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ABSTRACT 

Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are 

studied using a large variety ofzero range interactions in the frame of a pseudo-particle model. Scale 

times for spinodal decomposition are extracted and a possible link with decomposition in real heavy

ion collisions is discussed. 

J 

The phase space diagram of infinite nuclear matter possesses zones of mechanical 

instabilities. where an initially homogeneous system is unstable against the growth of density 

fluctuations and may separate into two phases: liquid drops surrounded by vapor or bubbles inside a 

liquid phase, depending on the average density of the system. Such a transition' could be one of the 

clusterization processes observed in heavy-ion reactions, specially above 30 MeVlu. 

The growth of density fluctuations in infinite Fermi fluids has been analytically treated [1] and 

applied to the nuclear decomposition (2); this work is based on a generalization of Landau's kinetic 

equation and allows the qualitative classification of the behaviOrs expected in infinite nuclear matter. 

according to the initial conaltions in the density - temperature (n,n plane. Such an analytical approach 

however is strictly limited to the linear regime. it provides the domain of critical initial conditions but not 

the non-linear development of the instabilities. Furthermore. Landau's equation is based on the 

concept of quasi-particles which is meaningful for small excitation of real particles close to the Fermi 

level, which is far from being the situation in real heavy-ion collisions. 

In another context. using canonical Metropolis simulations, Peilert et al. [3] were able to show 

that clusters develop at subsaturation energy in nuclear matter. In a dynamical context D. 80al at aI. 

[4] using a quasiparticle model with a simplified interaction have shown, for early times, that the 

growth of fluctuations is exponential wich a time constant of 25 fm/c. 

The background transport theory used in this work is given by 1I1e lowest member of 8BGKY 

hierarchy - the 1-body semiclassical 'Vlasov equation'. Then, our model may be first understood as a 

version of the hydrodynamic model which is added a two-body correction; it is used here to study 

dynamically the growing of density fluctuations leading to the spinodal decomposition. This paper 

aims at getting insight in the dynamics of the fluctuation growth: since in actual reactions such a 

process is in competition with many others (cooling by evaporation. sequential emissions ... ). time 

characteristics are then key quantities to determine the conditions under which spinodal 

decomposition could be observed. 
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Our numerical treatment is based on the Vlasov phase space transport equation, 

complemented by a Pauli-blocked Uehling-Uhlenbeck collision tenn (see [5] for a review). This 

equation is usually solved using the projection of the phase space density distribution on a set of 

pseudo-particles, which are gaussians in space and momentum. their widths and numbers being 

chosen to reproduce the nucleus surface diffuseness and to optimize of the space paving [7]. This 

pseudo-particle model requires only one run to obtain accurate bulk and surface properties as we 

have shown [7]; except for the number of gaussians per physical particle and the gaussian widths, no 

extra parameters are needed. 

The pseudo-particles (PP) Hamiltonian in phase space reads: 

H.... =(p2) + (Vw"fr,p») (1)
2m 

where VHF is the Wigner-transfonned Hartree-Fock nuclear potential. m the nuclear mass. The 

brackets indicate that the above quantities are smeared out by the (here gaussian) fonn factor of the 

pseudo-particles; the solution of the Vlasov equation gives the time evolution of a swann of pseudo-

particles moving in the field of equation (1) and undergoing binary collisions when allowed by the 

phase space availability. The cross section of pseudo-particles is scaled on the nucleon-nucleon cross 

section such that their average mean free path is kept equal to the nucleon one {5]. It is to notice that 

inside the region where the spinodal decomposition is studied - low temperature and low density - the 

number of collisions is very low. thus the effect of collisional tenn is not the most significant. 

We first report briefly here on infinite matter calculations. detailed calculations are reported in 

[7]. Infinite nuclear matter is simulated by a cubic box with periodic boundary conditions; the system is 

taken homogeneous in r-space with a Fermi-Dirac momentum distribution; its initial phase space 

distribution then reads : 

_ _ ) 1 ~ (_ _) (_ _)
f ( r,p;t=O =-"",9x r-r. g. P-Pl (2)

nil ., 

and the spatial density n is : 

n(7;t = 0) = ~ I9 ff -;;) (3)x
n. "" 

Gaussian functions are nonnalized with a width A ; the (ri,pi) coordinates of each gaussian are 

randomly drawn according to the probability density law d(£) : 

d(E l ) = ge;:" - E, ) for T - 0 

d(E.) = {1 + exp[(E" - El)l T]}-l forT;I!: 0 (4) 

The Fenni energy £F is constrained on the initial nuclear density nO: the number N of pseudo-particles 

then follows as : 

N = n,l'n. (5) 

L being the linear dimension of the cube and ng the number of pseudo-particles associated with each 

nucleon. 

