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Measurement of EMI and HAMAMATSU photomultiplier characteristics.

1. Introduction

This work was done in the framework of the future CHOOZ experiment to search for
neutrino oscillation at a distance of 1 km from a nuclear reactor. The detector design is shown on
figure 1. The proposal of the CHOOZ experiment! rests on using a large liquid scintillator detector
in the center part of which gadolinium-loaded scintillator will be used. Antineutrinos from nuclear
reactors will be detected via the reaction :

Vet+tp—et+n
|+ Gd — Yi Y- +<E>=8 MeV

with a neutron lifetime in the gadolinium scintillator of about 28 ps.

The fiducial volume is viewed by 160 photomultipliers (PM) which give the information

about the energy of € and n events as well as the time delay between these two. The time and
energy balance information will provide a localisation of an event.

Monte-Carlo calculations? of efficiency and light collection parameters of the detector
showed that we have for the et 150 photo-electrons/event at E=~ 1 MeV. It means that individual
PMs will operate in single photoelectron regime. So, the PM parameters in this regime are very
important and the Chooz collaboration needs to find good PM with best peak-to-valley ratio, low
dark current counting rate etc. The College de France group is preparing a Flash ADC electronics,

to sample the PM pulses3. The results of the present test will be a part of a full PM+FADC test to be
installed in the laboratory in a near future.

Many types of PM have been already checked in other laboratories (see for example 4.5). We
selected THORN-EMI-9351 and HAMAMATSU (R4558) 8" phototubes.

The followings characteristics have been investigated for both PM:

* Shape of single-clectron anode pulse.

* Single-clectron transit time distribution.
* Afterpulses.

* Dark-current rate.

With EMI1-9351 the time characteristic for CHOOZ regular and gadolinium-loaded
scintillators were measured with a 2%’Bi source (EC with E =976 keV).

2. Description of the electronic set-up :

For EMI-9351 we used the divider-type B® with two independent high voltage power
supplies: one for the photocathode and another one for all dynodes. So, we could vary
independently the potential between photocathode and the first dynode and the potential between
lirst dynode and the ground, according to figure 2.
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Figure 2 : High voltage divider-type B for EMI.

For EMI we varied the voltage between the photocathode and first dynode-V(pc -d1) and the
voltage between first dynode and ground-V(d1-grnd) in wide ranges, which are indicated on figure 2.
For HAMAMATSU the standard resistor divider, recommended by the firm, was used.

The electronic scheme is shown in figure 3.
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Figure 3 @ Elcctronic scheme of the measurement set-up.
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3. Single photo-electron charge spectrum.

The measurements of dark-current spectra for both PM were done after some days of
keeping PM in darkness with high voltage applied as follow : V(pc-d1) = 550 V and V(dl-grnd) =
1050 V for EMI and V = 1675 V for HAMAMATSU. The dark-current rate after 48 hours in
darkness was stable. At a threshold of 0.1 single photoelectron peak the counting rates were: for

EMI = 800 s' and 1400 ' for HAMAMATSU. The typical dark-current amplitude spectra (i.e. a
number of events plot versus ADC channel) are shown in figure 4, for EMI and HAMAMATSU,
Just for demonstration the more interesting parameter of these spectra - a peak-to-valley ratio.

One can see an evident peak corresponding single-electron noise with a noise from dynodes
in the left part of the charge distribution spectrum. HAMAMATSU behaves much worse than EMI,
with bad peak-to-valley ratio. Taking this into account, more detailed measurements were done only
with EMI-9351.

For EMI data, a fit was done to estimate the probability of emitting 2 or more photo-
electrons in the dark current spectrum. The function fitted is the sum of an exponential function
with parameters P1, P2 and two gaussians. Parameters P3, P4, P5 are for the first gaussian (P3 is the
normalization constant, P4 is the mean value and P35 is the width). P6 is the normalization for the

second gaussian with a mean value 2P4 and a widthv'2 P5. P7 is a value for the pedestal. The dark
current spectrum and the fit are presented on figure 5. We estimate the contribution of 2 or more
photo-electrons to be less than 3 % for the EMI-9351 photomultiplier in the dark current spectrum.

For the light source we used three kinds of LED (light-emitting diode) with different
colours: red, green and yellow to make sure that the single photoelectron response does not depend
on the light wave length. To obtain the shortest and fastest light pulse possible we polarized the
LED in the avalanche mode i.e. in the forbidden polarity (negative) with a generator pulse. For
some LED the slope of the characteristic is not steep enough , fortunately some present a very high
slope (few A/V), with acceptable voltage pulse (a few tens volt).

