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ABSTRACT 

A derivation of the equivalent-photon approximation is given, for both one and 
two-photon exchange processes, and its limits of validity are defined. 

RESUME 

Nous donnons une derivation de l'approximation du spectre equivalent de pho
tons, it la fois pour les processus it echange d'un et de deux photons, et nous 
definissons ses limites de validite. 
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1 History of the EPA 

For those who are interested in the history of the equivalent-photon approxi
mation, I am enclosing a list of references. Papers [1-4] refer to the semi-classical 
derivations of the approximation ; you will perhaps be surprised to find the names 
of Niels Bohr and Enrico Fermi among the authors of these early references. Papers 
[5-8] refer to the field-theoretical derivations of the EPA, dating back to the fifties. 
Finally papers [9,10] are two general review papers written by myself; they contain 
in particular a more modern derivation, based on helicity, as well as a number of 
applications. 

2 General principle 

T (P, M) 

(a) (b) 

Fig. 1 


Diagrams (a) and (b) of Fig. 1 are connected through 


(1) 

where 
W 2q.P - M2 qo . 

X = -P ~ M2 ~ (In any reference frame) (2) 
p. s - Po 

2 
a [ x Q2 ]N (s, x) = - (1 - x + )In Qr;ax - (1 - x) (3) 

1I"X 2 min 

with Q!un = m;x2j(1 - x) (notice: Q2 _q2). There is a problem with 
the adequate choice of Q~ax in case the electron remains untagged (we discuss it 
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farther below). In case the electron is antitagged within a cone of opening angle 
8max{ ~ 1 rad), one makes the substitution 

Qmax Ee(l - x )8max (4)
Qmin meX 

where Ee and 8max are defined in the lab. frame. 

Finally, if the electron is tagged between two angles 80 , 81 ( ~ 1 rad), one gets: 

2 
a ( X2) 8N(s, x) - l-x+- In-1. (5) 

7rX 2 85 

3 Derivation of the EPA in one-photon exchange pro
cesses 

I shall here given a short demonstration; for more details see [9]. A helicity 
treatment leads to the well-known formula [11] : 

dzd;Q2 = NT( S, z, Q2) tTT(W2, Q2) + NL(S, z, Q2) tTL(W2, Q2) (6) 

where T ("transverse") and L ("longitudinal") refer to the photon polarization 
in the photon-target c.m. frame. The first problem is to get rid of (,L. 

The longitudinal amplitude is (calling jp. the electromagnetic current at the 
target vertex) : 

. L 'p. 1 (. . ) 
JL == cp.J == Q Q3Jo - QoJ3 (7) 

where the 3-axis is the photon-target collision axis. Using the current conser
vation relation 

(8) 

one is led to 

(9) 

Thus 

(10) 

Nothing general can be said regarding the value of the second factor on the right
hand side. Anyway, in order to ensure liLI ~ liTI, one must assume: Q ~ qo . 
One may define qo either in the target rest frame (qo w) or in the photon-target 
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c.m. frame (qo := w*). The latter definition is preferable, as it leads to a more 
stringent condition, namely: Q ~ (W2 - M2)j2W. 

The photon mass being thus assumed to be negligible with respect to its energy, 
one is allowed to treat the photon as massless in the transverse term as well, i.e. : 

UT(W2, Q2) ~ UT(W2, 0) := U-Y(W2) (11) 

The transverse spectrum is given, integrating over Q2, by 

(12) 

where X is the rapidity parameter connected with the Lorentz transformation 
from the Breit frame of the left-hand vertex to the c.m. frame of the right-hand 
vertex of Fig.l(a). With the expression of sinh2 X [12] : 

(13) 

using our assumption Q2 ~ w*2 and in addition Q2 ~ Q~:: (since Q~:: ~ s), 
as well as the kinematic relation 

SQ2. Q2 kin := m 2(W2 _ M2)2
IWn max e (14) 

one is led to 

. 	h2 4m!(Q2 Q!un) (15)sIn X c::::: Q2. (Q2 2)
IWn +4me 

Thus, after integration over Q2, one gets : 

a~ (2Q!un + 4m; I Q~ax 1 1)N( ) -	 n-----+-S~ --	 (16) 
, 471" Q!un Q!un Q!un Q~ax 

U sing Q~ax 2> Q!un, and 
(17) 

one is led to formula (3). 

When the electron is antitagged or tagged, one should check that Qmax ~ w*. 
In the no-tag case, there is some arbitrariness 'in the choice of Qmax. Several choices 
can be considered acceptable and are more or less of equal legitimacy : 

• 	 Qmax:= Q:!:x' which means including the high-Q range where the approxima
tion is not valid (such a procedure can be justified, nevertheless, by arguing 
that this range does not contribute much, since the Q-spectrum is sharply 
decreasing) . 
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• Qmax = w·, in accordance with the condition of validity we have defined. 

• 	 Qmax w, where w is the photon energy in the target rest frame or the lab 
frame (those two frames are usually the same, except at HERA), which leads 
to : In Q~lax/Q~un ~ In E; /m;, Ee being the electron beam energy in the 
same frame. (For 2-photon processes one commonly uses In E;/m;, where 
Ee is the beam energy in the e el c.m. frame, which is usually the lab frame.) 

• 	 Finally it may happen that one is led to impose Qmax = A , where A is 
a cut-off accounting for some dynamic structure (for instance, when vector 
dominance is valid, Amp). 

