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Abstract 

The problem of searching for possible correlation between the gamma bursts of still 
unknown origin and the data recorded with gravitational wave antennas is studied. The accuracy 
that can be obtained by averaging the gravitational wave data obtained in correspondence with 
gamma-bursts is evaluated. 
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1. INTRODUCTION 

One of the most important astrophysical phenomena still lacking an explanation, although 

it is well known to the scientific community since many years, is the occurrence of powerful 
gamma-ray bursts, lasting several seconds, observed near the Earth with spacecrafts [1]. The 
intriguing fact is their angular distribution, that is about uniform allover the sky [2]. This 
suggests that the sources be located very far from Earth, outside the Galaxy, but then the 
sources must be extremely powerful, and no convincing model has been so far proposed. The 
idea that the sources could be very far has been recently supported by the observations with the 
Beppo SAX satellite [3,4, 5], which observed the X-ray counterparts of some gamma bursts, 
confirming the importance to have experimental observations with different instrumentation. 
Other data analysis [6] support, instead, the idea that the sources be within our Galaxy. 

It is plausible that the phenomena responsible for this gamma emission be due to 
collapsed objects, perhaps to the coalescence of compact binary systems. If it is so, then the 
gamma bursts should be associated with the emission of gravitational waves (GW). Possible 
scenarios have been conceived [7], most of them suggesting GW fluxes below the sensitivity of 
the presently operating GW detectors. As matter of fact, if the source is assumed to be at a 
distance of 1 Gpc, the GW burst-flux associated with a total conversion into GW of 1 solar 
mass has amplitude of the order of h =:;.3 10-22, whilst the present sensitivity of the best GW 
antennas is h =:; 6 10-19 [8] . However, due the complete novelty of this phenomenon we 
consider certainly worthwhile to explore whether a correlation between the gamma bursts and 
the data collected with the GW detectors exists. 

From the point of view of a GW hunter, to search for correlation with gamma bursts is 
very attractive for the following two reasons. 

The first reason is that when looking for coincidences with another GW detector, one is 
using two event files, one for each GW detector. Each file consists essentially in events due to 
noise, either well behaved noise like that due to the brownian motion of the antenna or to the 
electronic apparatus, or to non stationary noise of unknown origin (seismic, electric ..... not 
always correlated with auxiliary sensors). Thus the coincidences due to GW, if any, are buried 
in a sea of accidental coincidences due to these various noises. When comparing the GW data 
obtained with one detector with the gamma bursts one can indeed rely on the fact that at least 
one file, the gamma file, includes only real signals due to the gamma bursts, as the noise has 
been completely eliminated by the gamma experimenters. The drawback point is that it is not 
sure that the gamma bursts be associated with GW emission, but certainly the statistical scenario 
in this case is much more appealing. 

The second very important reason is that the gamma-bursts occur with a rate of about one 
per day. Thus one can make an investigation on a certain period of time (say, 100 days), and 
then, if he finds a result, he can repeat the experiment with the next 100· days. This is not 
possible, in general, when looking for a rare event, like a Supernova, as the GW hunters 
mostly do with two or more GW antennas. 

In this note we describe the algorithm we shall use for correlating the gamma bursts of the 
BATSE detector with the data of the GW detectors Explorer and Nautilus of the Rome group 
and we compare it with other possible algorithms. 
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2. THE GW DATA 

The GW raw data obtained with the antennas Explorer and Nautilus of the Rome group 

have been filtered with a Wiener-Kolmogoroff algorithm [9] for obtaining the signal to noise 
ratio (SNR) of delta-like signals as large as possible. At the output of the filter we have a 
filtered signal, consisting in "samples," expressed in kelvin units with a sampling time of 0.2908 
seconds. The frequency bandwidth of both Explorer and Nautilus in 1997 is of the order of 1 
Hz, which means that the. correlation time of the filtered data is of the order of one second. It 
can be shown that the probability for a sample to have energy equal or greater than E, in 
presence of well behaved noise originated from Brownian and electronic noises both of 
gaussian nature, indicating with Teff the effective noise temperature of the GW detector after 
optimum filtering, is 

P(>E) = exp (-~) (1) 
Teff 

This shows that Teff is the average value of the sample energy in absence of signals. 
This distribution is derived from the more general X2 distribution valid when we consider 

the case of the variable 

n 
y = LX~ (2) 

1 1 

where Xi has gaussian distribution with zero mean and standard deviation 0': 

f(y) = I -y I 2¢ U(y)/n -2) I 2 e (3) 

2 n 12 anr(n 12) 

In the case of (1) we have n=2 (the p and q components of the signal), and Teff =2 0'2, 
because the energy E of a sample is given, in absence of a real signal, by the sum of the squares 
of the two gaussian variables p and q with zero mean and standard deviation 0'. 