To check that the generator pulse amplitude for the LED corresponds to a single-electron
response from the PM the measurement with a long width of generator pulse (up to 450 ns) was
done to see the expected plateau in time distribution. The result is presented in figure 6, with an
amplitude distribution (top plot) and a time distribution (bottom plot). On the bottom plot,
parameters of a linear fit are presented together with the fit, which is practically a constant.

The measurements with LED collected at the same time information from the ADC (to be
sure that the PM is in the single-electron regime) and information from the TDC with transit time
distribution. We went (step by step) through wide scale of potentials between photocathode and
first dynode from 350 V up to 700 V, with a fixed potential between the first dynode and the ground
(V(dl-grnd) = 1050 V). We present for six different values of the mentioned potential the following
data: ADC distribution (fig. 7), TDC distribution for the main peak (fig. 8) and TDC distribution in
a logarithmic scale (fig. 9) to demonstrate the deposit of afterpulses. Each bin in the TDC
distributions equals 0.5 ns. Notice here, that for our measurements with a classical (start-stop)
TDC, afterpulses correspond to the situation when a photoelectron was registered by TDC not
within a main peak time window, but with some delay. In other words, sometimes a photoelectron
transit time is bigger than the mean transit time. The results of these measurcments were fitted. The
following parameters: (mean peak position/width)2 and a peak-to-valley ratio for amplitude
distribution, as well as the peak position and the width of the transit time distribution were
determined and their dependence versus the voltage between photocathode and first dynode are
plotted on figurelO.



Number of events

Number of events

50000

25000

20000

15000

10000

5000

16000

14000

12000

10000

8000

6000

4000

2000

Dark current spectrum for EMI and HAMAMATSU

- /\e— PEAK
] VALLEY
ﬁi\lllllllli\llllllllt 4‘I‘JLL!l!!I|J|E1
25 50 75 100 125 150 175 200 225
ADC channel
EM| ——HV=550V—— 1050V
N 1Hwﬁﬂﬂ%\ PEAK
et
N VALLEY
!:[Il!\‘lliitlltlll1!!‘1|\Jllll\II|

25 50 /5 100 125 150 175 200 225

ADC channel
HAMAMATSU——HV=1675V
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Figure 8 : Transit time distributions for different photocathode-first dynode potential.
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Figure 10 : Main parameters of EMI versus the voltage between the photocathode and the first
dynode:

a) (mean peak positionlwidth)2 (pedestal subtracted) : this parameter for single
photoelectron regime is dominated by the gain coefficient of the first dynode;

b) peak-to-valley ratio;

¢) main peak position in transit time distribution;
d) width of the transit time distribution.

All parameters after V(pc-d1) = 550V change rather slowly, that indicates that the voltage

between photocathode and first dynode less than 550 V is not enough to create a proper electric
field to collect photoelectrons to the first dynode. In the range 550-700 V one can see a slow rise of
the peak-to-valley ratio: by increasing V(pc-d1), we improve the collecting conditions for the
photoelectrons. We also see a systematic decrease of the position of the main peak in transit time
distribution, due to an increase of the electric field inside of the PM bulb.

4. Transit time distribution.

The main peak in the transit time distribution plot, shows the regular gaussian shape when

the voltage between photocathode and first dynode is larger than 500 volts. Using data from plot (d)
on figure10, we estimated the width of the main peak as 6 = (1.0 £ 0.1) ns.
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5. Multiple photoelectrons spectrum.

Knowing the generator amplitude corresponding to one single photoelectron response (from
the measurement with a long width of a generator pulse), we increased the LED generator amplitude
and investigated the multiple photon response of the EMI PM. The resulting plot is presented in
figure 11 with the fit of an exponential function (to describe a left part of the distribution) and 6

gaussians with ¢; = Nq; and G; = cl\fﬁ, where N= 1, 2, ... 6 (like for the figure 5). Parameters P1-P8

on the plot are : P7, P8 correspond to fit of exponential function and P1-P6 are proportional to the
probabilities of emitting 1 to 6 photoelectrons. They follow to the Poisson distribution :

n

P(n)=exp(x) o7 withx=1.94

EMI Green PD. Start from generator

i P1 0.3663E+06
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Figure 11 : Multiple photoelectron amplitude distribution.

6. Spectra with a lot of photoelectrons (linearity).

We measured also a response from the EMI PM when the number of photoelectrons is larger
than 10, by increasing the amplitude of the LED generator pulse. For each measurement we had a
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regular gaussian amplitude distribution. Fitting it we obtained a mean peak position and a width(c).

