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Abstract 

An unorthodox insight into the structure of the geometrical Chou-Yang model 
explains the experimentally observed paradox of elastic diffraction of high energy 
hadrons without mUltiple dips. It is pointed out that the shadow scattering, away 
from the forward peak, is governed by small values of the coupling strength. 
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The behaviour of elastic differential cross-section in high energy hadron scat­

tering does not agree with standard ideas about collision of hadrons. In particular, it does 

not agree with the geometrical models [1,2] of scattering that were supposedly patented 

to function at high energies. High energy hadron-hadron scattering is strongly absorptive 

which means that the available energy goes mainly into the production of a very rich set 

of inelastic final states while the direct two-body channels are suppressed. Yet, as a con­

sequence of unitarity, substantial elastic scattering still takes place through a feed-back 

from the inelastic channels. This feed-bac~ process is referred to, by analogy to the sup­

pression of the amplitude of light waves by opaque or semi- transparent objects, as shadow 

or diffraction scattering. According to this optical analogy, diffraction should be associ­

ated with multiple dips in elastic differential cross-section. But experiments have, so far, 

seen no mUltiple dips. There is hardly any dip in the p - pelastic differential cross -section 

at Tevatron [3] ( vs=1800 Ge V) and SPS collider [4] (VS=546,630 Ge V) energies while 

elastic p - p and p - pcross-sections at ISR [5] energies (20 ~ VS ~60 GeV) have only 

one dip. When critically examined, the elastic differential cross-sections of lightest nu­

clei [6,7] reveal at most one unambigous dip. Taken together, the experimental data con­

stitute a puzzling problem, that is of a diffractive phenomenon which does not have the 

supposedly well established characteristcs of diffraction, familiar from optics and wave 

mechanics. 

The puzzle would be resolved if there could be diffraction in the sense of unitarity­

driven shadow scattering, which is not necessarily accompanied by multiple dips. This is 

what the experimental data seem unambigously to be suggesting. We claim in this note 

that this is indeed the case also theoretically. It will be shown that structures in differen­

tial cross-sections depend crucially on the effective strength of the interaction governing 

the scattering process and, correspondingly, on the characteristic length scales involved. 

Optical-like diffraction with its characteristic forward peak and multiple dip structure is 

governed by long distance dynamics and large values of the effective coupling strength. 

Shadow scattering in hadron-hadron collisions at medium and large momentum transfers, 

on the other hand, is governed by short distance dynamics and small values of the coupling 
strength. 

We reached these conclusions by re-examining geometrical models and studying 
them as exact mathematical formulations. With this purpose in mind the model param­

eters are to be free to vary in all possible ways and not only within the bounds allowed 

by a reasonable fitting to the experimental data. The basic ingredient of the geometrical 

models is the real, dimensionless opacity function n(b) which depends on a relative impact 
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parameter b of interacting hadrons and appears in the eikonalized scattering amplitude: 

T(q) = (2:)2 Jd
2
beiq.bT(b); T(b) '= 1 - exp[-n(b)], (1) 

q = /It Ibeing the momentum transfer in the centre-of-mass system. This amplitude can 

be reduced, under an implicit assumption of the rotational symmetry of the opacity O(b), 
to the one-dimensional Bessel transforms of integer order [8]: 

T(q) = ~ tX> dbbJo(qb)T(b) = _~ tX> dbb2J1(qb) dT(b). (2) 
27T Jo 27T Jo qb db 

The second form of (2), valid for T(b) vanishing at b -+ 00 faster than b-1/2, makes it 

clear that in the geometrical models elastic diffraction takes place mainly at the edge of 
the absorbing profile T (b). 

