =q A4~ %=0q3--%Qq

Final state interaction was|Final state interaction leads to
taken into account in many)gluon reggeization

versions of the multiperipheral
models

<£n qt2> = const (S) <.€n"qt2> ~ '\,“S £n S

O't—v S(\)D ct—vSmol\Jl’nS

RZ~ £nS RZ vens
B (slope of the elastic cross B~ ens
section) =2 o' £n S %

The above table shows you that QCD gives the new impetus for your

intuition at least as an example that shows what can be in the

nature.

The main goal of all our further lectures is to demonstrate to
you that LLA of QCD gives the description of Deep Inelastic
Scattering within good theoretical accuracy. LL(x)A and LL(qz)A
give the description the full kinematical region of DIS but up to
now we have considered the constant coupling ag in QCD. As you
know the main striking property of QCD is, namely, the running ag.

So, the next point will be LL(x)A equation with running ag.
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Lecture 6 : LL(x)A with running ag

In this lecture | am going to solve the KLF equation with

running coupling constant of QCD (ag =———4—“-). This equation
b£n q2

was firstly solved and discussed in details in ref. [1], but
unfortunately only on pure theoretical level. Now we need some
numerical solution of this equation and we should answer how
important the difference between correct equation and GLAP

numerically for accessible value of x (x > 10'5).
1. Equation

The form of such an equation is trivial, namely

n

Y
o(a?, y) =N IO dy qfng_‘a(q.z) K@ @) o(a2, ')
(104)

The only question which could arise is why ag depends on q‘2 but

2

not q=. Really there is no difference between such variables, since

2
a(q’2) - a(qz) ~ as(q'z) so the difference could be interpreted as

next order ag correction to the kernel K(q, q)).

2. Solution
Using the explicit form for coupling constant QCD ag = ':)—“
r

(where I = £n q2/A2) and the double Mellin transform (82) we can
get the following equation for C(w, f)

d 4N
- = = ——— v (f .
maf G(f ) 5 () Cf o) (105)
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Finally, the solution of equation can be written in the form

1/2
4N ‘
oy+(f-1)I'+— f'ydf
y+(f-1) | ox

2\ df da - f
tp(q , y) = (2ni)2-<p(w)-e (106)

¢ should be found from initial condition and as we have discussed

we can introduce two Green functions with different initial
cendition : Gy(y, I') > 8(r-Tg) aty = yg and Gr(y, I') - 8(y - yp) at

= Fo.
"3.DLA
- At small x and large q2 the integral (106) can be taken using

the steepest descent method. The saddle point wg and fy are found

" from the equations

) 1/2
mo=% [ () dr
f
0
b w
0
fal =—Or . 107
X(o) N (107)

Egs. (107) we can easily solve in the case when fg — 0. Indeed for
small f x(f) = + 1/f. So

oo =- AN gn g
y

.- Op (108)

SO
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4N 1 4N y
fo = ==
bﬁ)or r b£énT
2 4N gni/fy 4N &n (meO/4N)
Wy =———— =
0 by by

(109)

In the region y << r2 we get the leading terms in the exponent of
the structure function, which is equal to

cp(y,qz)—vexp[—\,%y‘enr-I‘J . (110)

Of course, if T is very close to I'g and if 'y >> 1 we can reduce eq.
(110) to old form of DLA solution. Indeed I' = I'g + AI" and £n T = £n
Ar and
To

‘P(Y q2) NCGXP['\/LG':;F?y - I"J.-.
- C(To) exp [\/‘;‘—Nas(ro) ATy - r] : (111)

Eq. (110) gives you the well known form of the DLA solution if we
introduce new variable £n T =§ (see for example ref. [3]).

(Tg +AT) = £nTq +

4. Numerical (Monta-Carlo) solution of the equation

Of course, | could continue to discuss the theoretical solution
of eq. (106), but really such a discussion was crucially intensified
by the Monte Carlo solution of the equation which was done by
Marchesini and Webber[10). They claimed that in wide region of x
(1075 < x < 0.1) and q2 (5 GeV2 < g2 < 10 000 GeV2) the solution of
KLF equation with running ag coincides with the solution of GLAP

equation in 5-10 % accuracy.
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Figure 9 is taken from the paper of Marchesini and Webber and
shows you the result of Monte Carlo calculation. One loop equation
means GLAP one, and multiloop equation is KLF equation with
running og. This result was absolutely strange from point of view
of our theoretical discussion. Indeed, look at table I. We see that
the KLF equation takes into account larger phase space in
transverse momentum so we wait for the solution of KLF which
should be larger than the solution of GLAL equation. So we touch
now the hot problem of LLA, which is discussing now among
experts.

| hope, the first, that this puzzle, should stimuiate, is the
more detail theoretical investigation of the solution (106).
However, even at the moment we should take in mind, that MC
procedure of finding solution includes some cut-off Og > A on the

emitted transverse momenta and does not introduce the same cut-
off for virtual gluons. it means that reggeization of gluons works
in full strength, but the phase space for emission is restricted due
to this cut-off. For example, if Qg is equal to gg, where qq is the
initial virtuality from which we start to develop parton cascade
using evolution equation ; the first integration (integration in the
first cell of the ladder) in respect to q'y gives twice smalier
contribution than without cut-off. So such cut-off can change
crucially the situation in several first cells of LLA ladder
diminishing the contribution to LL(x)A equation.
However, the main problem which we should study

theoretically is :

1. why the solution of LL(x)A equation is so close to
solution of LL(qz)A even for large number of cell in the ladder ?

2. is it possible that solution LL(x)A gives smaller value
of deep inelastic structure function that LL(qz)A. as shown in fig.
g7
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5. Gr (Y- l"-l“o

Here, | am going to find the Green function G (y, I'-T'g) that
gives us the development in I' = £n q2/A2 if we know the initial

2 - .
condition, namely cp(q2=q0, y) forI' = I'y, oy, I‘=1“0) = ¢{y)). This

Green function was calculated by M. Ryskin and me many years ago,
but only here | would like to publish it. So we would like to find the
solution with the initial conditions

q)(y. r=r0) =5(y - yo) : (112)

The most interesting problem for us is to consider the Green
function in the region of large y and sufficiently small q2. This is
the kinematical region which corresponds the £n q; diffusion in
KLF equation with constant ag, as was discussed in the previous
lecture. So we restrict ourselves by simplified form of the kernel
x(t) expanding it around f = 1/2. Introducing f = 1/2 + iv, we can
use the eq. (90), namely,

() = x(;-]-vz(mg(a)) +0(v3) =xg(1 - av2 + 0(+?)) . (113)

Using eq. (113) we can rewrite the solution (106) in explicit form,
taking all integrals. Indeed

dv do o)
2n(2xi) ’

oy.a)= | |

* 3
.eXxpioy + vl = ~T - "— i |v XO- ———-xo . 114
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Introducing new variable

wn I 1/3
V= [—0—0— A ) Y where
()

wg To = 4N x(172) or wg = rias(rﬂ) x(172)

we can rewrite eq. (114) through Airy function (see [9] for
definition and integral representation of Airy function). Resulting
answer for Gp(y, I') is

Gply.N =a -l% j e?(Y-Y0) dw

sl (o sl
M b

o V2rTg)

(115)

and a =

. Anyone can check that Gr(y. I) is equal to 8(y -

First of all let us find the asymptotics of Gp-(y, I') in so-cailed

diffusion region. The answer is very simple we could find the usual
diffusion behaviour of G- in the kinematical region where

® - o 1/3
1. 0 Iy @ >> 1 and
(1} wg 1"0 A

w -
2.—-——Q>é£(Ar =T -Tg 40 =0 -mo) . (1186)

wg Iy
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Both above conditions (116) are needed to use the asymptotic of
Airy functions in nominator and dominator of eq. (115). So GI‘ is

equal to

1
-—T-Tp)
Gr(y-yo. F‘I‘o) == 0 LJ'dn) ey C
\J To
1/2 wa T /12 o -0 /12
-exp |- 2 @ [{. 00, I‘T - [———-——0]3 FOSIZ]
3 wglpga ® o
1
-AI-T'p) 1/2
e? 0 L_[d(ne“’\’(‘;exp 2 (e I‘03’2.
To 3 |wgGoa
3/2 3/2
. éf.’... A_E - A_m = (117)
(0] ro (6}

o 2 (072 (3T (w)/2
Arry) [t 773 (wga) 02 Tg (ag
=8 0 —jdmCe
To

In eq. (117) we only interested in exponential behaviour of our Airy
functions, so we include all pre-exponential factor in coefficient
C.

Integration in respect to © has a saddle point (Amo), namely

y- AT 1 _g
24/ wgs 2%
2
and A =£%)_ (118)
4Ay (DO

So, we can use the steepest descent method to calculate the
integral (117). The answer is the usual diffusion
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2
AT
A2(rTo) 0oy - i‘—-L
— e Aagy (119)
'\’nAmoy

Now let us go back to conditions (116) and specify the kinematical
region in which we can give the theoretical guarantees for the
answer. We put Aw = Aw? from eq. (118) in egs. (116) and get : (AI‘)O

2
y24A

Gr(y-yo, I‘-FO) =e

(rga)'/3 from the first inequality (116) and AT >>

2

from the second one. So for 4Ay2<oo > I‘O(I‘QA)”3 we can
To
use the last restriction, if 4Ay0m0 < I‘O(I‘OA)” 3 only the first one
is important.

However, to apply the equation (119) to the description of the
Green function we must demand that AT could be of the order of AT

2
= 2\] Aamgy. It means for 4Acooyo > I“O(I‘OA)1/3

252
4Ay2mo

<< 4Awpy
0
To

or 4A(ym0)3<< l‘g

for large I'y these two conditions cannot be satisfied
simultaneously. The second case when 4Aw(2)y2 < I‘O(FOA)”3 and
4A(m0y)2

4Aymg >> (FOA) 1/3
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or
FO(F()A)-1/3 >> &)0 y
finally, the constraint looks as follows

wg ysroz’3 A3 (120)

Therefore we can prove the diffusion picture for LL{xJA
equation but only in the restricted region of y (see eq. (120), which
crucially depends on the value of the initial virtuality.

This is very important conclusion which means first of all~
that the running ag is essential to understand the character of the
behaviour of the deep inelastic structure function at low x. To._
understand what means the constraint {120), let us consider the

2 ;
ordinary situation in practice, namely, let us take g5 =5 GeV2 and
2

99 2
A =100 MeV. Thus, T = £n— = 6.2, ug = N aglag) x(1/2) = 065, a
A 13

= 6.5. So we can apply the diffusion solution in the region of y = £&n
1/x

065 y < (6.2)2/3 (6.571/3
or y<<32 ; or x2120

So namely in the important kinematical region of the future
experiments at HERA we should be very carefull with the
application of the simplest asymptotic formula for the deep
inelastic structure function.

Now let us discuss in more details the structure of
singularities in w-plane for the solution (115). Let me recall you
that our contour of integration is to the right of all singularities,
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so our knowledge of the singularities allows us to take integral
and understand the behaviour of Gp(y, I''). Function Ai(w) is the

analytical function of its argument. So the origin of singularities

in eq. (116) is the only zeros of Ai((—2—1/3(_ 220 . ). Within
(ooroA ® 0

good numerical accuracy the zeros of Ai can be calculated using the
following formula

oS TR A

for very large K oy tends to zero as wg ~ 1/K. The other very

interesting observation is the fact that right more singularity
(pole) turns out to be considerable less than the value of wg. For

example, for typical situation qg - 5GeV2, A = 100 MeV g = 0.65

and eog_g = 0.3. It means that our Green function for LL(x)A

equation with running ag grows only as (l}wK=0 and such increase
X

is much smoother than (1/x)®0 for LL(x)A with ag = const. The
2

q
table Ill shows you the value of wy for different I'g = £n —Z You
A

can see that starting with K = 3-4 we face the 1/K behaviour of oK,

2
and for larger 9p ©K=0 tends to oq. The residue for the pole © = oK

-(Dor0+r /12
(074

So the resulting answer for G-(yI') we can represent as some seria

behaves as

1/2
- 2/3 K
(l)oroA
e

of the following type

61

Gr(y-¥o- ) =2 ewK(y'yo) N

K
1/2 /12
-2/3 [ ml'fA] [[ “ofo , FT }
W,
e %o X ) (122)
Table 1l

oy for LL(x)A equation with running ag

Foyo | op | @Ka0 | 9K=1 | ®K=2 | ®K=3 | ®K=4 | ®K=5

4 1 0,3 0,17 10,12 10,093 {0,075 |0,064

8 0.5 0,22 10,135 10,102 {0,081 10,068 0,068

12 0,33 10,17 10,115 }0,087 (0,072 10,001 |0,053

16 025 10,14 0,1 0,078 10,064 |0,056 |0,05

20 0.2 0,122 10,09 0,071 0,069 |0,051 0,046

The factor (- 1)K originates from the denominator, since Ai(x) is
very similar to x2/3_ In wide region of our kinematical variable the
first term in the above sum (122) dominates, and only at large T’
the contribution of the second term can be comparable with the
first one. Indeed

o /2
OK=0(y-yg)-2/3| =2 | " 13/2
wpl'gd .

Grly-yg. I} =e

® 1/2
OK -1 (y-yo)-z/a[___"‘:‘A} r3/2
- wglp



62

. 1
The ratio of the second term (G(z)) to the first one (G§_ )) is equal

to
S () (r70)
"
.e+2/3 r3/2(m0roA)-1/2( oo \/Q;] |
SoR - 1if
(wK=1 - ngo) (y . yo) --9/3 r3/2((”01,@)-1/2
(Vok=0 -V oxa1)
or
(Voka1 + Vora)y = 23 132 (%0 o A)-wz
It means that for fixed I' only for
—1

y ¢ 2/3 1372 (mOF(O)A)'“z . ( 0K + sz,)

the second pole could be important. For typical case qg = 5 GeV2

and A = 100 MeV (X‘o = 6.2), y should be smaller than

y € 0,13 13/2

if you would like to take into account the second pole. It means
that for q2 = 103 Gev2 {at A = 100 MeV, y < 5,0orx 2 102 and for
q2 = 10° Gevz, y<9orxs> 104, Even this rough estimation shows
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us that the most important contribution at smalil x is the first pole
(the right most one). More detail estimation just from eq. (122)
shows that restriction on y even more strong, since y < 0.13 (I'-

ry3/2 @of
DK=0

2
q2 = 10° GeV2. So really, for initial conditions at q4 = ,5 Gevz. we

, where F =

= 2Tg. Such an improvement gives y < 1 for

can restrict ourselves only the contribution of the first pole in our
Green function Gp(yI') at x < 1071,

Now let us remember that we use the expansion (113) for
kernel %(f), so we should return to discussion how small v gave the
contribution in our Green function Gp(y, I'). Let us note that the.

asymptotics of Ai-function corresponds sufficiently large value of
v. Indeed

xv'-\i‘.:j.
. 3
Aix) = [ dv' e ) (123)

In integral (123) you can see the saddle point
V'O = '\l;

which leads to asymptotics behaviour

2/3 x3/2
Aix) ~ e~
1/ wgl
In our case. x = { @ ) 3 (r- M). Thus for large I the typical v
woroﬁ w

is large (v ~ r”z). Therefore, in the casé when the first (or

several) pole is important, for large I' we cannot restrict ourselves
by the oversimplified expression (113) for kernel yx(f). Returning to
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our old variable v from v' in eq. (114), we see that saddle point

corresponds to the value v0 which is equal to

wn TaY1/6 wg F'aY/2
V0= -——O—O r- O__Q_
mK=’0 cDK=O
for the right most pole.
2
For case qy = 5 GeV2 and A = 100 MeV at q2 = 105 GeV2 we

have

0

It means that we cannot use our expansion for the kernel in this
kinematical region.

3 Thus, our main conclusion from the above consideration, that
for sufficiently small x (large y) namely at y » 1 ; we suspect that
our v cannot be small in LL(x)A equation with running ag on the

contrary of the case of constant ag. Practically, it means that we

should study the complete expression for kernel in the solution
(116). 1 am gaing to discuss Gy(y, I') for general expression for the

kernel, but slightly later.

65

Lecture 7 :
LL{x)A with running ag (continuation)

In this lecture | am going to continue the discussion of the
solution of LL(x)A with running coupling constant og. Really, |

would like to discuss only two problems : the Green function Gy(y-
Yor r-l‘o) and the trajectory method. After that | hope, the scale of

the difference between the solutions of LL(x)A and LL(qz)A will be
absolutely clear for you.

