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ABSTRACT: Dynamical instabilities arising from fluctuations in spinodal zone for nuclear mailer 

are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster 

fonnation are extracted. 

PACS numbers: 05.70.Ln. 21.65+f. 64-60-i 

The phase space diagram of inf'mite nuclear matter Possesses' zones of mechanical 

instabilities. where the initially homogeneous system is unstable against the growth of density 

fluctuations and may separate into two phases : liquid drops surrounded by vapor or bubbles inside 

a liquid phase. depending on the average density of the system. Such a transition could be at the 

origin of the increase in the yield of intennediate fragments observed in heavy ion reactions above 

30 MeV/u. 

The growth of density fluctuations in inf'Jnite Fenni fluids has been analytically treated (1) 

and applied to the nuclear fragmentation [2]; this theory is based on a genera1ization ot Landa'!l's 

kinetic equation and allows the qualitative classification of the behaviours expected in heavy ion 

reactions according to the initial conditions in the (T.n) plane. Such an analytical approach however 

is strictly limited to the linear regime. it provides the domain of critical initial conditions but not the 

non-linear development of the instabilities. Furrhennore. Landau's equation is based on the concept 

of quasi-particles which is meaningful for small excitation of real particles close to the Fenni level. 

which is far from being the situation in real heavy ion collisions. 

In another context. using canonical Metropolis simulations. Peilert et al. [3] were able to 

show that clusters develop at subsarumtion energy in nuclear matter. In a dynamical context D. 

Boal at al. [4J using a quasiparticle model with a simplified interaction have shown (for small time) 

that the growth of fluctuations is exponential wich a time constant of 25 fm/c. 

This paper aims at gerring insight in the dynamics of the fluctuation growth; since in actual 

reactions such a process is in competition with many others (cooling by evaporation. sequential 

emissions ... ). time characteristics are then key quantities in order to determine the conditions under 

spinodal decomposition could be observed. 

Our numerical treatment is based on the Vlasov phase space transport equation, 

complemented by a Pauli-blocked Uehling-Uhlenbeck collision tenn (see (5) for a review). This 

equation is usually solved using the projection of the phase space density distribution on a sel of 
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pseudo-panicles; we shall use the StH.alled Landau-Vlasov model [6] where the pseudo-panicles 

are gaussians in space and momenrum, their width and number choosen to reproduce the nucleus 

surface diffuseness and to optimize the uniformity of the phase space paving [7J. 

1be pseudo-particles (PP) Hamiltonian in phase space read~ : 

(p2) (V (__») (1)Hpp :-+ !IF r.p
2m 

where VHF is the Wigner-transformed Hartree-Fock nuclear potential. m the nuclear mass. 1be 

brackets indicate that the above quantities are smeared out by the (here gaussian) form factor of the 

pseudo-particles; the solution of the Landau-Vlasov equation gives the time evolution of a swarm 

of p"~' ';'{wing in the field of equation (I) and undergoing binary collisions when 

allowed by the phase space availability. The cross section of pseudo-particles is scaled on the 

nucleon-nucleon cross section such that their average mean free path is kept equal to the nucleon 

one [5,7]. 

We flISt report here on infinite matter calculations; its properties will be studied in a cubic 

box with periodic boundary conditions; the syStem is taken homogeneous in r-space with a Fermi­

Dirac momentum distribution; its initial phase space distribution then reads: 

_ 1 f (- -) (- -) (2)fCf.p;t=O)=-.t:..gx r-ri g. P-Pi 
n8 i~l 

and the spatial density n is : 

1 of (- -) (3)n(f:t=O}=- .t:..gx r-t; 
n, isl 

the go. - functions are normalized gaussians with a width t.; the (I;,p;) coordinates of each 

gaussians are randomly drawn according to the probability density law d(t) : 

d(£J = 9(£F -(1) forT", 0 


d(£;)=[I+exp(E,-EF)/T)r forT;tO (4) 


The Fermi energy EF is constrained on the initial nuclear density nO: the nwnber N of pseudo-

particles then follows as : 

N=noLJn, (5) 

L being the linear dimension of the cube and ng the nwnber of pseudo-particles a.'lSocialed with 

each nucleon. 