The optimistic dynamical conjecture was that the opacity can be expressed in terms 

of hadronic shapes known from other experiments, e.g. in the Chou-Yang model [2] it is 

assumed that the Fourier transform ofO(b) is proportional to the product of the electromag­

netic form factors of the colliding hadrons FH1 (I t I)FH2 ( It I). Rather than from experiment, 

for simplicity of illustration, we take these form factors as the extrapolations to all values 

of It Iof the asymptotic quark model behaviour: 

(3) 


where VH is the number of valence quarks in the hadron H, m being a mass scale param­

eter. For a pion (VH = 2) this gives a single pole form factor and for a proton (VH = 3), a 

dipole. The opacity function then reads 

n(b) =ghv(mb), hv(mb) = r(v~ 3) (~b) nu-3 KV_3(mb) (4) 

where 9 =0(0) is a dimensionless coupling parameter, v =VA +VB and K v ( mb) is the 

modified Bessel function [8]. For simplicity, the mass scale m in the two hadronic form 

factors was taken the same. 
The predic~ions of the Chou-Yang model with the opacity (4) are far richer than it 

had been usually recognised. In its standard phenomenological application [9], the propor­

tionality constant g(s) between the opacity of the hadron and the Fourier transform of the 

square of its form factor, was simply adjusted to the experimental value of the total cross­

section O"tot(s) = 87T 2ImT(s, t = 0). But 'when t11:;s experimental constraint is relaxed, 

one finds that the model can accomodate a surprisingly wide range ofbehaviour of the elas­

tic differential cross-section dO"(s, t)/dt. Depending on the value of the coupling constant 
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Figure 1: Plots of the elastic differential cross-section for various values of the coupling 
constant g: 0.50,0.90,0.95 (dotted lines), 0.96, 1.50 (dashed lines), 1.20,2.0 (solid lines). 
For description - see the text. 
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g, the dO'( s, t) / dt may manifest mUltiple dips,just one dip (or a single minimum) or no dips 

(or minima) at alL This is illustrated in Fig.1 where the proton-proton (v = 6) differential 

cross-sections are plotted for various values of 9 and the fixed value of m 2=0.71GeV 2 • 

The coupling constant 9 acts effectively as a control (or order) parameter. There exists a 

critical value ge = 0.96 independent of m for which one has just one dip: For small values 

of the coupling 0 < 9 :5 0.50, the differential cross-section has neither dips nor maxima 

and minima. A shoulder-like structure that can mimic a minimum appears for some values 

< ge (e.g. 9 = 0.90). As 9 increases towards ge, the scattering amplitude develops a min­

imum (e.g. at 9 = 0_.95) which gets deeper and deeper becoming a zero of the amplitude. 

In fact, this zero is a double one. As 9 increases away from gc, at once two zeroes appear. 

The left zero, with increasing g, always moves towards lower valu~s of Itl. The right zero, 

instead, first goes in the opposite direction but when 9 exceeds the value 9 = 1.50, it turns 

back and further the two zeroes follow the same way. At another critical value 9 = 3.20 

the third zero (also double) appears in the differential cross-section. 

It is important to understand how the structures in the elastic differential cross-section 

arise when the coupling 9 increases. Qualitatively, it follows from the first form of (2) that 

since exp[-!1(b)] falls off exponentially with g, then large values of 9 allow for more os­

cillations of the Bessel function Jo(qb) in the interval 0 ~ b < 00. The many oscillations 

(growing with the momentum transfer q) in the integrand determine the mUltiple dip struc­

ture of the differential cross-section. This dip structure slowly disappears as the effective 

number of the oscillations is reduced when 9 decreases. A more quantitative insight into 

the geometry of elastic diffraction can be gained from studying the derivative of the scat­

tering profile which appears in the second form of (2). We have from (4): 

dT(mb) = -exp[-!1(mb)]O(mb) ~<v_4(mb) . (5)
d(mb) R nu-3(mb) 

These derivative scattering profiles are plotted for various values of 9 in Fig.2. One ob­

serves that the stronger coupling 9 the closer is the profile T (g, mb) to a sharp-edged ab­