6. Gy(r'r0| Y'Yo)

Here | would like to find the Green function Gy(l‘~l‘0, ¥-¥o). Gy

is the solution of the equation (104) with the initial condition y =
Yo Gy =3(I'-I'y). To find Gy let us rewrite eq. (109) adding the non

integral term 3(I'-T'y) that is

y
o(a2.v) =§'~ Jody' def—'a(qe) Kia. a) o{a'2, y')
+5(r-r0) e(y-yo) . (124)

Using the double Mellin transform we can get the following
equation instead of eq. (105)

-(+1)Ig

3
-0 2 Cf m)=4FNx(f) C(f, ®) +Tg e (125)

The solution of homogeneous equation has been found (see eq.
(106)) namely
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1/2
‘;—N [ () dr
Cotfhw)=e " 1 plo) . (126)

As usually, we can find the solution of eq. (125) in the form C(f, )
= x Cp(tw) and for x we have the equation

x_ To
of ®
So finally
1/2
- %’3‘. [ x(t%) df* + T (1-1)
Clw)=-2e " f
o®
1/2
o0 _4b_N J‘ x(fnv) dfn: . rg(f"”
fdre™ T (127)
f

and the full answer is

w1
N f") df“
yg) do dt b Jxl
Gy(T-To. y-¥g) = [ [e@(V¥0) SEZ0 ebo Ty
y("To A ) I (2ri)®
172
w 4N
- AN e .
el 0 fgr e bo 'ff' ceTolf-1) (128)
w
f

we can take the integral over v and reduce the eq. (128) to the form
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(f-1)r-(r-nr df df' ¢
GY(F‘I‘O, y-yo) =[ [e 0 To oy * "

f’
|2\ vy B [ x| (129)
f

First of all we can check, that at y = yg Iy — 1, and we have 3(I'-
[p). However the expression (129) is not suitable to work with. It

is better to introduce the new integration over parameter u, since
J'd_}i et _g(r - 1)
i

and introduce new variables f_=1f-f-1,andf = - {f After

that, the result is

q2 [ﬁl‘ ]f
o rg - - plt
Gy(¥-¥o. F-To) = azj [ [dt, dr. _u‘le 2 .
fo+f.
(I‘——I‘Q]u 2
el 2 ) g2 (y-yo)‘%\-l fj f x (t")df"
+ .
2

(130)

All contours here are located to the right of all singularities.
Fory - yg >> 1 we can find in eq. (130) the diffusion solution.

Indeed, let us suppose that f_ << f, << 1. In this case we can use the
expansion (113) for the kernel, and asymptotics for lg in eq. (130).
Finally,
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Gy(y-¥o. TTo) =] [ [af, of du 1;

(G0 I e R
e il

e . (131a)

e

The saddle point can be found from the following equations :

r-r 0.0
0 A
2 % \/(Y'Yo)moro fof, =0 (132a)
2

1+ Afo
) T'+T, +
- 0. pl+1 4 2'\, (y-yo) o, gl + —— .
2 2 0 8
A\ v

]
o

From eq. (132) we can find f? and fg. namely

o [N ve)eors 2

g‘\/(V'Yo)“’oro'\/f(.)

Taking the integral (131) over f_ and f. by steepest descent

(133a)

method, we get the diffusion answer, namely
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(Y‘Yo)"’oro (r-ro)z (r;l“o . p]
4 J‘d_}_l_ e[]‘-;ro ) Il) 4Am0(y-y0)g

(131)

Since our function falls down at p — oo, we can take the pole (u =
0) contribution and finally

o (vvo)
2
Gr(Y'Yo- F'ro) ='\/}(—1_2_‘1an0!02¥ - Yo) )
(1_-1_0)2 r+21"0
.e 4Am0r0(y‘y°) (132)

So eq. (132) gives just the diffusion answer in which ag(I'g)
I+ 1“0 ro + T
changes and ag depends onT- Hag(Tg) = as(—z———)). Now let

us discuss when eq. (132) would be valid. The condition for that is

f? << fg << 1, 0r

r-r r+T
A 2 2

Since eq. (133) should be valid for all (I' - ) of the order of

(133)
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~h n2
4A 0 T - 1/2 00
0 Toly Yo))1/2 it induces the restriction for y - yg, 54 2(030 Fo(y - Yo)) \/f- f, <<t
I+ 8
2 12 [0 08
namely ' 2((90 ro(y - VO)) f_f <<t . (135)
(46 ©g To(Y - Yo) 2, rar,
T+ A T2 The first from eqs. (135) gives
L 2 5
g Ty - YO
. w2 [\ %0 To(¥ - 7o)
=.2A r - 1
o g 2("0 To(¥ - o)) T <
2
16 r -
@ To(Y-Yo) (r+ry
A 2 or
. 3 T+ rg
or A((IJO I‘o(y - YO)) <<[ 2 ]5
g To(Y - Yo r+T or
( ) «wBd of . (134)
®g FO y - yo << ( . (136)
(Y- Yo) <12
So, you see, that once more we got some restriction for the
kinematical ‘region where we can prove th.e dif.fusion formula, but Eq. (136) is stronger than eq. (134).
- now constraint (134) depends on running V"tual’ty, but not On'y on The second of eqs. (135) leads on]y to trivial restriction’
initial one. However, eq. (134) gives the condition when we can use namely,
the steepest descent method for integral (131). We made some
- assumption to receive eq. (131) from eq. (130), namely, we g Taly -y
assumed that f_and f, are small enough to expand x(f") in seria. It 0 0( 0) s> 1 . (137)
should be stressed, that we used such an expansion for function in o+l

exponent. So the condition when we can use such an expansion is 2

. 2
Let us estimate ‘he condition (136) for standard case qp = 5

GeV2 and A = 100 MeV, for ' - 'y we have



72

y-yg €3 (138)

but for q2 =103 eq. (136) gives us

y-yp <16 (139)

while eq. (137) leads to
Yy-yg>»2 . (140)

Thus, in Gy we have sufficiently large kinematical region for
diffusion in £n q_. Of course solution (130) contains much more

information about Green function that we have discussed. However,
analysis of this solution looks to be complicated enough, so |
prefer to stop this discussion namely at this point.

Really these two Green function contain the answers on all
‘questions, but analysis of so cumbersome expression cannot be
transparent from physical point of view. To this reason, | would
like to consider quite different method of solution, which has
“restricted accuracy, but looks very simple and can be applied to
search of the soiution for non linear equation. The last point is
especially important for us, because we should consider the
shadowing corrections that lead to non linear equation.

7. The {raj r hod

In this section | would like to discuss the trajectory method
of solution, which is valid only for semiclassical approach. Let us
try to find solution in semi classical form, namely

o= C DY -K@ADT _ Ly (141)

Eq. (141) has a good chance to describe the solution of our LL(x)A

equation only if é}—:i <<1and 29 <.
®

Using eq. (141) we can introduce two sets of remarkable lines.
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The first is so-called phase trajectory, or the set of lines on
which the phase y of solution (141) are constant. It means that the
points (y4-, T'y) and (y5. I'p) are on the same phase trajectory if

(D(Ar) Y1 - K(Ar) I'1 = \V1
(D(AF) Yo - K(AT) 1‘2 = VYo and Y{ =V¥o

So

U, T17 "2 _wfan)

142
Ph Yy Ty, K@r) (142)

Of course, we assume that T'y, y, and I'n, yp are close to each other.

Another set of characteristic lines is the group trajectories.
The maximum of the packet propagates along these trajectories, so

gy = Q0 for them, or
dAr

do . dK

Ly -0
dAr dar

da dK

oy - o0
aar 72 aar 2

for different "times™ y4 and y,.

Directly from above equation we can calculate the group
velocity, which is '

do
U T2 _dr_do
gr———-—c-——z-——- .
Y1 -y2 dK oK
dr

(143)

Now let us find, what means our equation (104) for the
semiclassical solution (141). Since
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[k, q) oK T d2q = x(1 - k) &l (144)

for function K which is almost constant for I'" - T ~ 1 inside the
integral (144), we have

© =N40°_‘_Sjﬂx(1 - K) (145)

T

directly from eq. (104).
The second equation for K we can easily get on the group
* trajectory, namely

Ty le ar) aKar

dK K,y K__3dg RELELSE
dylor "3y " 9Tar ) "
ylgr oy r dyle ar

1_8_(‘,22-1_8(9 +B_m a_K=+Km-a_m-mK+.a_‘£Q5=
+¢2ayar o o ar ar K ar
N
..o —CAT (K =
or|K=const 7 pr2
N.a
c’s 2K
% .0-k2Kuy, . (146)
a7 e

Thus for semiclassical solution (141) we can write the system of
equations :

dy|  _k(u..-U (147)

dy gr ( ph gr)

aK| 1

K| _1gy (148)

dy ar r ph

U 28N x(1 - K) (149)
ph = K
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as NC 1 .

The above system of equations gives us the possibility to calculate
the value of ¢ in any points of the group trajectory if we know ¢ at
initial rg and ygq.

To solve egs. (147-150) we need to know y(yg, Ig) and y'(yq,
o).

The main properties of solution are defined by the typical
behaviour of the kernel x(1 - K). AtK - 1y = 1/1-K,at K 5 0y »
1/K and for K —» 1/2 %(K) = w0(1 + A(K-1/2)2). The full function
x(K) is shown in fig. 10. Directly from this figure we see that the
difference between correct kernel and kernel of LL(q)A equation
(1/K) is small, and would be important only for |K - 1/2| < 1/4. Eq.
(148) shows you that K increases along the trajectory. Let us
estimate this increase numerically. Assume the worst case, that

2
we started with K = Ky = 1/2 at qg = 5GeV (A = 100 MeV) or I' =Ty’

= 6. From eq. (148) we can calculate

dK _ 0.1

dy

So, two units in rapidity becomes enough to reach value K = 0.75
dK

(Ko + a;Ay) where the difference between LL(x)A kernel and
LL(qz)A one is negligible. The typical value of rapidity for one cell
of LLA ladder is wgAy ~ 1 (or Ay ~ 1/ag). For our example Ay ~
1.5. It means that in real situation the main difference between

LL(x)A and LL(q)A sclution is concentrated in the first one or two
ladder cells.
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8. Comparison the solutions of LL(x)A and LL{g°)A
equations

The above discussion has explained yet why the difference
between LL(x)A and LL(q2)A is not very big. l.et me summarize here
the main arguments :

1) only in the several first cells of our LLA ladder we
have typical f close to 1/2 (v << 1) where the correct kernel x(f}
differs from LL(q2)A one (1/f).2) namely in the several first steps
of our evolution the cut-off on transverse momentum is very
important and decreases the value of kernel in comparison with
x(f) makes it closer to LL(q2)A one. For example if cut-off Qg is
equal to qg, the value of the kernel in the first cell is two times

smaller that x(1/2). It means that such cut-off can even reproduce
the solution of LL(x)A which gives smaller value of the structure
function than in LL(q2)A equation.

The detail analysis of the trajectories and influence of the
value cut-off Qg on the solution one can find in ref. {11]. Much work
is needed to understand the specific properties of LL(x)A equation,
and | would like to draw your attention, that trajectory method
allows us to understand the general properties of hadron
production in deep inelastic processes. Indeed, trajectories really
give us the kinematical parameter of the particles that are
produced in the typical inelastic event for deep inelastic
scattering. So trajectories give the structure the typical inelastic
event in deep inelastic processes. | have no time to discuss this
subject, and refer the reader to ref. [11] in which much more
information could be found concerning dominant particle production
in deep inelastic processes.

9. The conservation_ of energy

Here, | would like to mention the problem which is very
important, in the case when we try to apply the LL{x)A equation to
real structure function. This problem is the energy conservation.
The point is that in LL(x)A we neglected the energy conservation
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because the loss of energy is important only in the next to leading
order. But practically, such conservation is very important. Indeed,

roughly speaking the deep inelastic structure function grows as

(1]

0
(1—J . It means that the momentum of gluons (or their energy) is

X
equal to

1

J XO0dx = —1 51
b 1-0g

and because g = 0.65 for our so-called typical case qg =5 GeV and

A = 100 MeV, we see tremendous violation of the momentum
conservation. Strictly speaking wg ~ ag and this violation is of the
order of ag, but practically we face with the momentum violation

in 2-3 times. Our hope is only one, that all this non conservation
real concentrated in the first (or may be two first) celis of our
ladder. So we can take this Ofag) correction only renormalize in

(1/1-0)0‘1) times our result. However, from point of view of the

theory we should get the new equation which takes into account
the energy conservation and may be other O(as) correction. It is

very interesting, that the only way how we can do this job now, is
only Monte Carlo simulation in which the energy conservation was
taken into account (see refs. [10, 11]). The numerical solution
shows that the idea about renormalization factor works, (see also
ref. [12], where this problem was investigated in details).
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Lecture 8 : Evolution equation at x —» 0

1. Equation

LL(x)A equation with running ag describes all qualitative
features the correct evolution equation in the region of low x. Al
insertions inside this LL(x)A ladder lead to loss at least one £n

1/x. For example, the quark square in fig. 11a has no log
contribution over energy Sj. Indeed, each cell gives the

0'2-1

O+
contribution which is proportional to Si' where o; is the spin

of exchanging particles. So the diagram of fig. 11a is proportional

1.1 1.0 -1
to A~ S1 82 sn'SO' or for the cross section o ~. S0 since S1

S5 .. 8= S. Of course this property is the direct consequence of
- the value of spin. Thus, all contributions of (ag £n q2 £n 1/x)1 and

(og £n 1/x)" type come from pure gluon diagrams, which are
described by LL(x)A equation with running ag. However, we should

take into account also the contribution of (xg £n qz)"-type,

because in the region where £n 1/x = £n q2, such diagrams are
essential and provide the correct matching procedure between
LL(x)A and LL(qz)A equations. Such job was done in ref. [1] and
really that we needed for it, is to make some insertions of quark
diagrams inside LL(x)A gluon ladder. Why ? The main property,
which we used, is so-called factorization in Feynman diagrams. It
means, that in diagrams of non ladder type, for example in
diagrams of fig. 11b, the new integrations over the momentum K
are not logarithmic and that the momentum K, which appears in the
propagators of the K ladder rungs crossed by this gluon, kills all
the logarithmic terms which could a priori appear in them through
integration. So, the bloc outlined in fig. 11b can be considered as a

pointlike (without any logs) correction a" to the kernel of LL(x)A

S
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equation. Thus, we should only improve our ladder to receive the
correct evolution equation which takes into account both logs ag

£n q2 and ag £n 1/x.
The resulting system of equation is shown in fig. 11c and can
be written in the following form for

1

o, a%) = [ olen 1ix, q?) x> <X (151)
0 x

’ 4C )
(PG((!), Q) = f [ﬂ%()giﬂl ¢G(mn Q') + —2—2(PF((1), q')} a—-———‘siS?) u

90
a® (@) g2
G § G LJesla X
o [%(w) v (®, @) + 05©) 9p(0, q )}i—- dg>
2 4n q'2
99
L F
oo, = | {«»F(m) v, @) + 2 g © 5(0) og (o, q'z)}.
2
99 ,
2
a : 2
Af{_l dq’© (152)
4x q-2
~ N2-1 . .
where C, = N and K; is the number of quark flavours. K(q q') is

the same, as for LL(x)A equation (see eq. (74)) we emphasize that
from the point of view of the integration with respect to the
transverse momentum q', the kernel K has been written down
exactly.

- G
The remaining kernels oq d)%, etc describe cells in which a

logarithm of the transverse momentum arises but no £n 1/x term
is present. These kernels are identical to the kernels of GLAP
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equation if we subtract from that kernels the singularity 1w,
which is already included in the kernel K. We have

¢g(m)= jdz[m[z-z? 24 sz ; 14_“2}-

1 2
F 2(1+22) 4
@p(w) = Cy Jo[ 20 - 5|+ 30 0ate - 0

G
@p(w) = Cy jodz Z9(2Z-4)=-3Cratw - 0

1
¢2(0))= [ azz® (22 + (1 -2)2) s 23ate -0 . (153)
0

2. Solution of evolution equation

To solve eqgs. (152) we still use the double Mellin transform
(82) for both function ¢g and ¢p. It is easy to check that this

solution has the form (see ref. [1] for details).

df do -(w)
GF= P, rff .
X I 4[ (21ci)2 G,F
1/2
cexploy + (f- r + AN [y (r) dr (154)
bw f

and y is given by equation :
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G

<
[N 5GP 2R oG, 4 C2|, TGaN_
Yzb[m G UFT2TGFT T T 2l e F

(155)

For @ — 0 we have the solution of eq. (155) in the simple form

1(,8  2nCp F
9p(w) and ¢ (w) connected by equation

anQ)FG
oplv) = pgle) ———— . (157)
¥F G N F
—-tb - F
I

The solution (154) together with eqgs. (155-157) looks rather
complicated but really, all improvements in comparison with
LL(X)A lead to factor fT in eq. (154). So the main qualitative, even
quantitative properties of solution of LL(x)A equation with running
ag, that have been discussed in the previous lecture remain to be

the same for correct equation. | do not want to repeat them once
more.