We compan: the nuclear Equation Of State (EOS) with the pseudo-particles model againSt 

the analytical one, in the case of a Skynne SkIn" interaction [8J : 

vllF('i')=~ton(i')+.!.[3tl +(5+4Xz)tz]J pI f(r.p)dp
4 16 2m 

+.!.[(5 + 4ltz)t 2 - 9t1]&I(r) +~tJ (y + 2)n(i')Y+l (6)
32 8 

Figure I shows that one can reproduce with a great precision the exact EOS (known from 

HF calculations), as SOOn as ng is sufficiently large [7], (n,>40). Note that for the whole range of 

temperatures and densities the gaussian widths t. of (2) are set constant. Detailed studies [7J show 

too that the Landau parameters FO and F\ an: reproduced at a sufficient level of accuracy, and then 

the above formalism provides a good approximation to the Landau kinetic theory in the linear 

regime. However, it presents the advantage of not being specialized to the small excitation regime, 

of including a microscopic treatment of binary collisions, and of being suitable for fmite systems. 

The droplet (bubble) formation is a process where the surface propenies or nucleon effective mass 

could play a decisive role, being easily treated since a larger variety of nuclear effective interactions 

can be implemented in the model. 
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In fi!!1.lre 2, we show two snapshots of a system initially prepared in the spinodal zone of 

in.'!tability (n=O.0492 fin·3, T=3 MeV). To get a better view, several periodic boxes have been 

associated. At initial time. the pseudo-particles are randomly and unifonnly scattered wherea.'I at 

t=165 fmlc SIrOng inhomogeneities show up: large clusters of nuclear liquid embedded in a vapor 

phase. These structures are stable with time; they do not look like nuclei. in particular due to 

absence of Coulomb field which would help breaking them into small pieces. The box size L is 16 

fin. sufficiently large to get independence of the results on the boundary conditions; L is a critical 

parameter. using a too small box would prevent inhomogeneities to develop. 

The degree of clusterization can be conveniently characterized by the inhomogeneity factor: 

r := <n>fno where "tl is the initial density and 

(n(t») =_1-3 If(f.p:t )n(f:t) dfdp (7)
noL 

This factor remains equal to I for homogeneous systems and grows as soon as clusters 

develop. Time evolutions of this factor are shown in figure 3 for a cold (T=O). dilute system (no is 

less than 1/3 of the normal nuclear maner) initial system. wilh several Skyrme interactions. In all 

our calculations. such curves exhibit a typical S-shape when the spinodal decomposition occurs: 

three regimes are present; an initial regime where r-factor rises slowly, it corresponds to the 

progressive building up of the fluctuations; the fragmentation regime where the initial stable state is 

destroyed by the fluctuations and clusters are formed as shown by the rapid upsurge of the r-factor; 

finally an asymptotic regime where r-factor keeps its limit value which depends on the initial 

preparation of system. 

The fragmentation regime corresponds to the rapid amplification of the initial fluctuations 

present in the system which intervene as 'seeds' of the process. In our simulation most initial 

fluctuations are purely numerical, mainly from uncomplete sampling of the phase space. 

In figure 4. we show the behaviour of the system when modifying the initiJll sampling of Ih~ 

phase space : less pseudo-panicles means more initial fluctuations. One sees that the first regime is 

shorter, the sy:nem needs less time to build up the fluctuations. but the second regime is quit~ 

similat. which meal''' 'hat Ihe system looses memory of its initial preparation as expected in chaotic 

ttansitions. Then. the duration of the flfSt regime of the S-shape c\IIVe is meaningless since 

'sampling-dependent' : in particular it depends on the random generator seeds. We shall detennine 

the time characteristic of the fragmentation as the non-ambiguous time duration of the second 

regime. namely the t 10-90 time of the density evolution. 

t lO__90 = t«n) =.9(n).)- t«n) =.I(n>-) (8) 

where <n>~ is the asymptotic value of <11>. 

In figure 3, one sees that multifragrnentation clearly depends on the interaction. The small 

difference between the asymptotic densities being connected with the differences in the excitation 

energies of the system. All these interactions give more or less the same saruration properties for 

nuclear matter. Nevertheless they have important differences for quantities like incompressibility 

K.c and effective mass m"/m. Such parameters are expected to have an important role in the 

evolution of <n> in time; surface parameters like the surface energy coefficient lis have also to be 

considered because surface phenomena are important in cluster fonnation. We were able to fit all 

the tlO_90(n.T) (within a 15% relative error) using an empirical formula as the following. 