3. THE SUM ALGORITHM 
An unexpected result obtained in studying the effect of the noise on the signal is that this 

effect can be very large [10]. In presence of signals of given amplitude s (representing the 
response of the detector to a short burst in absence of noise), the corresponding estimate r2 = 
p2+q2 is not equal to s2 but, due to effect of the noise, is a random variable with a non central 
X2 distribution probability with two degrees of freedom 

2 2 1 r2+s2 2"r2 s2 
f (r ,s ) = Teff exp (- Teff ) 10 ( Teff ) (4) 

where Io is the modified Bessel function of zero order. 
This distribution is very wide and allows the possibility to have values of the sample 

energy much different from s2. In order to give an idea on how wide it can be, ,we have 
plotted in fig. 1 calculations made using formula (4) where SNR=S2rreff. 
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We go now to make simulations for studying the problem of a possible correlation 
between the gamma bursts and measurements made with GW detectors. We consider a number 
M of gamma bursts whose beginning time we indicate with 'ti (i=l, 2,..., M). 

Searching through the filtered files of the GW data, we extract M sequences of data, each 
sequence lasting one hour centered at each 'ti time (± one half hour). Each sequence will include 
3600 / .6.t samples, where.6.t = 0.29082 is the sampling time. Thus there are 12378 samples for 
each sequence. We assign to each of these samples a time t relative to the corresponding 
gamma-burst, t = UT of the GW sample - 'ti (also in UT). 
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Fig. 1-Eq. (4) for SNR = 5, 10,20. We notice that, due to the noise,r2 covers rather wide 
intervals in spite of the relatively large SNR. 

The obvious algorithm to use is the combination of the M sequences by summing up the 
data occurring at the same relative time t, for all the values of t (or taking the average of them). 
The sum of the energies E(t0 of the samples occurring at the same relative time tk is given by 

M 
SUM(tk) = LEi (tk ) (5) 

i=l 

As an example we have simulated M=l00 gamma-bursts ('ti , i=l, 2, ... , 100) and for 
each one we have ·taken 100,000 random and independent data (at times tj, j=l, ... ,100,000). 
For each one of the M sequences we have simulated the noise samples by considering the 
energy E=p2+q2, where p and q have zero mean and gaussian distribution, each one with 
variance equal to one. 

We expect the X2 distribution as given by (3), considering that n=2M. This distribution is 
shown in Fig. 2. The agreement with the expected distribution shows that the simulation is' 
correct. 
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Fig. 2 - The noise distribution for the SUM algorithm. The continuos line is the X2 
distribution as given by (3), with n=2M=200 and variance equal to 1. 

The average value for the SUM is, as expected, equal to 200. _ 
We consider useful to give an example of the procedure we plan to use. For simplicity we 

have taken five gamma bursts and simulated' one hundred OW samples: BiG) (i=l, ... , 5; 
j=I,...,lOO) with noise TefF2. In addition we have superimposed to the noise at time j=lO, for 
each gamma, a signal s2=2, thus SNR=1. This is shown in fig. 3. We notice the strong 
fluctuations due to the noise for each gamma and that the signal at time 10 tends to emerge from 
the noise on the average. 

f superimposed signal 

o time 

Fig. 3 - An example of the procedure for M=5 gammas. The time is in arbitrary units. The top 
graph is obtained by averaging, for each time, the OW energy samples relative to the five 

gammas. 

The problem here, however, is not only to study the behavior of the SNR but essentially 
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that of studying the "tail" effects arising from the fact that the noise affects the signals at a great 
extend as shown in fig. 1. That is, we must answer to the question: how many signals, due to 
the noise alone, are greater than those due to the real signals plus noise? 

For answering to this question we have simulated GW signals and added them to the 
noise as follows. 

For each of the M sequences (each one centered at the time of a simulated gamma burst) 
we have considered 100,000 independent noise-samples A(tj) at the times tj (tj , j=I, ... , 
100,000). We have then added to the noise a signal with a given SNR at the time tl. We have 
compared the value A(tl) with the 100,000 values A(tj) and count how many times (N) A(tj) 
was equal or larger than A(tl). If A(tl) was the largest one we have N=1. The number N-l 
divided by 100,000 is an estimation of the probability that a given value A(tj) ~ A(tl) occurred 
by chance. The result of this simulation, for'M=20, 100 and 200, is shown in figA, where the 
number N is plotted versus the SNR. 

105 

104 

N 

103 

102 

101 

M=200 

10° 
0 0.5 1 1.5 2 

SNR 

Fig. 4 - SUM algorithm. N-l is the number of samples, out of 100,000 trials, with the given 

SNR, generated by the noise. N=1 means that no sample with the given SNR 


was simulated by the noise, and only the added signal was observed. 


We notice that with M=loo gamma samples we can detect signals having a SNR :::= 0.5, 
with a probability of the order of 10-4-10-5 that they might be due to noise. 

It is possible to calculate the SNR simulated with a given probability by the noise, as 
function of the number M of used gamma bursts. This is done making use of Eq. 3 with 2M 
degrees of freedom. The result of such a calculation is shown in Fig. 5 for probabilities of 10-5 

and 10-3. 
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Fig. 5 - The SNR obtained by chance, with probabilities of less than 10-5 and 10-3, from a 

given number M of gamma samples. 

From the figure we deduce that, already with M=10 gamma bursts, a signal with SNR 
near unity can be detected with very good probability that it is not due by chance to the noise. 