3. Accuracy of the equation

Let us discuss, in what kinematical region we can use the
system (152) and what the accuracy of the solution (154). Of
course, it means that we should discuss the influence on the
equation and its solution the higher order corrections.

. n
Factorization property of Feynman diagrams says us that ag

corrections are local and can be interpreted as the corrections to
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the kernel of our equation. This correction gives new part of our
kerne! K(q, q'), so the resulting kernel can be written as

K(a. q) = Ky ala, @) +ag Kia. @) . - (158)

It should be stressed that K is of course quite different function in
comparison with K | a(q, q) (see eq. (74)), but it is still

homogeneous function of the following type

— ) 1 1]
Kl q) = ——9(9) .
@ ) - (q]

It means that the kernel x(f) in our solution can be also replaced by
expression x(f) + ag X(f). As has been discussed at fixed virtuality

asx(1/2)+a§i(1 12)

our solution behaves as (%) . We can express this

result as

2 .
2
do _ % y x(1/2)
?

(159)

The formula (159) shows that higher order correction to our
solution is small only when

2
asy<<1
or
y << £n2 g2 - (160)

So in the whole region to the right of the curve ¢ - £n? q2 we can
guarantee the solution but within accuracy
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lp=(1 + 0((!2 £n 1/X))¢LLA (161)

where o | p is the solution of eq. (154).

| would like to draw your attention to the fact that eq. (161)
looks at least strange from old “additive” point of view. Indeed, we

can write ¢ as a series in ag £n q2. £n 1/x ;

n
0= |ag = £nK 1/x £n™ g2 (162)
n K,m=0

and corrections to this seria at first sight looks quite the same to
lose both logs in one cell, to lose only £n q2 but in two cells. For

3 Lo
example ag £n2 1/x £n? q2 can come as ag contribution in one

2

cell, and ag £n 1/x £n g in two others, and also ag £n 1/x £n q2

contribution in one cell, ag £n 1/x in another and ag £n q2 in the

third cell. We claim that the most important contributions namely
the last two, but the first we consider as corrections of the order
of ag to the last two contributions. Strange ! Is not it ?

The answer to this apparent paradox is that we do not use an
"additive™, but a “"multiplicative” approach to the corrections as
follows from eq. (161). This approach is possible due to the
factorization of the corrections, as we have discussed above, any
correction (except multiladder ones discussed below) can be
written as next order corrections to the kernel of our ladder and
its contribution reads A¢ = (something) ¢. If this "something” is
small (as it happens for £n 1/x << £n? q2) the contribution of such
a correction is small as compared to the large value of ¢, though it
can be quite large from point of view of "additive" expression
(162). Thus, the most important idea in our approach is the new
understanding the problem of the accuracy of our approach. Namely
this new idea (see ref. [1] for details) allows us to formulate the
linear evolution equation which is correct to the right of the curve
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£Zn 1ix ~ £n q2 (see fig. 11d). This approach we cailled LL(x)A + Lecture 9 :

LL(Q)A. Shadowing corrections in Deep Inelastic Scattering
{violation of S-channel unitarity and
qualitative picture of screening in DIS)

In previous lectures | covered the situation with so-called
evolution equation in deep inelastic processes. Here | would like to
discuss the shadowing corrections in the same process. The first
problem which we face in LLA looks very unpleasant indeed the
solution of LLA equation violates the S-channel unitarity, since in
perturbative QCD the interaction amplitude grows very rapidly at
high energy. Indeed, at low x, our ¢ is proportional

ré

1 1 “o¥ -
Prom o 4A0gY  for LL(x)A equation or

* a '\’uAmoy

6N
@~ 1—2 e\/ b £nly for LL(x) A equation
q

It is the common property for the both above solution ; that ¢
increases very rapidly at x — 0.

The total cross section of virtual y-quantum absorption (in
electron deep inelastic scattering, for example) is proportional to

oy "a_eérn':("’ “2) ~=om | “‘("' q.2) da? = ey “’("' qz)
q

Thus, we see that at small x

2
o.y---aemqp(x, q2) 20, =1 Ry (163)
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where Ry, is the radius of a proton.
Equation (163) is even stronger, since really instead of og
ag stands here, see ref. [1] for detail discussion. However for

qualitative discussion such subtle question does not matter.
Value of Xer is different for different LLA equations, namely,

Xer ~ &N q2 £n q(z, for LL(x)A equation and x,p ~ £n2 qzl.En £n q2

for LL(q2)A one. However both of them tell us that inequality (163)
occurs at sufficiently large virtualities. Virtualities are large but

smaller than e\(ay or 2 « ay, so we can apply for them the LLA
equations.

Thus we face the inequality (163) at so large virtualities,
where we are sure, that the unknown confinement forces cannot
change the behaviour of the amplitude. Therefore, we must find
some correction to the LLA within perturbative QCD (ag is still
smaller than unity (ag << 1) for virtualities, when the constraint

" (163) works) that will save unitarity.
To understand what phenomena we missed in LLA, let us
_consider the picture of the parton cascade for a fast hadron (see
fig.12a). Even the first glance on picture in fig. 12a shows us the
number of partons becomes extremely large since each parton can
decay in many daughters partons. To clarify the situation with LLA,
let us consider the parton distribution in the transverse plane. At x
~ 1 we see only several partons that are distributed in the hadron

disc. So the distance between partons is larger than the proper size
of them. It means, that we can neglect the interaction between
quarks and gluons. Thus the only emission of gluons are essential
and, namely, this property of parton cascade was basical for LLA
evolution equation. However for smaller x the number of partons
increases and at some value of x = x.~ partons become to populate

densely in the whole disc of hadron. For x < x. quarks and gluons

must overlap spatially and begin to interact in a whole disc that
they occupy. For such small x the processes of the annihilation and
recombination of partons should be essential as well as emissions
of gluons. Thus the structure of the parton cascade at small x
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should be result of competition of two main processes :@ the
emission of gluon that is proportional to the parton density (¢) and
the annihilation of parton which depends only on (p2. In the last
processes the number of partons is decreased and this property
allows us to restore unitarity. It occurs at the value of ¢ when the
annihilation becomes comparable with the emission. In other
words, when ¢ =v ¢92 where v is the typical interaction volume,
which is the new phenomenological parameter for the parton
cascade. Of course the resuiting parton density ¢ should be of the
order of 1/v (see fig. 12b).

Naturally, this is only qualitative picture of the parton
cascade, but even it gives us the understanding what was missed in
LLA. Indeed, in LLA we usually omitted the interaction of partons.
So our conclusion from this primitive parton picture is that for
small x we have to take into account new phenomena, namely the
recombination of partons, which could save and really save the
unitarity (see ref. [1]}. Even more, this qualitative picture allows
us to estimate the value of x . Indeed, let us introduce the new

parameter

(164)

In eq. (164) x G(x, q2) is the number of partons and the ratio

2
ﬂx—zq——)- is the density of partons in the transverse plane. The
t R
h

first factor in eq. (164) is nothing more than the cross section of
quark interaction (recombination) inside of the parton cascade.
Thus the parameter W has a very transparent. physical meaning,
namely, it is the probability of interaction (recombination) of two
quark inside the parton cascade. The unitarity constraint
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ac x G(x g2
W« ors—(——(—l—l«:

n
.

(165)

means that the probability of the interaction of two partons should
be smaller than unity. Let us estimate at what value of x = x.r W

becomes of the order of unity. Indeed

WS xG(x qz) .98 (" G(x‘ﬁ)lmz 1. (166)

2 2 2
quh nRh

If we put the solution of LL(x)A in eq. (166), we see

o (0@
S =1, orag(q?) £n 1ix = £n g2 (167)
q2 n Hh

since wo(qz) ~ as(qz). Eq. (167) means that
£n 1~ £n2q . (168)

It is worthwhile mentioning, that x G(x, g2) ~ x®0 looks very

natural in such parton picture (see fig. 12c). Indeed, the
multiplicity of the "wee" partons that interact with the target (N)
is proportional

N~ el (169)
where n is the number of steps in our diffusion (number of the

cells in LLA ladder), which is the order of n = wgy = g £n 1/x. So
we can read eq. (169) as

89

)
N~ emoy - eu)(yenwx . (;1‘_) 0 ) (170)
So from the parton point of view the increase of the total cross
section is closely related to increase of the multiplicity of “wee"

partons. The same increase reveals itself in the parton
recombination which becomes essential at x < xp.

Thus, | hope, that | have convinced you that is the region of
small x < x.~ we faced new problem, namely, large screening

corrections due to parton recombination inside parton cascade.
However, the above qualitative discussion can be only the basis of
our intuition rather than the way of correct calculation. Perhaps, it
is even some problem for us that we could not transform such .
transparent picture directly in the equations. Of course, if it will
happen, it will lead us to deeper understanding of the problem. We
went the other way, and developed new reggeon like technique in -
QCD to penetrate in the region where the parton interaction
becomes essential. The short presentation of the main ideas of this
approach will be the subject of the next lecture.
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Lecture 10 : Reggeon-like diagram technique in QCD

The main idea of our approach to the problem of shadowing
(screening) corrections in deep inelastic scattering processes is to
use two small parameters, namely

as(qz) <1

W“_g_@(_sﬂ

5 <1 (171)
q = Ry,

2
(or ag 9/n Rh < 1)

as we have discussed, for y << r2 the main contributions give so-
called ladder diagrams or, better to say, diagrams which
correspond the linear evolution equation. | tried to convince you
that all other contributions are small of the order of

22 gy . (172)

However, when y tends to r2 we can study these corrections and
extract among them such contributions which are the most
important. We claim that the most important contributions lead to
carrections

89 g LA w (173)

PLLA n Rﬁ

and we developed the technique to calculate these contributions.
Corrections (173) are large due to the large value of ¢ | 5 at small

x, namely the idea to use this large value of the solution of LLA
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equation was the most important and absolutely new idea which
led to new, modified evolution equation.

Technically, we developed the reggeon-like technique to
calculate the corrections of the order of W". It means the
corrections of the eq. (173) type we’can calculate using the
following prerscription. We can consider the LLA("ladder")
diagrams and their interaction only introcducing new vertices for
"ladder” interactions which we are able to calculate in framework
of perturbative QCD. The above long sentence really contains the
main ideas of our reggeon-like diagram technique. However | would
like to draw your attention to the fact that this sentence contains
at least two non trivial statements. First one, we proclaim that we
can introduce vertices which are local in rapidity and transverse
momemtum. This is not ftrivial, and the hot discussion in our
institute especially with L.N. Lipatov showed that even such local
vertices do not apparently exist in the region y >> ar?. The second
statement is that our integration over transverse momentum is
concentrated in the region of sufficiently large transverse
momenta where we are able to use perturbative QCD to calculate
these vertices. Of course, even in these lectures | have no time to
discuss the prove of the diagram technique in very details.
However, | shall try to show you the main way of thinking that
leads to this technique and reopen the hidden assumption that we
usually made to prove this way of calculation.

1. The simplest diagram

Let us consider the simplest diagram of fig. 13a to illustrate
the reggeon-like technique in QCD and to show the difference from
usual reggeon technique (or Reggeon Calculus).

The full expression for these diagrams looks as follows using
the notation shown in fig. 13a.
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2 2 2 2
2 m2 22 m?2

[ 620, ag(K?) ag(K2) [oy' dy"
ofy-y a2, k2) q:[y'-y', m2, m2, Of)
(p[y'-y'. £2, 2%, Of)-w(y“. K2, qg]

Q2
2 2 2 2
K2 K t Y[K K2, 02} . (174)

2 ' m2 k2| |e?2 w2 k2

Here we introduced the local vertex y for triple “ladder”
interaction, the fact that y depends on ratio of virtualities is

evident directly from dimensionless character of QCD..Of course, |
am going to discuss the explicit expression for y a little bit below.

2
o(y. m2, m?2, Qtz) and oy, £2, 02, Q,) are also new elements we

have not discussed them yet. These ¢'s are related to deep inelastic

scattering amplitude but not at the angle (transferred momentum)
2

equal to zero. Roughly speaking the main properties of ¢(y-y', m<,
m2, Otz) are
1. the exponential increase in y, namely,

- eA(y-y')

P o(m, m) for Qt2 <m? (175)

where Asaog-~ as(m'2)

2 L 2
2. ¢ does not depend on Q (as seen from eq. (175)) if Q; ¢

m'2. Indeed, in our "ladder* all vertical lines carry momenta my; +
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Qt' So if Qt is much smaller than each my our "ladder" cannot feel
its value.
2
3. Rapid decrease of ¢ for Qy >> m2. Indeed, if Q; > m;,

namely Q;; plays the role of the minimal virtualities and it is
2
enough, if Q; > m', (m't is the minimal virtualities in the "ladder")

but smaller than all other virtualities to provide the rapid

decrease of ¢, since ¢ ~ 1 = 1 More detail analysis of Q4

m'2 q
dependence you can find in ref. [1].

In eq. (179) the dependence of the vertices on the virtualities
£2. m2. .6'2, m?2 is also new in comparison with the usual reggeon .
calculus.

Using eq. (175) we can calculate the integral over y' and y" and
it is easy to see that the dominant contribution comes from the -
region y-y' ~ 1 and y™yg ~ 1 at least at first sight. It means that

the diagram of fig.13a is reduced to unenhanced diagram of fig. 13b
which is of the order of

2
q
oiig. 130) = 5 2(a2. y-¥g)= 5 xG(x. a2)e  (176)
q

SO

2
A ((tig. 13b) %
o .o ‘(fig )=—2x G(x q2) (177)
PLLA PLLA q

. TR . 2 2
and thus this contribution is still small for all y = £n1/x < £n 95
%
However eq. (176) shows us that we can get even larger
contribution from the diagram of fig. 13c type. Indeed, we lose
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some contribution in rapidity region from y' to y, since q)z(y -y) >>
o(y - y) but for y' << y we have the typical virtuality (xz) which is
smaller, so our ¢ is larger since ¢ ~ 1/K2. The contribution of the
diagram of fig. 13c can be estimated as

2

o(V(tig. 130) = [o(y-y', a2 K2) «;{y'. K2, qo}.

q2

2

.as-gx'G[x‘, K2, qo]dy' dK2 . (178)

2

K
The factor qg in the nominator comes from integration in respect
to Q; in our basical diagram of fig. 13a. Integration in respect to

K2 we can estimate as

2

0 2,100 .
x G(x', K2(K")) dy' (179)
K'(x)2 ( )

q

2
ol =<P[Y» q, qo]- | es

where we used that

fo(y-y. a2 x?) o{y‘. K2, qudK2 - cp[y. q?, qg]

and K2(x‘) is the typical transverse momentum in our LLA “ladder”

(1)
for rapidity y' = £n 1/x'. So once more, we got that ® W, where
LY

2
x Gl x, K 2
w =E§_-—(—————) and R? = 1/qy . Parameter W turns to be
K2 R?

larger for "fan” diagram of fig. 13c, than for unenhanced diagram of
fig. 13b. | would like to note also, that considering the
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semienhanced ("fan®) diagrams we also include in calculation of the
region y' = y in which such sort of diagrams transforms into
unenhanced ones.

It should be stressed that in this diagram the new dimension

phenomenological parameter RZ 1/qg. As we discussed, this

parameter defines the characteristic interaction volume or the
correlation radius inside of our parton cascade.

2. The simplest "fan"” diagram in DLA

To demonstrate the main ideas of the new reggeon-like
diagram techniques, let us consider the simplest "fan™ diagram of
fig. 13c in DLA. The explicit form of DLA solution for ¢(y, q2) looks
simpler in the variable £ = £n I—f— instead of ' = &n q2/A2. Indeed, in

0
Eandy

16N ye

1
oly.8)=—e
q?

Putting the above expression inside the diagram we can reduce it
to the form

ofly. &) = [dyq o(y-yq. &-&4 Y92 Y1, 84 ag £4) dry d?Q
( ) 19 (r1-%1) es(%1)

or
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VB (1) (%)

2
ofly. &) ~ Qg [ dy; d&q e
q

_eb1 .
. e ee §1

The integration over dyy and d§4 can be performed by the steepest

descent method. You can easily see, that we nave the saddle point
with

0 1
=—4£nyl
&y =5 AN YR <<t
and

0
yq=

16Ny », Y
4. — Lfnicy
b & &

In the kinematicai region where y >> & we can find the contribution
of this diagram, which is equal to

16N 3 16N
«/ 16Ny [Z\/ 18N y¢ Jentyre)
. e .