We compare the nuclear Equation Of State (EOS) calculated with the pseudo-particles model 

against the analytical one in Hartree-Fock approximation; in the case of interaction Skm* {S] the one 

body potential reads, 

v (-)-~ (-) [3t,+(S+4Xr )tr ]fL,(--}d-
HI' r - 4 ton r + 16 2m r, p p 

+...!..&l(r)[(S + 4xz}tz - 91,] +~t, (1 + 2}n(f)"'+' (6)
32 8 

where n is the density. r, the position, p the momentum and to, 11, 12. 13, x2. yare parameters of the 

effective interaction written in local density fonnalism . 
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Rgure 1 shows that one can reproduce with a great precision the exact EOSt as soon as ng 

Is sufficiently large [7]. For these calculations a value of ng - 42 has been used. Note that for the 

whole range of temperatures and densities the gaussian widths of (2) are set constant. 

The spinodal zone for the case of Skm· is displayed on figure 28; it was obtained by solving 

the irnplicite equation K(n, T)-O, where K is the incompressibility of infinite nuclear matter at density n 

and temperature T. We do claim that the spinodal region calculated in that way (Hartree-Fock 

approximation) is very close from the one of our system because of the quality of our fit of the EOS. 

In figure 2b, we show two snapshots of a system initially prepared in the spinodal zone of 

instability at coordinates (n-o.02 'm-3, T -0 MeV). At initial time, the pseudo-particles (here 852) are 

randomly scattered. Due to the low number of pseudo-particles as early as 60 fm/c, strong 

inhomogeneities show up : large clusters of nuclear liquid embedded in a vapor phase. These 

structures are stable with time; they do not look like nuclei; in particular due to the absence of 

Coulomb field which would help breaking them into smaller pieces. As expected. for a spinodal 

decomposition in infinite nuclear matter, the actual number of cluster found is 1 using a 3D 

generalization of the percolation algorithm of Gawlinski and Stanley (12]. 

The box size L is 16 fm, suffiCiently large (for zero-range interactions) to get independance of 

the results on the boundary conditions; l is a critical parameter, using a too small box would prevent 

inhomogeneities to develop. 

Our calculations characterize the degree of clusterization by the inhomogeneity factor : r • 

<n>tlna where no is the initial density and, 

,..z 

(n) = J~,- (7)
I A r 

Observable <n> has to be understood as a correlation function in configuration space whose 

time evolution gives pictures of the inhomogeneity of the system. Putting it differently, this quantity is 

the average density computed where the gaussians are. For an homogeneous system the average 

<n> is equal to AN where A is the number of nucleons and V the volume of the box, whereas for an 

inhomogeneous system, <n> is always greater than AIV. Therefore. the factor r - <n>t'no. no being 

AN starts at 1 and grows as soon as inhomogeneities develop. 

Time evolutions of this factor are shown in figure 3 for a cold (T-0). dilute (no is less than 113 

of cold nuclear matter saturation density) initial system. with several samplings. In all our calculations, 

such curves exhibit a typical S-shape when spinodal decomposition occurs; three regimes are 

showing up; an initial regime where the r factor rises slowly. it corresponds to the progressive building 

up of the fluctuations; the decomposition regime where the initial stable state is destroyed by the 

fluctuations and clusters are formed as shown by the rapid upsurge of the r-factor; finally an 

asymptotic regime where this factor keeps its limit value which depends on the initial preparation of 

system. 

The decomposition regime corresponds to the rapid amplification of the initial fluctuations 

present in the system which intervene as 'seeds' of the process. In our simulation, most initial 

fluctuations are purely numerical: mainly uncomplete sampling of the phase space. 

Obviously the behaviour of the system is very phase space sampling dependent. less 

pseudo-particles means more initial fluctuations, then the system needs less time to build up the 

fluctuations which leads to a shorter first regime. 

The duration of the first regime of the S-shape curve is then meaningless since 'sampling· 

dependenf : in particular it depends on the random generator seeds. In the case of a complete paving 

of the phase space we would get no fluctuations at all ( infinite time to build them up I). Our choice 

was simply to have a good description of the EOS and enough numerical fluctuations to simulate 

some physical ones. Note that calculations using PP-modef with ng below 20-25 are not phySically 

relevant [7] and calculations with ng over 50 are not yet performed because of the computational 

burden. 

The second regime is rather similar for a number of gaussians per nucleon greater than 35

40. This means that the system looses memory of its initial preparation as expected in a chaotic 

transition. It is then possible to define a characteristic time of the decomposition as the non

ambiguous time duration of the second regime, namely the t10-90 time of the density evolution. 

t10-90 • t(r-0.9rs) - t(r.0.1 r s) (8) 


where r s is the asymptotic r-factor computed by averaging over the third regime. 


http:t(r-0.9r
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Figure 4 shows that the Uehling-Uhlenbeck collision tenn ina-eases by 1S% the asymptotic r

factor. The t10-90 does not signiflC8lly change due to the low density of the system while fluctuations 

building up and early clusters formation. This allows to neglect collisional term in further calculations in 

order to save CPU time. 