Various EPA formulas in the literature all agree on the coefficient of the leading
log term, but differ in the argument of the log and in the non-logarithmic term. 
The arbitrariness of Qmax is the main source of error (and of differences between 
the predictions of various formulas, that may reach a factor of 2 or so). When Qmax 
is well determined, the error is roughly of the order of 1/(ln Q~ax/Q!un)' i.e. only 
of a few percent for high-energy electrons (this is the big advantage of antitagging 
over no-tagging). 

The EPA formula, as given for electrons, extends of course to high-energy 
muons. There are also corresponding formulas (incorporating electromagnetic form 
factors) for charged hadrons and nuclei [13]. 

4 	Extension to two-photon exchange processes (DEPA) 

x (W) 

~ 

b)(a) 

Fig. 2 
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Here again I refer to [9] for a more detailed demonstration. The problem is how 
to connect the diagrams (a) and (b) of Fig.2. One starts from (see [14], [15]) : 

Adu N" N" N N"da!dQ2da!'dQ,2dcp == TTUTT + TLUTL + LTULT + LLULL 

+NTTTTT cos 2cp* +NTLTTL cos cp* (18) 

where a! qo/Po, a!' == q~/p~ ; the coflicients Nand N are functions of 
s, a!, a!', Q2, Q,2 ; the cross sections q. and the interference terms T depend on 
W 2, Q2, Q,2 ; cp* is the azimuthal angle between the outgoing e and e' in the ,,' 
c.m. frame, while cp is the same angle in the incident ee' c.m. frame (usually the 
lab frame). 

As before, one shows that, in order to be allowed to neglect longitudinal con
tributions of both the left-hand and right-hand photon, one should have Q ~ 
w*, Q' ~ w'*, where w*, w'* are the left-hand and right-hand photon energies in 
the ,,' c.m. frame; i.e. practically: Q, Q' ~ W/2. 

With that assumption only two terms of the r .h. side of formula (17) are kept : 

du N" N-" 2* (19)da!dQ 2da!'dQ,2dcp == TTUTT + TTTTT cos cp 

It can be shown [16] that 

cos cp* == cos cp +O( Q2 /W2, Q,2/W2) (20) 

Therefore, after integrating (19) over cp between 0 and 21[', the term containing 
cos 2cp* vanishes. 

Moreover the conditions we have set for Q, Q' allow us to treat both photons 
as massless, thus: 

(21) 

The same type of demonstration as in the previous section (simply replacing M2 
by _Q2 resp. _Q,2 ) then leads us to 

(22) 

where N( s, a!) is again given by (3), while N'( s, a!') is the same expression with a! 
replaced by a!' and In Q:nax/Q!un by In Q';,.ax/Q!n. 

It is easy to show, in addition, that 

ZZI = ~2 [1 +O(Q2/W2, QI2 /W2, QQI/W2)] (23) 
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so that one has 

uee/(s) '"'-' / N(s,z)dzN'(s,z')dz'u",,(zz's) (24) 

5 Extension to angular distributions 

The EPA, resp. DEPA, can be extended as well to differential cross sections, 
in particular to angular distributions. 

Let us consider exclusive reactions, where the system X is made of two particles, 
i.e. X =a + b, or semi-inclusive ones, where X - a + X'. Let us call e:, cp: the 
orbital and azimuthal angle of a in the iT, resp. ii' c.m. frame. 
Then du/[dzdQ2d(cos e:)dcp:]is given by a 4-term formula instead of (6), and 
dO' /[dzdQ2dz'dQ'2dcpd( cos e:)dcp:] is given by a 20-term formula instead of (18) (see 
[17]). But eliminating all terms with longitudinal polarization (by assuming again 
Q «: w* in the one-photon process, and Q, Q' «: w* in the two-photon process), 
and integrating over azimuthal angles, one is again left with a one-term formula: 

(25) 

resp. 

(26) 

However, if the direction of the photon (resp. photons) cannot be precisely de
termined through tagging or from the final state, one must assume that its (resp. 
their) momentum can be treated as being aligned with the beam axis ; one therefore 
should impose the additional restriction: p; (resp. p;, p}) «: PT' i.e. practically 
(neglecting masses) Q (resp. Q, Q') «: (Wj2) sin e:. 

The EPA can be as well extended to other (e.g. transverse-momentum or lab 
angle) distributions. 

6 The EPA for polarized electrons 

O. Philipsen [18] has computed the EPA for polarized photons originating from 
polarized electron beams : 

dueT 

~(s) = N+(s,z)u+T(W2) + N_(s,z)u~T(W2) (27) 


where the ± subscripts refer to the photon spin component (±1) along the iT 
collision axis, and where one has 
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( being defined as the polarization parameter of the incident electron in the Breit 
frame of the electron-photon vertex. Its value reaches practically 1 when the elec
tron beam is 100% longitudinally polarized. But even then the polarization effect 
on the photon stays limited, i.e. of the order of re ; this means that the photon has 
"lost" most of its polarization in the Lorentz transformation from the Breit frame 
of the electron-photon vertex to the c.m. frame of the photon-target vertex. 

Extending this calculation to two-photon processes, it comes out that polariza
W 2tion effects due to electron beam polarization are at best of order rere/ ~ / s. 

Such effects are thus relatively (but perhaps not desperately) small. 
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