1 a2

So from the above expression we see that :
1) this answer is large as compared to ¢(y, &) for y >>

2 . .
2) the value of typical virtuality (q1) in the vertex is

large enough, so we can apply perturbative QCD here.

Of course, this calculation is of little practical use, because
we can be very careful to use here DLA. However, even such simple
example, shows us, the main qualitative features of our approach.
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Of course, we should sum all the "fan" diagram in order to obtain
the true answer. This will be done in the following sections.

3. Triple ladder vertex

Now let us consider the perturbative calculation of triple
“ladder" vertex y that appeared in our expression for reggeon-like
diagrams.

This vertex was considered in ref. [1, 2], but only in ref. [12]
all hidden assumptions were extracted, and final result was
received in different kinematical regions.

| would like to draw your attention to the fact, that the value

of v is not well defined since we have the factor qg due to d2Qt

integration which is pure phenomenological one. However, such a
calculation should clear up how we can get y which is local in
rapidity.

Let us consider the Born diagram for process of diffraction
dissociation in Deep Inelastic Scattering (see fig. 14a) in three
jets (quark, antiquark and gluon). This diagram is the simplest one
for triple "ladder" (Pomeron) interaction. As usually, let us use
Sudakov variables, but instead of vector Q we introduce vector Q'
for which Q2 = 0. So

g=aQ +Pp+qg, S=2(pQ')pz=Q'2=0

2
Q =Q+B,p, Ba=x3=%l . (180)

For simplicity we use also specific axial gauge, namely A 0.

uPu =
So the gluon propagator looks as follow

d, (K K,y + P K
pvlf) _ Py * Py V}1_ (181)

= g -

dp.v obeys the following properties :
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Ky 2Bk P
' tv_“PKFv
puduv-o . Qudu\*";“ Y Kok (182)
K k
2 _ _ - _
and also for K< = 0. K‘1 d“v(K) =0, duv 2, dp.v(K) dvp(K) = dp.p we

would like to calculate triple reggeon vertex (see fig. 14a) only in
the kinematical region when

2 2 2
o o 2 . 22 42
ay ~ 1>> ap >> Qg >> 04, Oy

B}e,ﬂu >>BO~BZ>>B1 N (183)

Here p is some characteristic mass of our amplitude. As we
discussed above, only longitudinal polarizations of gluons in t

channel (vertical ones in fig. (14a)) give the contribution at x = 0.
So, we can rewrite dw(K) as

g Pudvrupy 1 Kypyrpy Ky
v (pQ) Ko (PK)

=qu'v_pqu__ppKvt=_pp.Kvt

= 184
(PQ) (PK) ~ (PK)  ag S/2 (184)

Deriving eq. (184) we used that C)‘u M“( ) = 0, where M‘1 is the top

part of our diagram. It is very easy to see that directly from
Feynman rules for QCD, the vertices are equal

- K
o tp --
——T Py Fuyp =- 2Ky,  (185)

for emission of S-channel gluon from t-channel one and
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p5r950/(PQ‘) =2aK 95

for interaction with the S-channel gluon.

We cannot restrict ourselves by consideration the only
diagram of fig. 14a, and should take into account the two groups of
analogous diagrams (see figs. 14b and 14c¢) in which the t-channel
gluon £ or £' touch each quark line. Let us consider once more the

first one (fig. 14a). It is easy to see that this diagram depends on
Ky in the following way. .

K, K '
a Ut ot
Mo = 2 My(@. Q) . (186)

Here p is the polarization of gluon K emitted from quark-antiquark
pair. ’
We can return to trick which was discussed in fourth lecture

to understand why this amplitude gives such polarization. There |
showed that we can use polarization Kt“ instead of Py if we act on

Mu(q, Q). M“ is the amplitude that describes the emission of gluon

K by quark-antiquark pair. It should be stressed also that in eq.
(185) we used the kinematical restriction of eq. (183) since q; >>

K¢ we neglect the dependence on the K in M, (g, Q) in eq. (186)°) .

Of course, we can express the amplitude for diagrams of figs. 14b
and ¢ in the same way, namely : '

b (K+,€’)tu (K + £')%g

M (g, Q
[+ (K + f')z u(q )
K-2' K-2'
(- £)2

‘) Of course factor Ktu describes the dipole emission of gluon in
our kinematical region, where K; < < g, Q.
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The square of the whole amplitude is equal to
2
M| = M+ MP 4 MC4 MI| (188)
where pd = 2.
After integration over azimuthal angles we can easily

calculate that the dependence on K, £, and m can be factorized in
the following form

(ZM2 = R(K, £) RKK, m) . M, (@, Q) My(a. Q)

where

R(K.f):@»(fz-K2)+:—29(K2-£2) . (189)

Finally, the photon dissociation cross section can be written in the
form,

D 4

do” , . = 24n 0o m(agE (g

do” =2 T 7em IS TS

at T2 MOEER T [“T[n)
2 2

x2(2 + (1-2)2)

2

o(€) ¢(m) .

e m2qt

-de’ dm d2K, oz R(Ky £4) R(Ky. my) dﬁﬂ . (190)
K

Comparing eq. (190) with eq. (179) we see that our triple “ladder"
vertex is equal to

¥ = R(K, £) R(K, m) (191)
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all other factors in eq. (190) really in eq. (190) were included in
functions ¢'s. integration over dfy is the same as integration over
dy'.

Of course eq. (190) corresponds the “"fan" diagram of fig. 13c
rather that eq. (174) but all deviations is clear. The problem here,
is only one, we really calculated only process of diffraction
dissociation, so we need to prove so-called AGK cutting rules to
reconstruct the reggeon-like diagram from one process.

4. AGK-cuttin rul

AGK-cutting rulesl13] establishes the well known connection
between different processes which can be described by the same_
ladder (reggeon) diagrams. For example the simplest two ladder
diagrams (see fig. 15a) is responsible for quasielastic scattering
(fig. 15b), multiparticle production of all particles in one ladder
(fig. 15¢) and also multiparticle production of particles in two
ladder (with multiplicity in two times large than for diagram of
fig. 15¢) (see fig. 15d). The ratio between these different
processes was proved in ref. [13] for Reggeon Calculus and equal

Fig. 15b : Fig. 15¢ : Fig. 15b = 1: (- 4) : (2) . (192)

Formally speaking, AGK proved these cutting rules using
assumption that all amplitudes fall down as function of
virtualities at fixed energy (or x in the case of deep inelastic
processes). For our ladder amplitude we have such decrease, but
the problem is to prove that such decrease can provide us the
convergency of all integrations. In ref. [1] we considered more
direct way to prove AGK and saw that AGK cutting rules are correct
at least in LLA. | do not want to reproduce here this sufficiently
long calculation. However for us it is very important that the
resulting contribution of our basical diagram of fig. 13 has sign
minus. Namely, this sign provides the screening of the cross
section in deep inelastic process.
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Concluding this lecture | would like to make some resumé.
Thus, we developed the diagram technique, in which

1. the main object is LLA ladder which plays the role of
pomeron in usual Reggeon Calculus.

2. The interaction "pomeron” with "pomerons” and hadrons
can be described by vertices which are local in rapidity.

3. The vertices can be calculated in perturbative QCD.

4. All rules for signs here are the same as in Reggeon
Calculus, namely the exchange of two ladder gives you sign minus.
Hence ladders lead to positive contribution and so on.

5. Each additional ladder exchange gives the smallness of
the order of W.

It means that exchange of two "ladders" is of the order of W in
respect to one "ladder" exchange, three ladders give w2
contribution and so on.

The only difference is the fact that we cannot formulate the
reggeon field theory, since all our amplitudes depend on
virtualities (transverse momenta) and such integrations as well as
the "ladder” propagator look very complicated.

Thus the answer on the question what diagrams are the most
important in the kinematical region where the structure function
becomes large is the following one. We should sum all "ladder"
diagrams and interaction between ladders.
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Lecture 11
Modified Evolution Equation

P

Thus, we faced very unpleasant problem. LLA violates unitarity
and we should sum all interactions of our "ladders" (pomerons),
using in some sense usual reggeon approach. Our experience shows
us that such problem seems to be very complicated and could not be
solved in microscopic way. At first sight, we can suggest now only
phenomenological approach and our theory has a great chance to be
degenerated in a lot of phenomenological models which are quite
far from theoretical understanding of the problem. Frankly
speaking, many of our colleagues were disappointed of such
situation in old reggeon theory and left this field of high energi
physics. So now, we reduce the pure theoretical problem of
evolution equation in deep inelastic processes once more to sum of
reggeon-like diagrams and once more we should sum all of them.
The only thing encouraged us was the fact that we faced with this
typical for “soft” processes probiem at large transverse momentum
where we could apply perturbative QCD. So we can make an attempt
to solve this typical reggeon problem at large virtualities and have
some answer which can tell us what could be natural in the region
of small virtualities.

1. Equation

The main step to derive the new modified evolution equation
has been made. Indeed, in the previous lecture | proved that the
main contribution in deep inelastic processes gives so-called "fan”
diagram of fig. 13c. Thus we should sum all LLA diagrams ("ladder”)
and all "fan” diagrams of fig. 15 type.

The equation that sums these diagrams has the form (see [1])
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2\ 2.
% _ N ag(a?) d%a .
ay"J 4n T K(a. )

preste) e . o

f0

Fig. 16 shows how this equation generates the ladder and "fan"
diagrams, in several orders of ag. ¢ can be expressed through the

triple “ladder” vertex and value of qg or R2 = Jde. Value ¢q is

really our new phenomenological parameter : so for us it is not
very important to calculate @q through R2. However, since R2 has

some transparent physical meaning we can write this relation,
namely

N -
90 = 161:(41:R2) hd (-2 (194)
C
where 1-1=-2€79 4 uR2- jdaf .
a.4£n q2

I would like to draw your attention to the sign minus in front
of the second term in eq. (193). This sign is the result of AGK
cutting rules and leads to shadowing that stops the increase of ¢ in
the region when ¢ becomes large. However this sign means that
equation (194) has no probabilistic interpretation, at least we have
not known such interpretation. It is very important to understand
this point. Indeed, | discussed sufficiently simple and transparent
physical picture of parton cascade in lecture 9. But up to now we
have failed to write the equation directly from this picture. We had
to classify diagram, extract some specific set of such diagrams
and only after this job we were able to write equation in which we
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introduce new phenomenological parameter that describes the
interaction between partons inside the parton cascade. | think, that
this is not the most compact and simplest way of discussing such
physical phenomenon as parton-parton interaction, but only such
derivation of the master equation (193) we have had.

Thus we cannot use the simplest probabilistic interpretation
of function ¢ or structure function. We face also very practical
difficulties. We cannot solve eq. (193) using Monte Carlo
simulation due to above property. However namely this sign minus
provides the Unitarity constraints, since the factor in the bracket
becomes smaller when ¢ increase. This is the way how the equation
restores unitarity.

2. High_twi orrection and r in

If you will look at the master equation more carefully, you -
shall see that this equation contradicts all ideas of theoretical
description of deep inelastic processes. Indeed, our starting point
for theoretical discussion of the behaviour of the deep inelastic
structure function was the fact that DIS occurs at small distances
where we can apply the methods of perturbative QCD since ag << 1

and so-called Wilson operator expansion for deep inelastic
structure function. Wilson operator expansion means that we can
write for deep inelastic structure function the following seria

Fa a2) - By(x a2) el E)(x a2) s
q
+q1—4|=§(x, q2)+... . (195)

Our main theoretical idea was that for large transferred
momentum q2 only the first term in the above seria survives and,
namely, for this term we developed evolution equation in LLA and
even can calculate the higher order corrections (see ref. [14] for
example).
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However, the nonlinear term in our equation means without any
doubts that we take into account the high twist correction in
evolution equation. Indeed, ¢ = 3——(1"%31 , and it is clear that non

q
linear term is suppressed as power 1/q2 in comparison with the
first one. Thus we have direct contradiction with the traditional
approach.

Of course, the solution of this puzzle is very simple. Indeed,

let us rewrite the seria (195) in more traditional form, for
1

2y dx
moments of Fy(Fp(w) = foxm Falx %) =)

F2(“’- q2) = Fg(m, £n q2) + F;(m, £n q2) 1Iq2 +
+F§(m.£n q2) gt e .. . (196)

As we discussed, for moment the solution of our evolution equation
we can write in the form

2
2 ; 2 H(w)nln
Fz(m, q2) =F'((o, qo).e"( )enénq (197)

where y(w) is so-called anomalous dimension. Really in old our
approach was hidden assumption that y;(w) could not be so large to

compensate the power-like decrease in the seria (196). Now let us
return to GLAP equation (or even to DLA equation). We saw that in
DLA

4N
W) = — 198
Yolw) b (198)
Yp(w) becomes very large at o — 0. if y{{w)-yg(w) remains to be

large, this difference can compensate the smaliness due to extra
power of 1/q2. So the second twist can be important if
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(n (m>~vo<w>)£n/enq2

e -1 . (199)

q2

Really in our equation we sum the diagram for which y{ = 2y4(w). So

yo(m).{’ni’nq2
in our case eq. (199) means e————é———»\, 1 or
q
AN _ 2/enenq? . (200)
b(l)cr

So at very small w, our next twist contribution should be
important. In y = £n 1/x variables the condition (200) means that

wy + yg£ng nq2

FO-fe dw
) 2
y + vi{w)€neng<
=L I e dw
and
,16N
o )/,eru,’nq2
F(o) ~ €
and
2 lgﬂy,enean
FW e
Finatly
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1
_Fh (201)
a2 F(0)
means that
%yinxfnq2
e ~ 2 (202)
or £n X ~ 16%N,en2q/£n £n q2

So we see that high twist corrections could be important and even
large namely in the same kinematical region as our reggeon-like
diagrams. Really, reggeon-like diagrams allowed us to sum all high
twist contribution in the region where they become essential. Of
course we used for estimate (201) our assumption that yq = 2y;.
However, really | am sure that this is not even assumption, and
now some prove of this statement is in progress. | would like also
to mention here that all previous discussion arose as a result of
hot discussions in DESY during low x workshop (May 1990). This
presentation is a short résumé of the paper of J. Bartels, M. Ryskin,
A. Shuvaev and me which is in progress.

3. Hidden assumption

Let us discuss the assumptions that have been made to get the
master equation (193). Really, there are two main hypothesis.

- 1. The first one is the assumption that exchange of two and
more ladders lead to larger contribution at low x than exchange of
some more complicated diagram (see for example the diagrams in
fig. 17). This assumption is equivalent to our hypothesis that y{ =

Yg in previous section. Now we have had one support of this more
less ad hoc hypothesis, namely L.N. Lipatov[15] proved that at least

in six gluon channel the exchange of three ladders gives larger
contribution at x —» 0 than exchange of two odderons, which are the
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new set of diagrams in three gluon channel. It turns out that 3ap >

2A0dd'

The second assumption was the eikonal approximation for
emission of ladder by hadron (see fig. 18a) which means that the
amplitude of n-"ladder" emission is equal to g"/n 1. The physical
interpretation of this assumption is very simple. We neglect the
correlation for "ladder” emission on the first step of our
understanding. In any case we need some hypothesis about the
hadron structure, since we cannot control it in perturbative QCD.
We hope that our hypothesis is the simplest and clearest from
physical point of view and can be improved very easily.

4. Solution

Thus we should solve the master equation, and in some sense_
we have to looking for the explicit solution since the numerical
methods as Monte Carlo cannot help us. Fortunately, we were able
to do this, at least in semiclassical approachm (see eq. (141) and
all discussion around this equation) using the trajectory method
that has been described in lecture 7. -

The first important observation that the equation (193) can be
rewritten as a system of two ordinary differential equations along
the group trajectory.

Indeed
do =K{U,p - Ug ) o+ O(ag)
dy|gr-tr ( ph gr) S
4N
Kl e nik |1 - Ko (203)
dylgrtr pr2 Ko @0
dr . . . .
and E = Ugr is the equation for group trajectory. (For details |

refer you to lecture 9). In the first equation we missed the
nonlinear correction because they are small. The only thing that
this nonlinear term makes it diminishes the slope K when ¢ — 90

as seen from eq. (203). To study the property of the nonlinear


http:l.en2qUn.en
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equation let us start from the initial condition which is typical for
Green function, of linear equation, namely at y = yq o = 3(T - I'g). So

we have a bunch of group trajectories that start from the point
(yo. Fg) inour {y, I') plane and they have all different K's at equal

rate. Of course such trajectories cannot cross each other, since the
system (203) has the unique solution.