. sorbing disc. Although the tail of the opacity !1(b) at large b is controlled by the mass 

parameter m, the disc radius and the sharpness of its edge are determined by the coupling 

g. In fact, the exponential factor in (5) cuts off the low bpart of the 0 (b) distribution, do­

ing this more effectively the greater is the value of g. At the same time, the large value 

of 9 induces an increase of the heigth of 0 ( b). In the limit 9 -+ 00 the scattering profile 

T(g, mb) would approach a step function 9(R - b) which corresponds to scattering by a 

sharp, black disc of radius R. This can also be seen in momentum space upon taking the 
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limit 9 -t 00 directly in the first form of the scattering amplitude (2) 

T(tj g, m) = i roo dh du(h) u(h)Jo[.jitlu(h )]9(h(O) - h)[1 - e-gh(u)], (6) 
(27r )m2 10 dh m 

u( h) being the function inverse to the function h( u) =hv (mb). The leading term of the 
gh

right-hand-side for 9 -t 00 may be estimated by observing that then 1 - e- ~ 1 for all 

h ~ l/g. Thus 
i lo'U(l/g) Viti

T(t· 9 m)g-+oo - duuJo(-u) (7), , f'J m 2 0 m 


where u(l/g) is the value of u satisfying h[u(l/g)] = 1/g. This means that for large but 


finite g, T(t) becomes the Airy-like scattering amplitude RJ1( qR)/q from a sharp absorb­

ing disc of radius R(g) = u(l/g)/m. 
The number ofdips appearing in the differential cross-section depe1).ds thus crucially 

on the strength of the coupling g. Another way of uderstanding this follows from observa­

tion that it i~ the coupling parameter 9 that governs the decomposition of the scattering am­

plitude into a series of multiple collisions. In fact, expanding the exponential exp[-S1(b)] 
in Eq. (1) one obtains upon integration over the impact plane the following expression for 

the S-matrix (S = 1 + iT) of elastic scattering [10]: 
00 

S(q) = e{n) 2: (_I)n Pn8(2)(if - ifn) (8) 
n=O 

This formula describes the distribution of all possible partitions of the momentum transfer 

if. It is governed by the Poissonian Pn = e-{n)(n)n In! with the mean value < n >= 
g. The terms of the multiple scattering series (8) alternate in sign. Only for very small 

values of the coupling constant 9 « 1 the scattering amplitude is a positive function of the 

momentum transfer. But for values of9 close to unity and larger, this amplitude necessarily 

has zeroes which give rise to the dips in the differential cross-section. 

The coupling 9 is not the only variable parameter in the Chou-Yang model. There 

is also the mass scale parameter m in the form factor (3). Having relaxed the condition 

which fixed g(s) to the experimental value of the total cross-section O'tot( s) one can, in the 

same spirit, let m to be a free parameter. Strict commitment to the fact that FH(t) should 

be the electromagnetic form factor extracted from experiments is then not required. There 

is ambiguity enough, concerning the question which form factor or combination of form 

factors [11] is to be used in (3), that justifies our attitude. It turns out that the shape of 

the elastic differential cross-section is independent of the mass scale parameter m. That 

is, variations in m at fixed 9 do not change the behaviour of dO'(s, t) / dt e.g. from having 

no dips to one with multiple dips or vice versa. The positions of the dips, of the max­

ima and minima are, on the other hand, very sensitive to the value of m. As m increases, 

http:depe1).ds
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Figure 2: Plots of the derivative of the scattering profile T (mb; g) for various values of the 
coupling g= 0.2,0.5,0.9, 1.2, 1.5 (dotted lines), 2.0, 3.0,4.0, 6.0, 10.0, 20.0 (solid lines). 
The greater values of 9 correspond to larger heigths of the maxima. 
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these positions move towards the origin (t ~ 0) with a corresponding decrease not only in 

the value of du( s, t) / dt but also in the overall value of the integrated elastic cross-section 

uel ( s) and the total cross-section utot ( s). These total cross-sections scale with m ( s) - • A 

value of m(s) = mo(s) can therefore be found to match the position of the minimum in 

du( s, t) / dt with the single dip-like structure in the experimental cross-section. The total 

