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ABSTRACT 

'Ye con~truct models of gauge theories renormalizable by power counting in four dimen­
SIons, wIth gauge fields composite of bosonic or fermionic constituents. They are obtained 
by a regularization of Cpn-l models where the constraint on constituent fields is replaced 
by a constraint on expectation values. 

In this paper we present a generalization of C pn-l models [1] in their non abelian 
versions [2] ,constructing models of gauge theories renormalizable by power counting in 
four dimensions,with gauge fields composite of bosonic or fermionic constituents.The latter 

, will be referred to as fermionic C pn-l models. 
One obvious motivation is the conceptual economy of reducing the number of funda­

mental fields.But a complementary motivation is that gauge fields composite of fermionic 
fields are expected to give rise to softer divergences than fundamental gauge fields,a per­
spectiveespecially relevant to quantum gravity if in such models a, phase of unbroken 
symmetry exists. We will not investigate this point, but we will keep in mind that in this 
connection the constituent fields can be just auxiliary fields which need not be identified 
with physical particles or "physical constituents" like quarks. They can be for instance 
scalar fermions and/or have scaling dimensions different from the canonical ones.We will 
actually assume scaling dimension zero to have renormalizability by power counting. 

·This work is carried out in the framework of the European Community Research Program"Gauge 
theories,applied supersymmetIy and quantum gravity"with a financial contribution under contract SCl­
CT92-0789. 
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To define composite fields we use a new lattice regularization [3] where the gauge fields 
are noncompact, a feature which is essential to deal with fermionic constituents. Since we 
will need the basic formulae of this regularization anyway, we will briefl composite gauge 
fields and we will discuss renormalizability by power counting. Finally we will mention how 
a proof of reflection positivity can be given.Such a proof,ensuring a quantum mechanical 
interpretation, is especially important dealing with composites. 

We will confine ourselves to the case of non abelian Gpn-l models,both bosonic 
and fermionic, with SU(2) local invariance, but most of our results can be extended 
to SU(N), N > 2 and to the abelian case.The lagrangian density of the bosonic models 
in the continuum can be written 

N/ 

£ = L L(V~Ah)+V~Ah' (1) 
h=l ~ 

where the covariant derivative 

(2) 


is defined in terms of the composite gauge field 

N/ 

A#Ja = L AtUa8~Ah - 8~AtUaAh. (3) 
h=l 

Ah are constituent fields in the fundamental representation of SU(2), subject to the 
constraint 

N/ N/ 2 

LAtAh = L L AhaAha = 1, (4) 
h=l h=l a=l 

Nt being the number of flavours. 
Due to this constraint 
i) it is not possible to write a mass term for the constituent fields 
ii) the expression of the lagrangian in terms of independent fields involves an infinite 

power series arising from the solution of the constraint 
iii) it is not possible to have fermionic constituents. 

We will be able to avoid such limitations by regularizing the model in such a way that . 
the constraint on the fields is replaced by a constraint on expectation values. 

Fermionic 0 p(n-l) models have actually been considered by Amati et aI. [4],but their 
analysis meets with a. difficulty due the fact that 8-functions of Grassmann variables do 
not have all the properties of ordinary 8-functions, as discussed below. 

In the n'on compact lattice regularization we are going to use the covariant derivative 
IS 

1 
V~(Z)A(Z) = D~A(Z + JL) - -A(Z), (5) 

a 

where JL is the unit vector with components JLv = 8~v and 

(6) 
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is the parallel transporter expressed in terms of the gauge field A", and the auxiliary field 
VI-" Under gauge transformations 

(7) 

(8) 

for gE SU(2). 
The transformations of A", and V", are 

. . 
- i[A"" 8] + a(V", 6.",8 + ~[A"" 6.",8]) 

1 
- -'2aTrA", 6.", 8, (9) 

where 8(,J are the gauge parameters. We see that for a ~ 0, they do not reproduce gauge 
transformations. These can be recovered if the auxiliary field V", acquires a nonvanishing 
expectation value 

1 
< V", >=-, (10) 

a 
so that defining the shifted field 

1 
W",= --V"" (11) 

a 
we have 

c5A", = 6.",8 + i[A"" 8] - a(W", 6.",8 - i[A"" 6.",8]) 

i 
c5W", = SaTrA", 6.", 8. (12) 

In conclusion a non compact regularization can be constructed if a) spontaneous breaking 
of GL to iGL' can be ensured by a suitable potential and b) the auxiliary field decouples 
in the continuum limit. 