It should be stressed that among all group trajectories of
nonlinear equation (193) there is one, which coincides with the
phase trajectory. For this unique trajectory we have

x(1 - Ko)
Uph = Ugr : or _-70—-0_=-x'(1 -Kg) - (204)

Eq. (204) defines the value of Kp and numerically Ky = 0.63 for Nc =

3 (see ref. [1] for details). Directly from the second equation in
system (203) follows that if K¢ = Kaeq K is constant, so it means

that ¢ = ¢p. For critical line Uph = Ugr" So (Zi; = 0 from the first

equation in system (203). | would like to draw your attention to the
fact that nonlinear term in our equation provides the constant
value of ¢ along this critical line. The equation for critical line
looks as

0.21 .2
y===—T“+CT+yy . (205)
8N,

The last two constants C and y, cannot be defined directly from

the equation. They should be found from matching procedure.

Now we can divide the whole kinematical plane in three parts,
if we draw the critical line, and the trajectory of linear equation
that touches this critical line (see regions A, B and C in fig. 18b),
for region A, all trajectories of linear equation even do not touch
the critical line and for all this region we can use LLA equation
that was discussed in lecture 8. Of course the answer depends
crucially on the initial condition for ¢ on the vertical line (for

2
fixed I =g or q0 = Q). In region B, the group trajectories of the

linear equation cross the critical line. It means that the trajectory
of nonlinear equation looks as shown in fig. 18b (see curve 1 there).
The trajectory goes as for linear equation and the point when it
could cross the critical line, the trajectory envelops it. So the
resulting trajectory goes in the vicinity of the critical line till the
second cross of the critical line by the trajectory of the linear
equation (see dash line 1 in fig. 18b), for large I' = £n q2 our
trajectory of nonlinear equation coincides once more with the
trajectory of the linear LLA equation. Now it is easy to understand
that we can solve our nonlinear equation to the right of the critical
line, using the solution of linear equation with the initial condition
on the critical line ¢ = 9. Especially if you note, that all
trajectories that start from the point (yq, Ig) with K > Kq

accumulate to the critical line.

Such a solution was found in ref. [1] and roughly speaking, we
can parametrize this solution in sufficiently primitive way,
namely

0= so(ag(a?) ) Hex) q2(H0)-1) (206)

for function H(x) and f(x) you can find the expression in ref. [1], but
f(x) can be also parametrized in the simple way within 5 %
accuracy

f(x) =V x(1-0.21 £n x) . (207)
In eqgs. (206) and (207)

8N, £n 1/x - 8N,y

0.21b znz(q%\?) 0.21br?

K =

(208)
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In region C we have not found the solution of our nonlinear
equation, all our trajectories with K < Kg go in some sense along of

the y axis and penetrate just through the corner where the critical
line crosses the vertical line T = I'g. More that we have no equation
in the region C, since new parameter W here is not small and we
cannot use this parameter to select some set of Feynman diagrams.
| am going to discuss this particular region in the next lecture.
| hope that you understood all problems that we faced trying to
“prove and solve the new nonlinear evolution equation.

Much work is needed to clarify a lot of problem here, but the
“main step was made. Namely we demonstratedl2] that we can touch
this problem and even solve it, in spite of the number af additional
hypothesis that have been assumed.
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Lecture 12 : Saturation of the parton density at low x

As | have discussed in the previous lecture, inside of the
region C in fig. 18b we have no theoretical approach. So we can use
practically any assumption. However | would like to draw your
attention to the fact that we face the very unusual situation here,
namely small coupling constant ag and large parton density. So

here, at the moment we have only phenomenological assumption.

1. Parton density saturation hypothesis. Our
phenomenclogical assumption is, so-called, parton density
saturation hypothesis. Let us describe this hypothesis which looks
oversimplified and even primitive. So for gy > qg(x) we have .
solution (206) in which ¢ —» ¢q at g; = gg(x). As | discussed in

lecture 10 the picture for distribution of partons in the transverse
plane is very simple for q; = qg(x) {or x = x,) namely partons
populate densely in the whole hadronic disc that they occupy. The

idea of parton density saturation is to assume that this picture
preserves even for q; < qy(x) or inside of the region C in fig. 18b. It

2
means that q)(qt) behaves as shown in fig. 19a. Of course inside the

region C in fig. 18b a lot of diagrams becomes important, not only
"fan” anes which uescribe the interaction between partons. Such an
interaction becomes even more important inside this region. So
physical motivation of the parton density saturation looks
transparent. Indeed, each parton with q; < qg(x) lives in
enviromnent of other partons so it has to interact with them. As
result of this interaction the transverse momentum of this parton
increases and becomes equal to the mean momentum of our parton
medium. The mean momentum is the largest one for which
interaction inside this parton cascade is still essential. So this is
just our qgly), since for g; > qg{y) we can consider the parton-
parton interaction only as a perturbation effect in comparison with
parton emission as has been discussed in previous lectures.

So our hypothesis that for q; < qg(x) the fast hadron is a
collection of partons with proper size 1/qg(y) where y is the
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rapidity of a parton. This distribution of partons of course is the
result of the strong parton-parton interaction inside the parton
cascade, so if we want to have some theoretical arguments
supporting such a picture, we should take some system with large
number of parton but to which we can apply some theoretical
technique to prove something.

2. The parton cascade for nucleus. Such a system is heavy
nucleus (A is the atomic number ; and A >> 1). Indeed, in lab. frame
the proper life-time of the gluon (parton) inside the parton cascade
is equal to

| P | B B (209)
2 2 2mx;
Qi 2M Qg
. . 2 2
where qu; is the energy of i-th parton and Qi = - g; is the

virtuality of this parton, m is the nucleon mass.
We can also introduce the mean free path for such a parton,
which is equal to

£ = (in) (210)

where o; is the cross section for i-th parton-nucleon interaction.
It is obvious that o; ~ —12-— and p is the density of nucleons in the
Gt

nucleus. So when
1% £ (211)

our parton takes part in t;/€; interactions. Of course this is

correct only for t; & 2 Ry, since the parton "i
a3

cannot interact with

more that p 2Ry = nucleons. Thus

1156

1 <<y« Al3 (212)

and this parameter can be large for large nucleus and for
sufficiently small transverse momentum. Indeed eq. (212) could be
rewritten in the form

P 1/q2
1ecipo Tt a3
2mx2 2mxi

2mx;

P
nucleons of the nucleus.

This interaction changes crucially the condition for emission
of gluons in our parton cascade, and inside of the nucleus we can-
develop new approach for parton cascade which is quite different
from usual LLA. Namely we would like to use the following
parameters to describe the evolution of the parton cascade inside
the nucleus.

2 - . . .
so for qy; < = g, our parton interacts essentially with the

ag £n1/x ~ 1

ag AT/ L1 . (213)

ag << 1

Indeed, as we discussed in all previous lectures, our cross section
(deep inelastic structure function) in LL(x)A can be represented as
a sum of the following type

n

dE; 2
1 142 1
I !l:[ [ag K(qi,) L——-Ei d q“]w }éaas(,é’n s/qt'] (214)
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Summation in eq. (214) leads to the cross section o(s) which is
proportional to

W,
2 2(. 20
o(S) ~ og rB[S rB) (215)
where rpg is the nucleon size and wy = C g (C = 2.65 for N = 3).
However, in order to obtain the log each intermediate gluon g; must

be emitted coherently by its parent q;_ 4 during a time 1; (see eq.

(209)). From the spacetime point of view the logarithm of the
dE; dx;
energy —E-—'=7-' corresponds to log integration over proper time of

i i
a parton (t;)

dggi  [.i9px dt
f 2% gy [o 0% a- [

It during the time t; there are several collisions between the
parton parent q;_q and other nucleons of the nucleus (figs. 19b, c)

in which its colour charge is changed, then the coherent emission
amplitude decreases as £ i/t; and conditions for log integration
over dx; are violated.

The last statement we can, illustrate by introducing an

effective absorption potential v; = |22-‘:30r 1/2£;. This causes the

energy denominators 1/AE = (- q2/2E)‘1 to be replaced by 1/AE+v,
that is the propagator 1/q2

- 1 - L . The probability for the emission

2 iop 2 T
9 [‘ *m} qa[‘ + .-Ll]
£

of a new gluon with 19 > € now no longer contains the log

are replaced by 1/q2 + 2E; v,
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dr;

integration — which could compensate for the small factor ag and
10
i

it remains parametrically small in the coupling ag.

As a result, a log ladder of fast gluons is not formed inside the

nucleus. Intermediate gluons (fig. 19a) are emitted only near the
nuclear fragmentation region where their formation time t; does

not exceed £.

So we have discussed the qualitative picture for the parton
cascade inside the nucleus, now we would like to write the
evolution equation inside the nucleus, using the above qualitative
arguments. Introducing ¢{qg, x) for gluon with virtuality q2, we can
write the linear equation

L 2\N ¢2¢'
<p(x, q2) - (4% k(q, q-)ﬂ%_L il (216)

xx' .o

as the first step let us include one-gluon rescatterings with large
momentum transfer g; > q > §. In this case graphs like that in fig.

20a actually are dominant. The more complicated interference

2
diagrams (fig. 20c) contain an extra propagator 1/qt and are

suppressed like the parameter 4/q,,. Summation of the diagrams of
fig. 20a leads to multiplication of the propagator of gluon i (that is
the kernel K) by the factor exp (- oy P £4/2) corresponding to the

amplitude for the absorption of the gluon i on a segment £; of its

. 2 2 I
trajectory with cross section o, = 6r ag/dm - If the lifetime t; =

1/2m x; is larger than the nucleus size then £; = 2R(b) and for

small times t; << Ry, thatis, x > x5 = 1/2 Ry the gluon is absorbed

throughout the entire path £ =1; and the new kernel is
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K=Kexp[- omp/4mxi) . (217)
The resulting equation is

2 asN _sp/amx 24
doty, &) _ [k(q, q) — & 0P/*™ J_(p(y, a2) (218
dy n T

where ¢ = 61 aglq'z,

Eq. (218) does not even need to be resolved. It is sufficient to

study it carefully. The argument of the exponential (cp/4mx) grows

with decreasing x as a result of the increase of the proper life
time of a parton. So at x — 0, rescatterings exp (-op/4mx) begin to
suppress the probability for new gluons to be emitted. When the

argument Zo—rr‘:; becomes of the order of unity the effective kernel K

decreases sharply and further growth of the cross section (the
function ¢) practically ceases. Starting at this instant x = X

= (po/4mxqy = 1) there is no more formation of new, faster partons in

the LLA of QCD, and the cross section o(x < Xgs q2) = o(xq, q2)
remains constant in the range xp < x < Xg-
For the actual calculation of the value xg it is necessary to

2
know the value of the cross section ¢ ~ aslqz, Of course, we have

no physical reason for choosing q, 2 @. This inequality just

simplifies the selection of the graphs. It is most natural to take
the cross section o to be total interaction cross section

o(x,qz) - j2 (p(x, q'2) ag dg2/q2 - (219)
q

So we can suggest nonlinear equation which looks as eq. (218) but o
is replaced by o(x, b) from eq. (2.19). This equation possesses the
same features as eq. (218).

So, we can summarize the above dicussion as the following
statement. Due to interaction inside the nucleus, there is no
partons with q; < @ in the parton cascade of a fast nucleus and the

P(x q2) firstly grows until the parameter op/4mxg reaches unity,
after that (x < xg) o remains constant. More detail information

about structure of the parton cascade for nucleus you can find in
ref. [16].

3. Semiquantitative description of parton distribution in
the saturation region. The above examples gives us some intuition
to understand what could be in the region C in fig. 18b where we
assumed the hypothesis of the parton density saturation. Really
only this example gives us some theoretical basis for discussion,
but nevertheless | think even more | am sure that only physical
assumptions which take into account the main property of the
parton cascade in the region C in fig. 18b, namely, the large parton
density, could help us to understand the situation here. | do not
believe that here we can sum all dominant diagrams and something
like this.

So in this section | would like to present our current
understanding of the problem and our today intuition, based mainly
on the above theoretical consideration for nucleus case.

The main lesson from the above example, that in LLA it is
natural to expect that the picture of the interaction is
considerably simplified to the left of the boundary. The point is
that the emission of new "ladder” gluons with sufficiently small
momenta are q; << qq(y) tends to be strongly suppressed. Therefore
the value of ¢ should be reduced with respect to one gluon exchange
result (up to the ag correction) or the simplest diagram of Born

approximation. The main reason is the same as was in nucleus case.

Indeed, directly from uncertainty principle the emission time
of a gluon with momentum q; in the rest frame of the target is
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2E; 1
Tt = 1/AE= —=
2 2mx;
G i

on the other hand, the total probability for the rescatterings shown
in figs. 20b and c during the entire lifetime of the gluon q is
determined by ¢(x, q;). | would like to recall that parameter W,

which shows us how rescatterings are important is proportional to
¢ so W = ¢/gg. It means that the rescattering should be taken into

account, if ¢ = ¢q. If we look on the expression for parameter W,
we see that we can express W through the mean free path, namely

o 2
w=-3 xG(xa% _,n (220)
@  xR2

a
where og = —g is the cross section for parton-parton interaction
q
and N is the density of parton in the transverse plane. If we use the
analogy with the nucleus case N = [ p dZ is the optical width of the
nucleus. So to extract from eq. (220) the expression for the mean
free path of our parton, we should rewrite W as follows.

Wi=o0gpti=0gp 112mx (221)

where 1; is the proper time of the parton "i". So

y i -1 2mxi 029
i tl) - Wi . ( )

So in our saturation hypothesis £; = —1—. Indeed if we fix the
2mxcr(ay)

size of the parton or in other word consider the parton with

definite q;, we see that at x > x,r{q;) W; << 1 and £ is large, so we

can neglect the interaction between partons. On the boundary W —

121

1 and £; is equal to 1/2m x,p(qy). So in the vicinity of the boundary
1/€; = 1 and our parton at least once interacts with another
parton. For smaller x << x,- 1j£; increases and in this situation we
lose the log integration over dx;/x; as was shown in the previous
section.

The physical reason for this effect is very simple, and really

it is the manifestation of the Landau-Pomeranchuk effect! 181,
Indeed, during each collision (interaction) the parton changes its
colour charge. it means, the emission of the new (secondary) gluon
by this particular parton can be considered as independent
emission in n = t;/£; intervals between which there is no

coherence. In LLA the emission was proportional to n (M2 ~ n2)
since it was very coherent process for all time of formation of our
new gluon. In the case of small £; our M2 ~ n and our log integral

can be transformated in

j‘fﬂ 1 (223)

So all our integration inside the region C in fig. 18b have no large
log 1/x contribution and so our amplitude of gluon emission turns
to be very small since it is proportional to (as)".

So, for all g;; < qply;) we have no emission of new gluons and
it means that instead full ladder-like diagram of fig. 21a we have
the exchange of only one gluon from point (y;, q‘i) to (Vcl‘(qti)' qn).

The correct expression for ¢(x, g} in the region C, using the
above picture, was done in ref. [17] where the formulas, that
typical for nucleus casel'8l were rewritten for the case of the
partons, that populate densely in the hadron disc.

Thus, concluding this lecture, | would like to stress, that even
inside of the region C in fig. 18b, where strictly speaking we have
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no theoretically grounded prove, we can suggest the picture of the
parton distribution and interaction which looks at least self-
consistent and natural. Of course this detail picture reveals itself
in some experimental observed properties. | have no time to
discuss these predictions here, and can only recommend you the
paper[”} were these predictions were partially discussed.
Unfortunately, the most predictions and consequences of this
approach have not been discussed. Much work is needed to estimate
and list all new phenomena that could be measured using this new
detailed picture for the structure of parton cascade for past hadron
inside of the saturation region.

Partially, the prediction coming from the interaction of
partons with g; < gg(y} for heavy quark production was discussed in

ref. [19].
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Lecture 13 : Deep Inelastic scattering with nucleus

In previous lecture | have touched the problem of the deep
inelastic processes on nuclei. Here | would like to discuss the old
problem of so-called screening correction in deep inelastic
scattering with nucleus to demonstrate how works the developed
approach and how helps us to solve this problem.

It is well known that a nucleus is a target with sufficiently
large size (Rp >> 1/ where p is the typical hadron scale). Due to
this fact such a target can be used as a good probe of space-time
picture of the high “energy interaction. This problem has been
discussed in detail_s[aol during the last two decades.