cross-section utot ( s), the integrated elastic cross-section uet ( s) and the slope parameter 

f3 (s) of the elastic differential cross-section at t = 0, are increasing functions of 9 but de­

creasing functions of m. Values of Utot in the range of the experimental ones (e.g. in p - p 

and p - p at ISR and SPS energies) correspond to values of g( s) > gc and, therefore, to 

multiple dips in du( s, t) /dt. They correspond too to values of m(s) < mo(s) and hence 

to positions of the single dip-like structure in du (s, t) / dt far away from the experimental 

one. It is, therefore, not possible to reconcile the experimental values of Utot( s), Uel( s) 
and f3 (s) with the absence of mltiple dips in du( s, t) / dt and with the position of its single 

dip-like structure in the model. Adjusting g(s) around gc to get the experimental shape of 

du(s, t)/dt and rn( s) around mo(s) to get the position of the single dip produces a value of 

du(s, t) many orders of magnitude smaller than the experimental one. The experimental 

values of utot ( s) ,uel ( S ), f3 (s), on the one hand, and the shape and structure of du (s, t) / dt, 
on the other, constitute therefore rather severe constraints, particularly because getting the 

one tends to ruin the other. 
Despite of the failure in fitting experimental data the Chou-Yang model has, as we 

have seen earlier, other and pro founder merits. The model does not predict only multiple 

dips, characteristic of familiar optical diffraction. It has an astonishing virtue of accomo­

dating all kinds of behaviour of the elastic differential cross-section ..The coupling con­

stant 9 of the model is much more than just a fit parameter. If the appearance of dips is 

interpreted as a classical-like phenomenon, then 9 operates as a kind of geometrical size 

parameter in a way remarkably similar to the inverse of Planck's constant Ii. This is rem­

iniscent of the role of Ii in semiclassical approximations to quantum scattering on which 

geometrical models are essentially based. Thus 9 -t 00 corresponds to large distances in 
much the same way as Ii -t 0 corresponds to a ....classical macroscopic regime. 

We would like to point out that geometrical models have been used, so far, only in 

this 'macroscopic' limit giving rise to optical-like diffraction with its characteristic multi­

ple dip structure. In fact, the basic assumption of these models is that the incident particle 

is way out of the target before the effects which it induces in the latter take place. This 

means that the projectile hadron sees the target, essentially , as a geometrical obstacle of 

given finite size. In other words, the geometrical models, as usually applied, include an 

implicit assumption of asymptotic sharp-edged disc (black or grey) scattering at large dis­

tances. 
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On the other hand, a lot was gained simply by the knowledge how the limit 9 --1- 0 
operates in the Chou-Yang model. This limit corresponds to n --1- 00 , which means a 

regime where quantum effects are not at ail negligible. More than just classical wave-like 

properties could emerge in such a limit. In this 'submicroscopic' limitthe absorbing disc 

scattering, operative at large distances, will be replaced by point-like scattering at short 

distances, i.e. inside the geometrical obstacle. It appears clearly from our previous dis­

cussion that diffraction in high energy hadron-hadron collisions, understood as a unitarity 

driven shadow scattering, would rather be influenced (away from the forward peak) by 

short distance dynamics connected to small values of the coupling strength. This prompt 

us a useful distinction between two sources of elastic diffraction: the geometrical diffrac­

tion on an absorbing hadronic bulk, considered as a shadow of non-diffractive transitions, 

and the short-range dynamical diffraction, appearing as the unitarity effect from interme­

diate diffractive transitions. Such a two-component model was constructed by one of us 

in a recent publication [12] and applied succsessfully to elastic scattering and inclusive 

inelastic diffraction of high energy hadrons. 
This communication resulted from our collaboration with Dr. E. Etim. His contri­

bution is gratefully acknowledged. This work was partially supported by the Polish Com­

mittee for Scientific Research (K B N) and the Italian Institute for Nuclear Physics (I N F 

N). 
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