The strength and the Yang-Mills lagrangian density can be written in analogy to the 
continuum 

F",v(~) = ~[D",(z)Dv(~ + JL) - Dv(~)D",(z + v)] (13) 
t 

. ~YM = !,8L: F,!,(~)FJ..CV(~). (14) 
8 ""V 

The possibility of enforcing conditions a) and b) is related to the existence of the other 
invariant 

1 + 1 2 2 2 W. (15)t", = -Tr[D",D", - -2] = A", + W", - - I-"
2 a a 

The total action will contain an arbitrary function of this invariant. This function is 
determined [3] by some requirements including a divergent mass'" 1/a for W", to ensure 
its decoupling . The resulting total lagrangian is 
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(16) 


The minimum of the potential occurs at V~ = ±1/a,namely W~ =O,-2/a.Since the 
second root has been shown to add only unessential complications the conditions a) and 
b) are satisfied. 

It is "{orth while mentioning that in the limit I -+ 00 we recover Wilson's definition. 
The scaling properties of this regularization have been studied perturbatively.lt has 

been found that in the continuum limit I -+ (3, so that the fixed point is the same as 
in Wilson scheme.A Monte Carlo calculation has shown that also the Wilson loop has 
essentially the same behaviour. 

This regularization is suitable to put C pn-l models on the lattice .This can be ac­
complished by the following definition of the parallel transporter 

DJ.I.Cl{3 
Nt 1 _ _
L 2a [Aha(x)Mhk Ak{3(X + JL)

h,k=l ' 
±Aha(x )QhkAk{3( x + JL) 
+Xha(x )Nhle Ak{3 (x + JL) 
±Aha(X )PhIe XIe{3( x + JL)] (17) 

where 
(18) 

,and the ± sign refers to bosonic/fermionic constituents resp.In the latter case if there are 
spinor indices they are included in the flavour index h. 

The above is the most general expression compatible with the gauge transformations 
(B).We must now constrain the matrices M,Q,N and P in such a way that A~ and W~ be 
hermitian and reflection positivity be satisfied. 

The gauge and auxiliary fields resulting from eq.(17) are 

1 
Apa(X) = 2a [A+(x)MO'aA(x + JL) 

-A+(X + JL)QO'aA(x) 
+A+(x)NO'a0'2A*(X + JL) 
+:\(x'+ JL)P0'20'aA(X)] 
1 

V~(x) - 4a [A+(X )MA(X + JL) 

+A+(X +JL)Q,\(x) 

+'\+(X)N0'2A*(X + JL) 


-:\(x +JL)P0'2A(X)] (19) 


where the constituent fields have been ordered in such a way to get rid of the ± sign. 

http:perturbatively.lt
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Hermiticity of A#4 and W#4 requires 

Q = M*, P = -N*, (20) 

while to ensure the condition 
D-#4(X) = Dt(x -p,) (21) 

related to reflection positivity it sufficient that 

M = M+, N = ±N for fermions/bosons. (22) 

Taking the above conditions into account 

(23) 

where 
(24) 

So far we have constructed a parallel transporter [5] in terms of constituent fields,but 
to have a gauge theory we must impose the condition (10).This can obviously be done 
only in the context of a definite lagrangian that we now assume to be £G( we could as well 
have chosen the lattice transcription of the C pn-l lagrangian). At this point we must 
distinguish between the bosonic and fermionic case.In the bosonic case condition (10) can 
be imposed at the semiclassical level. For constant constituent fields it reads 

r = 4. (25) 

Such a condition follows from the potential of £G 

~i2 [( :. )2 - 1]2 

a4 4 
(26) 

which has in fact the degenerate minima r = ±4 .We recover a constraint on the fields 
for i ~oo,where the exponential of the last term of £G becomes a 5-function. 