The question arises, can our microscopic theory - QCD - add
something important to the understanding of deep inelastic
scattering with nucleus that has been reached in the old parton
time. To answer on this question we would like to draw your
attention to the fact that for y*A (and even for hA) interaction the

typical transverse momentum is large enough, namely, <Kt2> ~

A1/3, since incoming virtual photon/or hadron) interacts with a
sufficiently large number of nucleons, which is proportional to the
optical density of a nucleus T(by) ~ Al3, Indeed, the main factor

that determines the penetration of a parton into the nucleus is

2 2 . . .
6T(by), and 6 ~ ag ft where r; is the typical transverse size of a
parton. If oT(by) is of the order of one, the interaction with the
. 2 -
nucleus becomes essential. Thus oT ~ 1 and N~ A 13 small it

allow us to use perturbative QCD with a guaranteed accuracy, that

is controlled by the smallness of the QCD coupling constant,
2 . . .

namely, “S(rt ~ A'”S) << 1. It is very important property, which

gives us the possibility to have a better theoretical understanding
of y'A (or hA) interactions than y h(hh) collisions.
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The first question that | would like to answer, is what the
difference are between nucleus and hadron parton cascade. | think,
there are two main differences : 1) the coherent interaction
between partons from different nucleons. 2) The saturation of the
parton density for a parton cascade from a nucleus is reached at
smaller value of the parton density (per nucleon) than in a nucleon.
‘The last point can be clarified direclty from unitarity constraint.
Indeed, the unitarity for a nucleus says :

2
Op < RA (224)
where ap is the total cross section for the interaction of a nucleus

with the target (as in the hadronic case we consider here a gluon
with virtuality q2 as a target). Of course near the saturation region

Ay = A S x G(x, ¢2) € 65 = 7 R 225
O'A= GN—- ;EX (x,q)\ GA—T[ A - ( )
Thus,
ag x Gylx a?) 1/3
—————5—-—=WNSA’ ) (226)
2
mq° Ry

So the unitarity is saturated at smaller Wy than in a nucleon case.

It means that the main contribution in parton-parton recombination
(that as we have discussed, is the main origin of the screening
corrections) comes from the interaction between partons from
different nucleons in a nucleus.

Let us estimate how many nucleons can interact with a virtual
photon. The easiest way is to discuss this problem in lab. frame
where the nucleus is in the rest. As we have discussed in the
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previous lecture, the proper life time of the virtual photon in this
frame is equal to

*

9 1
= — = 227
t‘Ya !q2| 2mx ( )

where q is the momentum of the virtual photon. Now we can divide
the whole interval of x from 0 to 1 in three regions.
*

1. Ty < RNN OF x > 1/2m Ryy where RNN is the average

distance between two nucleons in a nucleus. In this kinematical
region virtual photon lives so small time that it can only interact
with one nucleon. So the picture of interaction looks as shown in
fig. 22a, and

UYA = A“YN (228)

2.Rp >ty > Ry of (2mRp) ! = x4 < x < (2mRy\) .

In this kinematical region the virtual photon exists as a
system of partons sufficiently long time. During Ty the partons
from y can interact with several nucleons. For fixed by, the number
of interacting nucleons changes from 1 to 2R, (b;)p where p is the
nucleon density in the nucleus (see fig. 22b). Here | do not wait the

relation (228) but the average number of collisions in this

kinematical region does not depend on the atomic number A.
3.1Y>RAorx<xA

In this kinematical region virtual photon decays into parton
before the nucleus. So here the interaction looks similar to hadron-
nucleus scattering. Due to this reason we expect

Oy p~ A2/3 (229)

for such small x.
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Thus, even from oversimplified space-time picture we expect
in the region of small x (x < xa) large screening corrections that

lead to eq. (229) even for large value of q2.

Therefore we face the pure theoretical problem to calculate
large absorption correction for large virtuality of photon, where
we can apply perturbative QCD.

2. Equation

From the previous qualitative discussion it is clear that the
modified evolution equation in a nucleus should take into account
the screening corrections due to the diagrams of fig. 23b which

describe the rescattering off nucleons that are located at

distances AZ ¢ Ty = 1/2mx from each other, as well as diagrams of

the type of fig. 23a which have been included in our master

equation (193) for the parton cascade in one nucleon. In the
diagrams of the type of fig. 23b the typical transverse momenta Q;

transferred along the separate ladders (reggeons) ¢ are strongly
related to the size of the nucleus or more exactly to the wave
function of the nucleons in the nucleus. The role of the dimensional

2
parameter Qq/4n is here played by the quantity T(by) = { p(by, Z) dZ

where p is the nucleon density in the nucleus. The integration
region over Z here is AZ = 1/2mx. As a result, the rescattering
probability (or parameter W) increases by factor K = 1 + 4= T(b,

2
AZ)/QO, while the maximal parton density o, = 9g/ag per nucleon

in the nucleus decreases by the factor K. Thus
2
Yop - ¢0/(1 + 4n T(b, AZ)/QO] . (230)

The modified evolution equation looks very similar to nucleon one,
namely
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9ply, q?) - [k @) Nas(ﬂ'z)d_%l-’

ay b3 s
|2
PLa", Y
1-ag(a?) (0% ) o(a2. y) (231)
where
1
p — at x > xp(by)
2mx
T(b, AZ) = (232)

2p RA(bt) at x < XA(bt)

-1
where xp(by) = (2m Rp(by) ~ and

2 ’2 2
Rab) =~ [ Ra - by -

Just from eq. (2.32) we see two important regions in the
solution : (1) x < xa where factor K is independent of x. Here the

equation (2.31) looks as for nucleon. There is only one difference,
namely, the boundary line gy = gia(x) shifts in the nuclear case,

since the parton density on this line decreases in the nucleus being
equal to pop = /K. It means that such a value (9 = ¢ p) is reached

at a smaller value of y = £n 1/x than for nucleon. In other words,

for the same value y = £n 1/x, for nucleus the typical momentum
Qyp increases (see figs. 24a and b) we can describe the value of

agA introducing the shift A(bt)[zl :

£n% qop = 2= £n 1x + A(b) (233)

and  a(by) - £n2 xa(by) +n x(bt) (234)

1
127
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more realistic estimate for real nucleus is
A =055+ 022 ¢n A3 - (235)

Of course we averaged the value of A(b;) over by in the nucleus, but

nevertheless eq. (235) gives us the correct scale for evaluation of
the nuclear effects in deep inelastic scattering.

21 >>x>xp -

Here the situation is more complicated. Indeed for x > xp the parton
has time to be formed inside the nucleus during time 1 = 1/2mx <
2R p(by). For this reason we need to calculate the incoherent

rescattering of a parton inside a nucleus up to the development of
the cascade inside the nucleus on distances AZ > 1/2mx, besides
the coherent effects related to the screening on distances AZ <
1/mx. Fortunately, no new problems of principle arise in doing so

except cumbersome calculation. Due to this fact we will restrict
ourselves only to the region x < x,, where all new secondary

particles are formed (created) outside the nucleus. Partially x > xp

has been considered in the previous lecture.

3. Solution

| have mentioned the main problem which | would like to

attack. Namely, | want to understand how at large q2 the cross
section of virtual photon absorption changes the dependence on A
from OyA ~ A which is standard (natural) for deep inelastic

scattering to Oy A ~ A2/3 which is typical for hA interaction.
At first sight these two regimes contradict each other. Is that
so ? This question was first discussed by Gribov and later was

called the Bjorken paradox[zo]. Let us study how the A dependence
of the cross section o(y*'A) changes with increasing q2and y=4n
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1/x considering very heavy, theoretical nuclei with A = oo. The
ratio of the cross sections

oty ¥ (x a?)
oty h) (pN(X. q2)

~ A% (236)

for fixed x and q2 depends on two factors. The first one is A2/3

which arises as a result of the integration over the impact
parameter b; of the nucleus

‘PA(X’ qz) = [Tiby "’bt("' qz) d2 by ~ A23

The second factor is closely related to the shift of the critical line
of the master equation (193) inside the nucleus by the amount A .€n )

1/x2 = A(by) (see eqs. (234) (235) and fig. 24a). Using the answer
for gy in the form

2\f(x) -1
on(x a2) = o [ig] (237)

(see eqs. (206), (207) and (208) to specify all notations in eq.
(237)) we can find g (x, q2) in the form{16]

2v { k(b)) - 1
‘Pbt(x' q2) - hiY 5 [93]( ‘) (238)
1+ 4x T(bt)/QO A
\ _
where  k(by) = 12.7 [€n 1/x + A(by)}/.en? 95 . (239)
A
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It turns out that the value of the effective factor o in eq. (236) is

2
@ =23+ 25 31x) £n°A . (240)
3 dx 9:12.7 £n 1/x

For x — 1, we can neglect the term 0.21 £n 1/x in f(x), and for «
we get the answer

« =23 +%£n (a173) 1127 £n 1

as is seen, for such values of x the factor « does not depend on the

value of c|2 and feels only the value of x or the lifetime of the
parton © = 1/2 mx.

Only for very small x, when
£nix >> £n2A o — 2/3

Due to the intense absorption of slow intermediate partons on the

2
nuclear surface the relation o(y'A) ~ "RA ~ A2/3 should be

satisfied even for such q2 where the cross section of the first
quark-antiquark pair with a separate nucleon is small, namely,
oN(x, g?) << 1/T(by). The relation oyep ~ A is reached either for

sufficient large x [£n 1% ~ A(by) £n2 A1/3/12.7) or for very

large q2, to the right of curve (3) in fig. 24a. When the group
trajectory corresponding to the point (x, q2) (x << 1) starts in the
region xq > xp Where ¢p = Apy.

For real nuclei (A < 240) the screening correction appears not
to be very large. Indeed, coherent rescattering off the neighbouring
nucleons in the nucleus decreases the equilibrium saturated
density @ approximately by a factor K, when K = 1 + 0.09 Al /3, i.e.
K = 1.55 for py,. For such nuclei it is more convenient to use Aeff-
which is defined as Agy = o(y'A)/a(Y*N) instead of the factor o. In
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the framework of the parametrization (see egs. (238) and (239))
we get{1 6]

A n1/xa < p
—eff 43T pomu|1 - £ A‘j“f(") . (241)
A Cbz en1/x (1)

We would like to draw your attention to the fact that eq. (241) is
almost independent of q2 (for x ~ 1) as it is in the case of

theoretical nuclei. The influence of the screening corrections
becomes larger for small x when £n 1/x >> £n 1/xp, when the:

second term in parentheses in eq. (241) is negligibly smail.

In refs. [16, 2] you can find the application of the developed
technique to several other problems in y*A or hA interaction such
as multiparticle production or processes of diffraction
dissociation.

Here | discussed this particular example only to illustrate how
this new approach can help us to solve old problem.
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Lecture 14 :
Basical phenomenology
New physics at HERA

In this lecture | would like to discuss the only phenomenology
that we need for deep inelastic processes. Ot course, the developed
approach can aliow us to build new phenomenology for hadron-
hadron collisions as well as for hadron nucleus interactions. To
some extent this problem was outlined in our reviewlz]. Here, 1
would like to consider only selected topics of this
nhenomenological approach. The goal of the phenomenological
description for us is to extract from experimental data the

necessary parameter of our approach, namely, the value of Qg Let

me remind you that in our approach the value of Qg defines the

1. scale of shadowing (screening) corrections, which are

proportional to the value of 0[2)

2. the saturation value or better to say the value of ¢ on

the boundary line ¢ = ¢ ~ —1-2-

)

3. the typical transferred momentum along the ladder
which is of the order of the minimum (intristic) momentum of
partons in the parton cascade

4. the typical interaction volume for the recombination of
partons inside the parton cascade.

1. Phenomenology

So, we developed some phenomenology to extract from
experimental data the main numerical parameter of our theoretical

2
approach, Qy. Let us outline briefly the main input of this

phenomenology.
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1. We simplified the general equation for critical line and
reduced it to the form

564
oo = QF + a2 &> 0N EN X0/x (242)

In eq. (242) we have three pure phenomenological parameters Qg,

which we have discussed below and which we introduced in eq.
(242) as an instrict momentum of partons, A, which is the position

of infrared pole in ag (ag = 4n/b £n q2/A2). and xq, which tell us,
what value of x is small encugh.

2 2
2. For G >q0(x) we use the solution of modified evolution

equation in the form of eq. (206) (see also egs. (207) and (208)).
2
3. For qt2 Sqo(x) we assume the hypothesis of the parton

density saturation, which leads to

d x 6(x, qz) __276b

1
— (243)
dg? 42'x 3N 0§

The calculation of numerical factor in eq. (243) can be found in
refs. {1, 2].

Using the above input we described the experimental data for
hadron production at sufficiently large transverse momenta in
wide range of energy (VS = 63-1800 GeV). | would like to mention
here, that we choose namely hadron production only by the reason,
that the smallest x has been reached till now only in hadron-hadron
collision.

For hadron production we used standard formula (see fig. 24c),
namely
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do i2 2 4 ch
5-[dz a; S[q -z ]D @

dn dq,
j2
4N o 1
S I ‘P(x1, Kt) v(xz, Ky - qtl)det (244)
(4m)* ol
where

X1 p=2 qt‘ exp (+ n)/4s

-qL
+qQp

E
n=£ntge/2=;_—an (245)

DCh is the fragmentation function for jet decay into hadron. Really
— 2
we used oversimplified version for it, namely, D°h(Z) =2A(1—‘Z—-ZL.

As you see from eq. (244) we follow our basic idea for
multiparticle production, namely, all secondary hadrons are
produced only as a result of minijet fragmentation (see ref. [2] for
detail), in our attempts to describe the secondary hadron
production in the typical inelastic event. However, | would like to
note, that we need only estimates of our phenomenological
parameters (A, Qg, Xg) and we can restrict ourselves only inclusive
cross section for which we have good theoretical ground to use
formula (244).

Fig. 25 illustrates the quality of our description.

Now let us discuss the value of phenomenological parameters
that we extracted, namely

2
A =52MeV, Q; = 2 GeV?, xg = 1/3
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A = 52 MeV : for such a value of A, the running QCD coupling
constant ag = 0.16 for qz = 20 GeV2 in good agreement with the
EMC data (ag = 0.161 0.01) at g2 = 22-5 GeV?) which has been found
from a fit to the nucleon structure function for x > 0.3.

Xg.= 1/3. Really our procedure turns to be insensitive to the value
of xq. So, we used Xg = 1/3 rather from additive quark model

argument than from experimental data.

Qg.= 1.4 GeV. The large value of Qg seems unnatural for many of

my colleagues. Indeed, at first sight such a value should be of the

2 1/2
order of the inverse hadron size, or OO “’1/(RN) ~ 400 MeV. But

such argument is correct only if you have in mind the picture of the
uniform distribution of produced gluons (parton) in the hadron.

The definition of Qy as the typical momentum in integration over

momentum transferred along the one ladder in "fan" diagrams
means that Qg characterizes rather the correlation radius between

two gluons inside a hadron. So, large value of Qg or small
correlation radius Rg = 1/Qp leads us to the picture for hadron,

which is shown in fig. 25b. Here, the gluons are concentrated in
several "hot" or "black" spots inside the hadron each of which has
the size Rg ~. 1/Qq which is smalil enough. Rq ~ 0.1 fm.

Under our estimates one might use the three spots
corresponding to the three valence quarks, if one wanted. So now,
our saturation works for each spot and comparatively early (at x =

2
0,02 for QO = 2 Gevz). For larger energy, (smaller x) the spots

become black. This is absolutely new approach to high energy
collision and as a first step this approach should be tested in deep
inelastic processes at low x region. However | would like to
mention here, that this new picture for the hadron structure should
manifest itself in typical inelastic event for hadron-hadron
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collisions and main consequences of this approach were considered
in ref. [2].

2. HERA ic

HERA gives us the possibility to look inside the saturation
region or at least to study the vicinity of the boundary line (see eq.
(242)). In fig. 26a you can see the boundary line of eq. (242) on the
HERA map. To the right of this line, the only emission of partons
defines the structure of our parton cascade. So here there is no
interaction between partons and in some sense our parton cascade
looks. as the perfect gas. Inside the saturation limit we face the
strong interaction between partons, but due to the fact that og is

still small in this region the correlation between parton looks also
small enough, and we have strong interaction here mainly due to
the large density of parton. The system which has analogous
property is the liquid, so inside the saturation region to the left of
our boundary curve we have so-called quark liquid.

So new physics at HERA is the study of this quark liquid.
However more modest goal is to discover the deviation of the
experimental data from the predictions of the standard approach.
First of all we should define what is the standard approach to the
problem. For me the standard appraoch is the solution of correct
linear equation that has been discussed in lecture 8. Namely
deviation from this linear equation solution will give us
information about the value of shadowing correction. Such attack
of the problem looks theoretically self-consistent, but
nevertheless most people would like to use the solution of GLAP
equation as standard one, only because they are more familiar with
this equation.

| would like once more to draw your attention to the great
difference between correct LLA equation at low x and GLAP
equation. The point is that we need the boundary condition for GLAP
solution, namely, the value of structure function at sufficiently

2
small value of q2 =qg atany x. Atq=qg x G(x, q2) = F(x) for any
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value of x. The correct LLA equation can be read as evolution
equation in y = £n 1/x, and for solution of this equation we need

only initial condition, namely at x = xg we should know xg G(xq, q2)

= ?(qz) the structure function at any value of q2. Unfortunately a
lot of shadowing correction could be hidden in phenomenological
function F(x). Even this remark shows you that we should attack
the shadowing correction trying to collect all possible
information, not only observing for example Fo(x, q2) behaviour at

low x.