After that a parameter - (mean peak position/width)2 was calculated, which corresponds to the
number of photoelectrons emitted from the photocathode. The result of these measurements is
shown on figure 12 as the number of photoelectrons vs the mean peak position (ADC channel). One
can see a satisfactory linearity of the PM, when the number of photoelectrons changes from 10 up to
200. So we checked the possibility to use the EMI PM both in the single photoelectron regime and
with a big amount of light.
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Figure 12 : Amplitude linearity.
7. Afterpulses.

Some additional measurements were done to understand what parameters are more important

for afterpulses. For each measurement two values were calculated: N, - 18 the number of events
corresponding the main peak in the time distribution (+5 ¢ from the main peak position) and N_g, "
is the number of events within a time window 100 ns after the main time window. The ratio

main = aft
obtained for:
1) different voltages between the photocathode and first dynode (V(pc-d1)) at fixed voltage
between first dynode and ground (V(d1-grnd)=1050V) in the single photoelectron regime
(figure 13 - a);
2) different V(d1-grnd) at fixed V(pc-d1) =550V, the threshold being changed to keep it at
0.1 times the single photoelectron peak for different V(d1-grnd):
(figure 13 - b ) for the single photoelectron regime;
(figure 13 - ¢) for measurements with a mean number of photoelectrons about 10;

N . /N p Was chosen as a parameter to describe the deposit of the afterpulses. These ratios were

3) different thresholds at fixed V(d1-grnd)=1100V and V(pc-d1)=550V in the single
photoelectron regime:

(figure 13 - d) as a function of the ratio of a threshold to peak position (pedestal was
subtracted).

For fig.13-a and 13-b we added the information about measured charge (from corresponding
amplitude distributions ) to demonstrate how to renormalize the anode signal when V(d1-grnd) and
V(pc-dl) are changing.
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Figure 13 : Afterpulses versus different parameters.

The results of these measurements permit us to make the following conclusions:

1. afterpulses decrease with increasing of number of photoelectrons emitted from the
photocathode, due to the decrease of the probability to miss a photoelectron (remind here
again that we used classical TDC in our measurements);

2. afterpulses do not change dramatically when changing V(pc-dl) and V(d1-grnd) from
350V up to 700 V and from 950 V up to 1200 V respectively;

3. even in the single photoelectron regime, afterpulses practically do not depend on the
output signal threshold, at least when a threshold changes from 0.1 up to 0.6 of the mean
value of single photoelectron peak position;

4. afterpulses are mainly located within a time window of 25 ns, which is itself delayed
after the main pcak about 45 ns {(see figure 9).



8. Decay time of the scintillators.

With the EMI and another PM, HP 2020, the time parameters of scintillators (Gd-free and
Gd-loaded) were measured. A small quartz box with dimensions 8 x 8 x 50 mnt was filled with

scintillator. On the top of the box a297Bi source was placed. The box had optical contact with the
HP 2020 . The distance between the box and the EMI-PM was chosen to obtain the single electron
regime for the EMI. The amplitude distributions were measured for both PM. Signals from HP 2020
gave the trigger for EMI amplitude and time analyses. Time distributions of both PM were
measured with a LED to demonstrate that time parameters of PM are much faster than those of the
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scintillator. Figure 14 shows the corresponding ADC and TDC spectra for both PM.
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Figure 14: ADC and T'DC distributions of both EMI-9351 and HP 2020.



16

In figure 15 and 16 we present the results of time-constant measurements for both
scintillators (gadolinium-free and gadolinium-loaded).
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Figure 15: Time-constant measurements for gadolinium-free scintillator.
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Figure 16 : Time-constant measurements for gadolinium-loaded scintillator.
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A fit with three exponentials (to describe time constants of a scintillator) and a gaussian (for
afterpulses) was done for both figures. The results of the fit are (they are also presented on figures):

* For the gadolinium-free scintillator, the time constants are :
T, = (7.3£04) ns ; T, = (31.7+1.6)ns Ty = (93.6£4.7) ns

The corresponding probabilities are:
Y, =(70+4)% Y,=028%1)%. Y,;=(2+0.1)%

* For the gadolinium-loaded scintillator, the time constants are :
T, = (4.0£02)ns; T, = 242+ 1.2)ns . Ty = (96.0£4.8) ns

The corresponding probabilities are:
Y, =(72+4)% Y,=(26%1)%. Y,=2£0.D)%

Conclusions

The tests performed on EMI showed us that this tube suits well the purposes of CHOOZ
experiment, mainly due to :

a) low dark curent noise rate;

b) good single-electron response;

¢) narrow single-photoelectron transit time distribution;
d) good linearity up to 2 V for anode output signals.

Note also that the glass of the tube has a low contamination of radioactive materials. This
last point is very important for a low background experiment like CHOOZ.
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