In figures 58 and 5b, we evidence the spinodal zone of Skm· interaction by variation of the 

initial preparation in the (T,n) plane. Firstly. we notice that when prepared inside the spinodal zone the 

density inhomogeneities do grow, and when prepared outside (n-o.11 fm-3) the system remains 

homogeneous. This illustrates the ability of the PPM model to accurately simulate the genuine 

Nuclear Equation Of State. Secondly, the characteristic time for decomposition (i.e. the t10-90 

parameter) is strongly dependent of n(t-O) (figure Sa) and T(t-o) (figure Sb). Closer to the critical 

temperatures (T -12 MeV) the superficial tension almost vanishes and density homogeneities grow 

very slowly. The more dilute and the cooler the system the faster the process, since the spinodal 

decomposition leads to the fonnation of relatively cold drops inside a dilute gas. 

In figure 6. one sees that the decomposition clearly depends on the interaction. The small 

difference between the asymptotic densities being connected with the cflfferences in the excitation 

energies of the system. All these interactions give more or less the same saturation properties for 

nuclear matter. Nevertheless they have important differences for quantities like incompressibility K 

and effective mass m·'m. Such parameters are expected to have an important role in the evolution of 

<n> in time; surface parameters like the surface energy coefficient 8s have also to be considered 

because surface phenomena are important in cluster formation. 

In our investigations. typical values for t1 0-90 are in between 60 fm/c and 200 fm/c depending 

on the initial value (n.T). Typical results are summerzed in Table I. These characteristic times should 

be compared with time durations of heavy-ion collisions. Since the growth of fluctuations is favoured 

in cold systems (see Table I). we choose to compare with collisions at relatively low energy. For 

instance. the passing through time of two medium nuclei at 30 Mev/A beam energies can be roughly 

estimated to 40 fmlc (10 fm divided by the relative velocity 0.2Sc of the ions). This corresponds to the 

lower limit Calculations with Boltzmann-like equations including effects of mean-field and two-body 

collisions yields larger values which do not exceed 80-100 fmlc. Then our calculations show that the 

characteristic time of the spinodal decomposition lies within the upper bound of the average time 

duration of heavy-ion reactions. 

We have been able to characterize the decomposition time in nuclear matter in a way which is 

independent of the sampling of the phase space. Moreover our approach was not limited to the linear 

regime as works based on generalizations of Landau kinetics equation. " was shown that this time is 

strongly dependent on the coordinates (n. T) of the initial concfltion in the spinodal zone and on the 

nuclear interaction itself. Decomposition times are ranging between 60 fmlc to 200 fm/c. A realistic 

interaction like Skm· gives a time around 100 fmlc in the most favorable case of cold and dilute 

nuclear matter. 

During heavy-ion collisions the compound system could undergo such a decomposition if it 

spends time enough'in the spinodal zone. From previous results such a phenomenon will be dlfficuH 

to pin out and might be tracked in the core of two very heavy nuclei colliding at low energy around 30 

MeViu. 

All those calculations have been perfonned on a RS16000 workstation and a complete 

dynamical computation. up to 270 fmlc (i.e 360 time steps) takes about 10 hours for a system of 8200 

gaussians. 

The authors are grateful to Pr.D.H. Boal for interesting e-mail exchanges. 
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Table I: Typical time scales for spinodal decomposition using several interactions. Starting density is 

n-0.049 fm-3, temperatures T - 0, 6 MeV. 

t1nAn (fm/c) t." ..... (fm/c) 

n = 0.049 fm-3 T=O T=6 MeV 

Skyrmelll 61.5 129 

Zamick (K=300 MeV) 78 147 

Zamlck (K=22S MeV) 84 165 

Skvrme VI 85 150 

Skm· 112 177 

Tondeur To7S 165 228 

Tondeur T5 175 >300 
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Figure captions 

Figure 1 : Comparison between Hartree-Fock calculations and PP-model : total energy per nucleon 

(ElA) versus density (n) at T ..0,5.10 MeV. for Skyrme Skm· force. 

Figure 2 : Snapshots of the (x.y) positions of 852 pseudo-particles at t..o and t-60 fmlc for Skm· 

force at T.O and n(0).0.02 fm·3. 

Figure 3 : Dynamical computation of average density <n(t» for different samplings (ng-31, 42, 52, 

62) at T .. 0 and n(0)..o.049 fm-3 

Figure 4 : Effect of the Uehling-Uhlenbeck collision term (here ng.31). 

Figure 5a : Skm· spinodal zone. TIme-evolution of the average density at T.3 MeV, for several initial 

densities: 0.020. 0.049, 0.080 and 0.110 Im-3. The last point (0.110 Im-3) is outside of the Skm· 

spinodal zone. 

Figure 5b : Skm· spinodal zone. TIme-evolution of the average density <n> at several initial 

temperatures: T .0.3,6.9 and 12 MeV. Starting density is 0.049 fm-3 

Figure 6 : Dynamical computation of average density <n(t» for several Skyrme type forces Sill and 

SVI [9). T1 and T5 [10]. T078 [11]. Zam 228 and Zam 300 are simplified (to.t3) Skyrme interactions 

with K-228MeV and K-3DDMeV. The starting density is 0.049 fm,3 and initial temperature is T -0. 
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