The right strategy and the full investigation how we can
measure the shadowing correction in HERA kinematical region have
not been done. Much work is needed to formulate the above
problems in particular in the working groups at DESY. So | am going
to discuss only the ideas how we can start this attack.

We would like to see in HERA experiment two important
aspects of our approach :

1. large screening (shadowing) correction to GLAP
equation

2. the structure of hadron, that is shown in fig. 28b.
Let us try to understand how these two phenomena can reveal
themselves in HERA measurements.

1) Folx, %), FL(x, q2)

The first problem which we face is how saturation behaviour
of the gluon structure function (see eq. (243)) reveals itself in the
behaviour of the deep inelastic structure function.

To clarify this question we calculated21] the set of diagrams
of fig. 26b, using the saturation hypothesis of eq. (243). It should
be noted that the second diagram gives a very considerable
contribution in the region close to saturation and has not been
taken in usual evolution equation.

It is clear from figs. 26c and 26d that saturation looks quite
different in gluon structure function x G{x q2) and Fy(x, qz). Even
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2
for q2 < qo(x) Fa(x, q2) grows logarithmically, namely, Fo(x, q2) ~

q2R2 £n qg(x)/qz. This log contribution comes from the integration
over transverse momentum of quarks that belongs to the self
energy of the heavy photon. The typical value of such contribution

is of the order of oy, €1 qg(x)/q2 and absorption can stop this

2

increase only at reasonable large value of q° when a, ., £n

qg(x)/q2 tends to unity.

We would like to note that the estimates based on our
phenomenology are in not bad agreement with current experimental
data. In particular Fszea = 0.32 at x = 0,028 and q2 = 4 GeV2. The
value of gluon structure function in saturation region also is not in

contradiction with the experimental data. Indeed, if we extrapolate
the conventional value of x G(x = 0.15, q2 =5 Gevz) = 1.2 in the

2 )3
_region of small x using expression x G(x, q2 = qo) =ﬂﬁ3~ the value

2

of the saturation x G(x) = dq“ = 8 reaches at x = xg = 0,085 in

agreement with eq. (243) for critical line in our phenomenology.
| would like to mention that we predict o /oy = 0.3 which is

also important information about screening. Strictly speaking in
LLA oy /04 =0 ; so this value can give us more sensitive tool to see
screening.

Even the slight glance on fig. 26d shows us that the
differences between different approaches looks more significant
2, (4 Falx. a®) ., d Fa(x. a®)

d#£n q2 d&n 1/x

rather in the slope of Fo(x, q than

in its value.

So our recommendation for experimentalists is to reach so
good accuracy in the measurement of F5(x, q) to extract the slopes
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of Fo(x, q) from experimental data to find some indication of new
physics at x — 0.

2) Direct measurement of x G(x gz)_

Of course, the shadowing corrections first of all reveals‘ itself

in x G(x qz) as we have discussed, in the region tqzl < qg(xB). x G(x,

q2) = dq2, where d = 2.4 Gev'2 using the values of our
phenomenological parameters (A = 52 MeV, 0(2) =2 Gevz, Xg = 1/3).

Direct way to extract x G(x, q2) is to measure the inclusive
production of hadron jets in deep inelastic scattering. For example,
we could measure y* +p - CC(bb) + X processes and its cross
section could be rewritten directly through x G(x qz) (see fig. 27a
and discussion in ref. [22]). The main problem here, that it is very
difficuit to invent good trigger to extract namely this process
from the typical inelastic event of secondary hadrons production.

The second problem, which is our theoretical problem is the
fact that until now nobody has calculated this process using the
saturation hypothesis to estimate the effect of screening in
observable experimental characteristic.

3) Diffraction dissociation of virtual photon

M.G. Ryskinrl 2] suggested to measure the processes yN — x+N,
or y'N - Xy*X processes (if £n Mz(xy) +4£n M2(xn) << £n S where S =

2
q + pu)2 = -%{; (1 - xg)). The total cross section of this process is

shown in fig. 27b and could be written in the forml12],
(04
M2——-—-dGD -~ Em j —-X—Dj —)5-. 02. K2 .
dtdM? @@ © Xk '|X

2
2\ o dx

XK G(xK. Kt) -§2 T (246)

K
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a
This cross section has the scale -2 which is the probability of

virtual y absorption by parton. D’Y' describes the probability of y*

dissociation in several quark and gluon jets, the last of them with
transverse momentum K, and the fraction of energy

xg- [(xg Glxk. K‘z)j2 corresponds the density of partons in the

proton-target squared, since in the process of diffraction
dissociation we face the annihilation of two partons with (xk, K;)

in one (see fig. 27¢). Even more, it you look on expression more
carefully you could see that our cross section is proportional to xg

G(xk, Kt2) o:S(Kt)2 which is otz where o the total cross section df

the interaction of gluon "K" with the nucleon.
doP

So our cross section is really infrared unstable since
dt dM?

d2K
~ ] —z—t and small K; really works. So our processes can be

K

divided in two parts. The top one (Dy*) turns out to be in the
standard deep inelastic situation, but the bottom part looks as
usual "soft" process. So we expect the cross section of the order of

oD o kP

min ~ 1IA2, where A is the infrared cut off. The

estimates show that in HERA region oPY ~ 2-10 nbl23] . However,

the situation changes crucially if we take into account the
absorption correction, since at small K; we cannot neglect its

. . 2
contribution. For K; < qg(xk) (or in the saturation region) G(xy, Kt)

2 .
=dK, . It means that from our point of view the role of cut off play

Ky = qg(xk) instead of A in naive estimates. In our phenomenology

2 2 L
qo(xK) > QO = 2 GeV2. Thus we expect the value of cross section in

two orders smaller than in the naive estimatel23] Ryskin's
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evaluation of the value of the cross section in the kinematical
region Q% = 30-100 GeVZ, M2 = 300-1000 GeV?, x¢ = (0.3-1) 1073

gives the value

oD(ep - e+ Xy + p) =0.01 nb

Due to the fact, that the cross section depends on the squared value
of (x G(x, K2) the saturation phenomena could manifest itself here
stronger, than for example in Fs(x, q2) or even in x G(x, q2). The

main prediction for these processes can be resumed as follows :

1. saturation leads to suppression of the value of the
cross section more than in 100 times in comparison with standard
estimate.

2. Measurement of the cross section as a function of the

transverse momenta of the fastest jets in the target
fragmentation (K, in fig. 27a) should give us the information about

o deP 4 doP
screening since —3 1/Kt for K; >> qp(xk) and 5~ const at K;

dKy dKy
< qglxk). So such an experiment could check our prediction for
saturation boundary line (eq. (2.42)).
Ryskin also estimated that the cross section of the double
diffractive process (y'p - Xy + xN) for M(xp) € 3-5 GeV in 5-10

times larger that oP and has the same attractive features as op.

Really the whole this section is the shortest presentation of
Ryskin paperﬁzl and his talk this December in Saclay. Much more
information you could find about diffraction dissociation in deep
inelastic scattering namely in these papers.

4) Mueller idea of "hot" spot search at HERAI24]
During the low x seminar at DESY (May 1991) A.H. Muelierl24]
suggested the beautiful idea of the experiment in which we can
measure the absorption in situation when it should be strong. These
ideas looks very simple and attractive. Let us measure the
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inclusive production of gluon jet with transverse momentum Ky
which is very close to q and with the fraction of energy Xk as

X
closer to one as possible to provide small value of K , {see fig.
XK

27c). Indeed, this inclusive cross section is proportional to

2
©g(a%)
set 2 0
xK—di—-3=(xK G[XK, Kt).c[i'f] —1 . (2a7)

X
dxy dKy 8 on 'K
X8

The first factor is understandable directly from fig. 27¢, the
second one is the solution KLF equation with ag = const = aS(qa).

Indeed, the upper part of our diagram is the "ladder” in which
virtualities of all particles almost equal to each other. If q2 is
small enough to be inside of saturation region we should see the
large absorption correction to this formula. If q2 is large enough
we can use perturbative QCD to get the standard prediction and so
we can compare the experimental result with theoretical
prediction. So this Mueller's idea looks very attractive, but | see
here several difficulties which we should overcome.

1. The coefficient C has not been calculated in eq. (247)
2. ¥* interacts with quark, so instead of xg in formula

(247) should be value of x = X = ? where Xq is the size of quark
q

antiquark pair in the kinematical region of KLF equation.

Unfortunately, this size has not been calculated until now.

3. Even if the final virtualities are equal we should take
into account the running coupling constant of QCD, and, as we
discussed, the difference between solution of KLF equation and
LL(x)A equation with running ag is very significant (see lectures 6
and 7).

4. Strictly speaking, eq. (247) is not correct since we
must take into account that detected gluon jet could be produced
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also in jet decay (see fig. 27d). Of course for xx — 1 this process

is suppressed enough, but nevertheless we need theoretical
estimation of this contribution. Let me note, that such emission
crucially changes the inclusive cross section for gluon jet at

sufficiently small xK[‘?S].

Thus, we need much work to make the tool for experimental
observation of large absorption correction from nice Mueller idea.

Let me also to note, that in this experiment we could observe
what will happen in the event with large gluon density, and answer
the question there is or not the saturation of gluon density. Of
course, we can call "hot" spot the events with saturation of the
parton density. However, in this experiment we cannot distinguish
between two situations : "hot" spots exist as a rare fluctuation in
our hadron in which gluons distribute uniformly in average or "hot”
spots is the typical structure of our hadron, as we assume from our
phenomenology.

5) Structure of typical inelastic event in deep
inelastic scattering

The study of spectra of the secondary particle gives us
possibility to clear up how evolution of the parton cascade
develops and how it forms the structure function.

As we have discussed, roughly speaking, our evolution or our
structure function is the sum of ladder-like diagrams (see fig.
28a). | hope that | have convinced you, that the essential values of

0 .
the energy fraction for i-th parton (gluon) x; turns out to be the

function of the parton transverse momentum K (see fig. 28a). This
function is so-called trajectory which we have discussed in
lectures 7 and 11. The word "essential x; = xg" means the saddle

point value of x; in our solution of evolution equation. The

equations for trajectories were found in lecture 7 for linear
equation and in lecture 11 for non-linear one. In ref. [11] the Monte
Carlo calculation of the trajectories is presented. Qualitative

picture for trajectories is shown in fig. 28c. We see that partons
(in linear case) try to have smaller value of Ky, because at smaller
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K; the value of running ag is large. However namely in this region

also the absorption corrections which lead to recombination of
gluons becomes large, so the resulting trajectory for nonlinear
equation looks as curve (3) in fig. 28b. So studying the distribution
of the secondary hadron we could measure the form of the
trajectories reconstructing from experiments the average value of
£n x; at fixed Ky; for gluon (hadron) jet.

The main experimental problem is to invent the algorithm of
the jet selection. This problem is far from to be easy, but in any
case here (in deep inelastic scattering) this job looks easier than
in hadron-hadron interactions.

Perhaps, we can study the flow of the transverse energy E;

as a function of rapidity for the secondary hadrons in the deep

E dE
inelastic scattering. In separate events in -d-t— (or —1 where n=-

£n tg 9/2) we can observe some peaks, that are related to gluon K;

in the Feynman diagrams 2 in fig. 28a. If we know the rapidity of
each peak (n;) and its transverse energy we cun calculate K; and x;

namely, Kyj = Ey;, X; = Eproton/EgiShn. Thus, we can reconstruct our
trajectory directly from experiment, and study it versus q2 and xp.

Unfortunately, the calculations in ref. [11] shows us that the
distribution of gluons versus the transverse momentum (K;) seems

2
to be very broad, namely A £n Kit ~ 2+ 3. It means that it is very

difficult to get the form of trajectory within sufficiently good
accuracy and feel the deviation of this form from linear case.

To get the final conclusion of this kind of experiments we need
more work with Monte Carlo simulation of the parton (and hadron)
final station in deep inelastic scattering.

6) Correlation function analysis of the final state
in_Deep Inelastic _Scattering

| am in the firm belief that one of the best way to measure the

value of absorption correction is usual correlation function

analysis of the secondary hadron production. This analysis was
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discussed in details for multiparticle production in hadron-hadron
and hadron-nucleus collisions (see ref. [26]) in framework reggeon
approach. The main idea of this analysis is the fact that pomeron is
the collection of uncorrelated particles. This fact can be seen
directly from Kancheli-Mueller diagraun:;[”I for inclusive cross
section. Indeed, single inclusive cross section

we can draw as diagrams of fig. 29a double inclusive cross section
do

understand that

could be described by diagram of fig. 29b. It is easy to

do A(y-yq)+a(y1-yp)
=0y 0p € a
dy, 192
A(y-y1)+A(y1-Yo)+A(Yo-
———-90——=g1 92 a2 e (y-y1)+alyq-y2)+A(ya-yg)
dyq dyp

So, the correlation function
1 do
Stot 9Y1 dY2

R(y'y2)=1 doY1 do)
: )

(248)

oy dy,4 oy &;
A -
is equal to zero if we take into account that oy = g19, £ by Yo)

(see fig. 29c).
Thus, R(yq yo) differs from zero due to so-called short range

(in rapidity) correlation, namely, when particles with rapidities yy
and y, has so small difference Ay = yq - yo which is smalier than
correlation length Agp (Ay € AgR). To estimate Agp we used to
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draw the diagram of fig. 29d type, where P' is the secondary
reggeon trajectory (a(0)p: ~ 1/2, s0o Agp = 2).

The second origin of R(y; ypo) # O is so-called long range
correlation which are originated from shadowing diagrams of fig.

29%e type.
So the full answer for Ry, yo) we can write in the form

NZ Ay

L SR(0) e ASR . (249)
2

R(v1¥2) -

So the first term in eq. (249) does not depend on rapidity and its
value is really the value of our screening corrections.

In above discussion | would like only to recall you our standard
approach to correlation analysis of the multiparticle production.
This analysis allowed us to understand the general properties of
the hadron inelastic event and still is the origin of the
phenomenological description of hadron-hadron and hadron-nucleus
collisions (see for example [28]).

What is our advantage in the case of deep inelastic scattering
? Let me suggest you some glossary, from which my hopes will be
clear.

Pomeron in deep inelastic scattering is our "ladder” or solution
linear equation.

Long range correlation is contribution of our shadowing
(screening) diagrams.

Short range correlation is either correlation between two
hadrons in the decay of one gluon jet or the correlations between
two emitted gluons in our "ladder” (see diagrams in figs. 30a and
30b).

Now, | would like to answer, why | hope that this analysis will
be useful in the case of deep inelastic processes. Let us consider
the correlations between two gluons with rapidities y4 and y, in
KLF equation. So | would like to calculate the diagram of fig. 30c
and compare it with diagrams in fig. 30d for inclusive cross
section and if fig. 30e for total cross section. In the case when all
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yiis large (y = £n 1/xg >> 1yy >> 1yp, >> 1), we can use the
diffusion solution (see eq. (93)).