(9)t'O_90(n.T)= A[-K(n.T)r[:: (n)f[~«:~J[l-(n:;< Jr 

for (n.n inside the spinodal zone. 


K(n,T) is the isotherm incompressibility, (nc,T ) the critical density and temperarure and no the
e

saturation density of nuclear matter at T=O. The tlO_90 is directly given in fm/c with the following 

set ofpararneters: A =20450 MeV1.l2.fmlc, a=-1.12, b=O.5, c=0.7 and d=O.l. 
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In our investigations. typical values for t10-90 are in between 60 fmlc and 200 fmlc 

depending on the initial value (n.T). nus can be seen in particular for Skm- in figures 5a and 5b. 

In figures 5a and 5b. we evidence the spinodal zone by variations of the initial preparation 

in the (T,n) plane. Firstly. WI' notice that when prepared inside the spinodal zone the 

inhomogeneities do grow. and when prepared outSide (n=O.11 fro-3) the system remains 

homogeneous. This illustrates the ability of the model to accurately simulate the genuine Nuclear 

Equation Of State. Secondly. the characteristic time for multifragmentation (i.e. the t10-90 

parameter) is strongly dependent of n(l=O) (figure 5a) and T(t=O) (figure Sb). Ooser to the critical 

temperarures (T= 12 Me V) the superficial tension almost vanishes and densities homogeneities grow 

very slowly. The more dilute and the cooler the system the faster the process. since the spinodal 

decomposition leads to the formation of relatively cold drops inside a dilute gas. 

Figure 6 shows that the Uehling-Uhlenbeck collision term increases by 15% the asymptotic 

r-factor. The 110-90 does nOI significally change due to the low density of the system while 

flucruations building up and early clusters formation. 

In conclusion. we have been able to characterize the c1usterization time, t10-90' in nuclear 

matter in a way which is independent of the sampling of the phase space. It was shown that t 10-90 is 

snongly dependent on the coordinates (n.T) of the initial condition in the spinodal zone and on the 

nuclear interaction itself. Ousterization times are ranging between 60 fmlc to 200 fmlc. A realistic 

interaction like Skm· gives t\O_90 around 100 fmlc in the most favourable case of cold and dilllte 

nuclear matter. During heavy-ion collisions the compound system could undergo such a 

decomposition if it spends time enough in the spinodal zone. From the previous results such a 

phenomena could be tracked in the core of two large nuclei colliding at low energy around 30 

MeV/o. 

The authors are grateful to Pr. D.H. Boal for interesting e-mail exchanges. 
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Figure captions 

Fi~ure I ; Comparison between Hartree-Fock calculations and Pseudo-Particle Model tOtal 

energy per nucleon (E/A) versus density (n) at T=O. 5. 10 MeV. for Skynne Skm- force. 

Figure 2 : Snapshots of the positions of pseudo-particles at t=O and I:Hi5 fmlc. The nine cells 

evidence the cyclic boundary conditions. 

Figure 3 : Dynamical computation of convoluted density <II> for several Skyrme type forces SID 

and SVI [9]. TI and T5 (10]. T078 [11). Zam 228 and Zam 300 mean simplified (to.t3) Skynne 

interactions with K.,.=228 MeV and K-=3oo MeV. The starting density is 0.0492 fm-3 (i.e. kp=0.9 

and initial temperature T=O. 

Figure "' : Effect of the number of pseudo-panicles per nucleon ng on the time-evolution of 

convoluted density <II>. Below ng=20. calculations are not relevant. 

Figure 5a : Skm" spinodal zone. Time-evolution of the convoluted density <II> at several initial 

temperatures: T=O. 3. 6. 9 and 12 MeV. Starting density is 0.0492 fm-) . 

Figure 5b : Time-evolution of the convoluted density <II> at T=3 MeV. for several initial 

densities: n=O.02. 0.0492. 0.08 and 0.11 fm-3. Last point (0.11 fm-3) is outside of the Skm· 

spinodal zone. 

Fij!ure 6: Effect of the Uehiing-UhIenbeck collision tenn (here ng=31). 
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