Let us now come to the issue of renormalizability by power counting. This requires that 
the lagrangian have a quadratic term in the constituent fields and that these fields have 
scaling dimension zero.For the lagrangian to contain a quadratic term it is necessary that 
r contain a constant. This can be easily obtained. Taking advantage of the hermiticity of 
M we can perform on the constituent fields a transformation such that 

Nt 
r =E €h4>t 4>h + 4>+ N'0'24>* + ~N'+ 0'24> (27) 

h=l 

where €h = ±1 and N'is the transformed of N. Next we introduce the real and imaginary 
parts of the new constituent fields 



- 6 ­

(28) 


and fix the gauge according to 

(29) 

This gauge fixing shows that the case of one single flavour is trivial because AI-' = O. 
Assuming f1 =1 we shift the ~eld <PU1 

<PIll = V2 + p (30) 

getting 

Nt 

r - 4 + 4V2p + 4p2 + 2 L: fh<Pt <Ph 
h=2 

+<P+ N' (1'2<P* + ~N'+ (1'2<P, (31) 

It remains to give the constituent fields scaling dimension zero. This can be accom­
plished by including in the lagrangian a term with a forth covariant derivative 

Nt 

£B4 = L:{V2Ah)+{V2Ah) (32) 
h=l 

. where 

(33) 


The situation is different for fermions.First of all a condition on the fields cannot be 
imposed at the semiclassicallevel,neither by ~se of a 6-function, because a 6-function of 
Grassmann variables with all the properties and representations of ordinary 6-functions 
does not exist.In the case of one single flavor,for instance,the function 

(34) 


acts as a 6-function on powers of A+ A but not on arbitrary functions of this argument nor 
with respect to integration over v. This is at the origin of the diffieulties in the mentioned 
attempt [4J to relate fermionic bilinears to bosonic fields.In the anticommuting case it is 
only possible to impose a condition on expectation values,and to impose the condition 
(10) we can include in the lagrangian a term of the form (34). 

As far as renormalizability is concerned, an expression corresponding to Eq.(31) does 
not exist, so that the lagrangian has no quadratic terms in the constituent fields. A 
possible way out,which,however,remains to be investigated, is to add a term 

http:fields.In
http:exist.In
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CF4 = OAhOAh (35) 

where 0 is the euclidean laplacian on t'he lattice and 

(36) 

are new gauge invariant variables. CF4 is quadratic in the A-fields that we now take as 
fundamental fields according to the integration rule 

(37) 


We can adopt such a rule since the only non vanishing contributions to the integration 
come from terms AhAh.For this reason we can perform the change of variables (36) at any 
nonvanishing order of perturbation theory even though we cannot express LG in terms of 
the new variables. 

Let us finally come to the issue of physical positivity. This requires that for any poly­
nomial 'P of the D I-' at positive euclidean times 

< 0'P'P >~ 0, (38) 

where 0 is an operator which performs complex conjugation and euclidean time inversion 

0D4(X) = D4(8x - e4) 

0D lc (x) = Die(8x). (39) 


In the above equations e4 is the unit vector in the euclidean time direction and 

(40) 

The proof of Eq.(38) can be splitted into two parts.First one gives the proof for the case 
where the gauge fields are elementary. This is most conveniently done using (with minor 
changes)the formalism that Mack[6] has developed in the framework of the colordielectic 
theory where also non unitary link variables appear. Then one shows that the action of e 
on the constituent fields can be defined in such a way that equations (39) are satisfied.It 
is easy to check that this happens for the natural definition 

(41) 

by w hi ch also Eq. (21) is fulfilled. 

I wa~t to thank C.M. Becchi for calling my attention on the relevance of the non 
compact regularization to the models of ref. [4] and to G.Veneziano for a discussion of his 

work. 
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