So we can write the diagram of fig. 30c as follows.
For KLF solution we can rewrite the diagram of fig. 30a for
do

———— in the form
do d 2

—= | Q|y-Y q » q olyq-y ,q q

dy1 dy I l 1 1]dy [1 20 Y91 2]
dq dq

do 2 2 1 2

s (vz Yo- 9o qo] - (250)
C’H Q2

we use the KLF equation (see lecture 5) to get eq. (250). Indeed,
after integration over K4y and Koy the emission of gluons 1 and 3

- . ogN agN
in fig. 30a gives —— K(qgq, q'4) and = K(qgy, q'p) so
n n

do
dyqdys

K(q2 q'g) a{ygwo. q'“, qo]{aSN

2 2 .2 2

dq1 dq‘1 dq2 dq2 (251)
2 2 2 2

qy 94 4 Qap

2
—Icp{y yy. a2 q1)K(q1 q1)m[y1 ¥o. 9 q2]

using KLF equation we have
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acN 1 2 2
—i— j. K(Q1,Q1J(P[y1'y2»q'1'QQ)

-
3y [1 2 91 2)

Eq. (250) we can rewrite as follows

() () + () ()
dy:’gyz - [drydrpe
(1) (rere) + () (7072)
y = H2) "
aSN
a(e) )+ (o)
e —1 25 (252
(2i)3
2 2
a4 a5
Here, 'y =£n—2and Fp=4£n ok After integration over I'y and T'p,
% %

you can easily see that eq. (252) reduces to the form

(v-¥o) N+ enr

T

do df 2 (ISN
——=Je e xh = =
g2
=——0 -yg.TY) . (253)
dy2 tot(Y Yo )

The same approach gives for dd—° (see fig. 30d) the answer
Y1
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;T(:=d%°tot (¥vor 1")

. Therefore our correlation function K(y, yo) is equal to

1 do
Rfy,, =—¢t 71 7 9
(y1 y2) 1 do 1 do

oy dyy oy dyp
2
d
2.€n ot(y yo)

=gy 254
2 (254)

enofr- )

as example let us calculate K(y{, yp) for diffusion solution, when

2 r2
m - ——
0(ag)(y-yg) Ay

2
[1/2 .2r ]
A(Doy

2
ogy- L+ L2
2 A(t)oy

Strictly speaking R(yy y,) turns out to be equal to zero - since in
diffusion solution wqgy >> 1 ; but we see also some dangerous,
namely, K(y; yo) falls down only logarithmically. In double log

Ng(n

Op=——_— ¢
‘\’ nAu)oy

(255)

R(v1- v2) -

limit
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20.8N

r'(y-yg)

.e

o - N(r)
{/zsﬁr _
. T(Y - v0)

and R{yq y,) is equal to
2asN
1- - r
[ \/ (Vo) ]
\/ >

= <<l . (256)
VL (5 vo) T

So, you can see, that once more the correlation function turns out

* to be parametrically small. The above two examples | hope should
encourage us to attack this problem seriously. It means that 1 am
sure, that we should make some attempts to develop correlation
function analysis for deep inelastic processes, using the
theoretical information about structure of our "charm™ (pomeron)
which is the solution of LLA equation.

Of course much work we need to clarify this problem and | am
happy that A, Capella, A. Krzywicki and J. Tran Thanh Van joint me
to attack this problem and we have started our discussion on the
subject.

7) Dissociation of the tar hadron
Let me discuss once more interesting exclusive process in
Ad
deep inelastic scattering, namely, reaction

70 —>p-—>\y(p0, ) +M .

151

The cross section for this reaction can be written in the following
form (see fig. 31a)

Mzaﬁj—gd—f jde' tpz(y-y', Qy, KZ). ag(Kz) .

G3pq{y', K2, qé](t - (qu ] . (257)

The most interesting measurement here is the t-dependence.

Indeed, o(y-y', Q2 q2) depends on t = 302| only if |t » qg(x')
2 M2 2, . X .
=gy (?). For |t < qgq(x) our amplitude is really independent of t. Of

course this is prediction only if we reach the saturation region and
our phenomenology gives sufficiently good estimation for critical
line.

Unfortunately, we have now no numerical estimate of the
cross section in spite of the fact, that really we have all
theoretical ingredients to make necessary calculation.

| would like also to draw your attention to the fact, that
qualitative picture of the dissociation process is very similar to
diffraction dissociation on nucleus. We know that such dissociation
has very pronounced features in the case of saturation (see ref.
[29]). ‘

This process is the last one which | would like to discuss at
the moment. The problem is that of course, new approach leads to
many consequences but most of them even have not been estimated
if in rough way. |

As a whole situation with experiment at HERA could be
expressed in simple words. We have a lot of idea and even
theoretical understanding of the problem. Perhaps it is better to
speak, we understand the theoretical problems and can specify the
kinematical region where we have sufficiently good theoretical
description of the problems. However, the numerical estimates are
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only for several processes and even they are far from final version
that can give the reliable predictions for experimental observation.

| am not sure the HERA working groups can prepare such
calculation in short period of time, because the main problem is
that we have only several experts in theory of deep inelastic
processes at low x.

I hope that these lectures could be my small contribution in
agitation and preparation of the theoreticians for professional
discussion the general situation in the region of low x. | would like
to mention once more that low x deep inelastic scattering is not
only specific processes but physics at low x here opens new
perspectives in understanding the high energy hadron (nucleus)
collisions (see ref. [2]).
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Lecture 15 : Problems and hopes

In this lecture, which is the last one, | am going to list the
problems which we need to solve in the nearest future. My main
aim in this talk is to show for all theoreticians that we have a lot
of unsolved theoretical problems which are difficult enough to be
attractive and most of them could be solved even now without
developing new technique. However much more work, even routine
one is needed to achieve some remarkable progress. Really most of
these problems have been mentioned in the previous lectures, but |
hope that the systematic listing of them will give the right
impression on the current situation in this field of high energy
physics.

1. The main theoretical problem for linear LL(x)A is to find the
pext to leading order corrections. This problem looks quite

different for LL(x)A and LL(q2)A for which next order correction

has been calcufated!14l. Indeed, partially such corrections that was
calculated for GLAP equation have been taken into account directly
in LL(x)A. Unfortunately, we have had no systematic investigation
of this problem, but the solution of the above problem is extremely
important. Indeed, | have mentioned that LL(x)A violates the energy
conservation, so next order correction is necessary to restore such
fundamental property as energy conservation.

2. Numerical solution of LL{x)A equation is also only in the
beginning of systematic study. | would like to draw your attention
to the fact, that LL(x)A could be solved both as evolution equations
in £n q2 and in £n 1/x. If the first way of solution which is close
to solution of usual (GLAP) evolution equation has been treated in
several papers (see the reports of Kwiecinsky, Krawczyk,
Marchesini and Webber at low x seminar in DESY (May 1990)), the
second one has not been touched in numerical approach. However,
the little experience of solution of evolution equation in £n 1/x
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shows that the numerical answer depends very significantly on the
value of momentum cut off (Qqg in ref. [11]).

3. We have found the sgolution of LL(x)A with the running ag_as

evolution eguation in_£n 1/x, but this solution looks too formal and
we do not understand the precise behaviour of our asymptotic in
the region of small x.

4. In LL(x)A the inclusive cross section of gluon jet. heavy guark
pair_production and so on have not be studied systematically from
numerical point of view. Especially interesting to calculate the
value of correlation function in LL(x)A. As | discussed in previous
lecture, these calculations will allow us to formulate systematic
approach for the multiparticle production in deep inelastic
scattering. We need also theoretical calculations of the

distribution of gluons in typical LL(x)A "ladder” to understand the

structure of the typical inelastic event. | would like to draw your
attention that even for single inclusive production of gluon jet the
correct formula was written only for large transverse momentum.
On the other hand we have some experience that namely in the
region of low x the inclusive spectrum changes crucially due to
emission of sufficiently soft g!uons[zsl. Unfortunately, | do not
understand for example how | can describe the result of ref. [25]
using Kancheli-Mueller diagram technique[27], which was proved on
sufficient general ground.

5. Next order correction for inclusive production

We know that this correction could be very important
numerically, at least the experience in usual LL(qz)A teaches us
that so-called K-factor in processes of inclusive production could
be of the order of 2-3. .

This problem is very important from numerical point of view,
because for example in our phenomenology we extract the
normalization of gluon structure function directly from inclusive
production and if the calculated K factor appears to be large it

155

means that the normalization of Fy(x, q2) should be suppressed in
1/VK times.

f high twi ntribution

We argued that the theorem that the operators of different
twists cannot mixture is correct only when the anomalous
dimension of high twists operator is smaller than one. (y, - 1o <1).

For small x v, grows very rapidly, so we should face the mixture of

'the operator of different twists. Namely, this situation was

realized in the reggeon-like diagram technique. Thus we should
study once more the problem of operator expansion of deep
inelastic moments in the region small x {(or n — 1).

7. The right most singularities of "ladder” with 3. 4 ... gluons in t-
channel induces the behaviour of the above exchanges as power

(1/x)An. We assumed, that An for all these exchanges is smaller
than Ag for our LL(x)A ladder or nAg for exchange of 2n gluon in t-

channel. We need prove of these assumptions or some example that
this assumption is incorrect.

8. We need to calculate the triple ladder diagram but in situation
when_the momentum, transferred along the ladders is not equal to
zero. If we will know this vertex, we can write the correct LL(x)A
equation with screening correction for the parton density in impact
parameter plane. We discussed this problem in ref. [2] using some
model simplification for this vertex. | understand that this -work is
very difficult but we really need it

9. We proved the modified evolution equation using reggeon-like
diagram technique, but physical meaning of obtained equation is
very simple. Namely, it looks as some equilibrium in parton
cascade between emission and recombination of partons. We need
the ideas that allow us to prove the modified evolution egquation
directly from these ideas, without complicated diagram technigue.
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10. Inside the saturation region we have very interesting system
of parton which are interacting with small coupling constant but
the density of these partons are sufficiently high. We have even
some detail hypothesis how interact parton in this region and why
the emission of all gluons with q; < gg(x}) is suppressed. So the

system of partons in the saturation region looks as collection of
partons with well defined proper size which is proortional to

1/qg(x). However we need some study of the problem of the

inclusi Juction in_thi . ion_iaking i
the rescattering gluons and so on. Some first attempts were made
in ref. [30] for heavy quark production, but we should investigate
this problem theoretically and the physical meaning and momentum
structure of Sudakov-like form factor which appears in this case.

11. Exclusive processes in deep inelastic, especially the
diffraction dissociation is still _open problem

We have only one paper of Ryskin devoted this problem and, of
course, this problem should be studied. For example, the case of
target fragmentation was only touched in ref. [2] in spite of the
fact that now we know that saturation should immediately
manifest itself in this process.

12. As we discussed, that the most interesting and general feature
of low x phenomena is so-called diffusion in £n q,. This diffusion

leads to large average <£n? qi> in our deep inelastic processes,

namely, <£ n2qt> ~ ag £n 1/xg. It means that partons with low g,
! ver ial in_th i i

parton cascade. | think also, that this problem is very important in
the oy problem. We would like to study this problem in more

theoretical basis.
13. Deep inelastic scattering, especially at not very high virtuality
of photon looks at most aspects as hadron-hadron interaction. So

we should wait for increasing of proton radius versus xp (xg — 0).
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Untill now we have neglected this effect in deep inelastic
processes. This phenomena could be even some origin of new
phenomenology for simultaneous description of low q2 and high q2
deep inelastic data.

14. In saturation region | am not sure that parton language is very

useful for us. So we need some picture and language to discuss all
phenomena in the saturation region in the simplest way.

Frankly speaking, the situation in low x region as a whole
reminds the old reggeon calculus. Once more we face the problem
of taking into account a lot of diagram. Of course, only when you
will recognize these facts, the first, natural wish should be run
away from this field of our activities.

I hope, that | convince you, that in deep inelastic scattering
we have one very important difference, namely, we can study
screening corrections theoretically in the kinematical region
where they are small. This study allows us to understand better
what the system of partons in our parton cascade on microscopic
level.

I hope, that we could attack the saturation region
theoretically, even more we have microscopic hypothesis how our
parton cascade inside the saturation region looks like. So, now we
are seeking for appropriate technique to describe the modified
equation and the parton system in the saturation region on
microscopic, parton level, directly through interaction and
collisions of parton inside the parton cascade, without reggeon-
like technique.

I hope, that new generation of deep inelastic experiments will
give us the necessary information to make the next theoretical
step.

| hope, that you understand that we have the greatest
advantage even at the moment. We understand the problems and can
formulate the nearest aim to solve them.

The whole situation at low x, | am trying to present in fig. 32.
Namely, in my opinion, the hadron looks as traditional russian toy
"Matrjoshka". If we look in hadron with sufficient bad resolution,
we see hadron as a whole and it looks nice. When the resolution of
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our microscope becomes better we see several quarks inside the
hadron, which are also nice. But microscope with even better
resolution cannot open this toy once more. On some level, these
quarks look rather as balloons with quark liquid. If we make small
hole in this balloon, we see the jet of quark gas. And even now we
know something about jet production. But if we make the hole,
which size large enough and put there the tape, we can get the drop
of quark liquid. The HERA | hope is this tape and our aim (I mean the
aim of theoreticians) to prepare a good glass to catch this drop.
Unfortunately, this giass is not prepared yet. But we are on the
way, at least we have impression about general construction of
this glass.

Conclusion

| must tell you that for me it was first and very interesting
experience to deliver this more-less systematic course of lectures
on low x deep inelastic scattering. Of course, these lectures are
only introduction to the problem, even more, only theoretical
introduction. | hope, that in nearest future. I'll write some lectures
on the physics at low x and even more generally at large energy
(LHC, SSC region).

| am very grateful to all participants of seminar at L.P.T.H.E.
Orsay for encouraging discussion and permanent interest in the
problem.

| would like to thank D. Schiff, who organized these lectures
and stimulated them.

I am especially indebted to A. Capella and A. Krzywicki, for hot
discussion of the subject and interesting questions than were very
useful for me.

It is pleasure for me to thank Mile M. Calvet for typing the
manuscript. Without her assistance this paper could not appear on
the whole.
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Figure Captions

Scattering of two composite particles with the
different sizes Ry and Rg in Born Approximation of
QED.

The simplest diagram for e*e” annihilation.

The emission of gluons in the quark decay.

The space-time picture for deep inelastic scattering
{(a) and e*e” annihilation (b).

Evolution equation in DLA.

The parton cascades for deep inelastic scattering (a)
and e*e” annihilation (b).

Kinematical region for DLA for ag = const (¢} and
running ag (d).

The parton decay in LL(q‘?)A (space-time picture).

The graphical form of evolution equation in LL(q2)A
(GLAP equation).

Space-time picture in LL(x)A for parton decay.

Born Approximation for quark-quark scattering
amplitude in QCD.

3
og corrections for quark-quark scattering amplitude

in QCD (production of secondary gluon).
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Definition of gauge invariant amplitudes Mil and M, in

aé order of perturbative QCD.

Resulting amplitude for secondary gluon production in

ag order of perturbative QCD.

ag contribution to quark-quark scattering amplitude

in perturbative QCD.

Graphical relations between colour factor in colour
SU(3) group.

LLA "ladder" diagram with reggeized gluons and new
vertices.

The structure of the parton cascade.
The gluon structure function for GLAP equation (one
loop) and KLF equations (all loops) in region of small

x. The picture is taken from the paper of Marchesini
and Webberl10].

1/2

The kernels x(y) and X(y) = | x{Y) dy'. LL{x)A {(all
Y

loops) and LL(q2)A (one loop).

The diagram with one quark loop in gluon "ladder".
The factorization property of QCD diagrams.

The graphical form of LL(q2)A + LL(x)A equation for
deep inelastic structure function at x — 0.
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Fig.
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15:
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16b :
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18a :

18b :

163

Kinematical region for LL(x)A + LL(q2)A.
The structure of the parton cascade for a fast hadron.

Emission and annihilation processes in the parton
cascade.

The difference between the number of diffusion steps
and the multiplicity of "wee" partons, in LL(x)A.

Enhanced diagram for Deep Inelastic Scattering (DIS)
amplitude.

Non enhanced diagram for DIS amplitude.
The simplest "fan" diagram for D'IS amplitude.

The diagrams for triple ladder vertex in Born
Approximation of QCD.

LL{x)A generalization for triple "ladder" vertex.
lllustration of AGK cutting rules.
“Fan" diagrams for DIS amplitude.

The equation taking into account multiladder "tan”
diagrams.

Some iterations of this equation.

Multiladder vertices.

The trajectories of linear (dashed line) and nonlinear
evolution equations.
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What and where we know about DIS structure
function ?

Structure of interactions with nucleus.

The interaction of partons inside the saturation
region.

The resulting structure of the parton cascade inside a
nucleus.

The space-time picture for DIS with nucleus
a) for Ty < RN X > xyN)

b) for 2 E:!A>ty- > Ryn (X > x > xp)

c) for Tyt > 2Rp (x < xp).

The semi-enhanced multiladder diagram inside a
nucleus.

The boundary (critical) line for the nucleon structure
function in vacuum (1) and inside a nucleus (2). All

cross sections are proportional o A below curve (3).

The unitarity constraint for ¢) in vacuum and in

nucieus.

Process h+h — h(p;)+x.

The comparison of our phenomenological approach
with the experimental data.

The structure of hadron ("hot" spots picture).
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26d :
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32:
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The HERA map - the kinematical regions for Quark Gas
(QG) and Quark Liquid (QL).

. sea .
The diagrams for Fo  near the saturation region.

The result of calculation of Fséea’ using the saturation

hypothesis.

The comparison of different approaches for Fs2ea at
Q2 = 50 GeV2.

y'+p — CC (bb) + x processes.

Diffraction dissociation of virtual photon. (1) and

typical DD kinematics for HERA collider. (Pictures are .
taken from Ryskin's talk at Saclay (Dec. 1990)).

Energy flow distribution for typical inelastic event in
DIS.

Mueller-Kancheli diagrams for correlation function in
reggeon approach.

Muelier-Kancheli diagrams for correlation function in
QCD.

Diffraction dissociation of the target hadron in deep
inelastic scattering.
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