One way to present the result of the SlTM algorithm applied to GW data associated to M 
gamma bursts could be the following. We calculate the sum over M as defined by (5), then we 
calculate the X2 probability according to (3) that such a value SUM( tj) could have happened by 
chance. We plot this probability and the SUM( tj) as function of the time relative to the gamma 
burst. 
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Fig. 6 - The SUM and the relative probability for a peak to have occurred by chance with 

M= 1 00 gamma bursts as function of time. Signals, with given SNR, were superimposed to the 

noise at various times: (a) SNR=0.2 at time=100, (b) SNR=O.3 at time=200, (c) SNR=O.4 at 


time=300. 


An illustration of this procedure is given in Fig. 6 for M= 1 00 gamma bursts with 500 

--~---
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samplings, where we have added signals to the noise as explained in the figure caption. 
We notice that with M= 1 00 gamma bursts the detection is very good already for signals 

with SNR=O.3, as seen before in fig. 4. 

It must be clear, however, that this probability estimation is based on the hypothesis that 
the noise be gaussian. A powerful mean to estimate the probability that does not depend on any 
model is to count how many peaks have amplitude equal or larger to that of the peak we are 
interested (experimental probability). But, even in this case, the probability considerations 
apply, for definition of the probability, only to those peaks occurring at times which have been 
established "a priori". These times can be established by theoretical models, or by previous 
experimental analysis. 

4. THE MINIMUM ALGORITHM 
The MINIMUM algorithm has been sometimes used among the GW researchers, because 

it is the algorithm that reduces the noise most. We consider therefore worthwhile to look into 
this problem. 

The MINIMUM algorithm consists in choosing, for each relative time t, the minimum 
among the M samples. The idea is the following: suppose that a real GW signal of energy Es 
occurs always at a time t=.dt after the beginning of a gamma-burst. Then we expect that the 
minimum sample energy among the M samples at the time t=.dt have energy of Es plus 
(statistically) the noise, while the other samples at the other times, due to noise alone, have 
energy equal, on the average, to Teff I M. This last statement is valid because the chance to 
have, due to the noise alone, M simultaneous (in the relative tirrie coordinates) samples, each 
one with energy equal or grater to Es, is {exp(-EslT eff)}M = exp( -Es I[Teff /M]). In this way it 
seems possible to enhance the signal with respect to the noise. 

For the MINIMUM algorithm, using simulated data, we get the noise distribution shown 

in Fig.? 
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Fig. 7 - The noise distribution for the MINIMUM algorithm with M=100. The average 

noise is equal to T eff I M, as expected. 
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The average noise reduces, as expected, to Teff/100 = 0.02. 
But we have now to estimate how many times the noise alone can simulate a signal with a 

given SNR when using the MINIMUM algorithm. Applying a procedure similar to that used 

previously for the SUM, whose result has been shown in fig. 4, we get for the MINIMUM the 

result shown in fig. 8. 
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Fig. 8 - The number N for M=100 versus the SNR of the signal for the MINIMUM 
algorithm (compare with fig.4). 

We notice that the MINIMUM algorithm is subjected to large fluctuations. This is due to 
the strong effect of the noise on the signal, as shown in Fig. 1. As a consequence of this strong 
effect, which produces large fluctuations, the minimum signal among the M data streams has a 
great chance to be very small. Therefore, in spite of the large reduction of the noise (TefflM), the 
MINIMUM algorithm turns out to be in practice not usable. This conclusion remains valid even 
if the second or third minimum is considered. 

5. FINAL REMARKS 
The principal idea at the basis of our search for correlation of GW signals with gamma 

bursts is, essentially, the consideration that common features in the time behavior of the GW 
data associated to gamma bursts could exist. Thus the superimposition of several streams of 
GW data, by summing them up (or taking their average), should enhance this possible features 
because of the reduction of the noise. 

It might be worth to mention that the average algorithm is also often used in many other 
research fields where, in a situation similar to that of our gamma-GW, a correlation is searched 
between measurements and excitations produced at given times, like, for instance, in the 
analysis of bioelectric signals (evoked potentials). 

In addition to the previous considerations, the SUM is more convenient also for the very 
likely cases when, even if a correlation exists, it could show up in a different way for each data 



-10­

stream associated to each gamma burst. Let us suppose that a correlation exists at time t* only 
for a fraction of the M streams of data. In these cases the MINIMUM algorithm would choose 
the smallest E value related to a gamma burst when no correlation exists, in this way wiping out 
a possible effect due to the rest of the gamma bursts. This problem arises also for other 
algorithms like, for instance, the PRODUCT algorithm which would give a null value by the 
presence of a null value among the M streams of data. 

One reasonable idea is to use of the MEDIAN algorithm in the place of the SUM. This is 
because the median is less affected by a noisy value than the sum. But the MEDIAN algorithm 
works out only when the correlation at the same time t* exists for most of the M streams of 
data. If the correlation exists only for, say, 20% of the streams it is evident that it would not 
show up when the median is taken, except for a minor effect. Instead the SUM algorithm could 
reveal a correlation even if it occurs for a fraction of the M streams. 
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