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ABSTRACT 

The starting point in modeling electron and hole transport in semiconductors is the 

Boltzmann equations. In these equations, separate tenns account for electron drift and 

scattering. The drift tenns model the x - Ie motion of free (ballistic) electrons in a crystal 

lattice, with coefficients describing the electron velocity and applied force given by the 

semiclassical equations. The semiclassical equations, in turn, are the leading order 

reduction of the Schr6dinger equations for a given crystal lattice, where the field is assumed 

to be slowly varying. As semiconductor devices. become smaller, however, next-order 

corrections to the semiclassical equations must be taken into account in the Boltzmann 

equations. We derive these corrections and show their effects on the transport of electrons 

in semiconductors. In particular, we show that the Einstein relations are no longer valid in 
the high field limit, which may resolve the discrepancy. between previous theory and 

experimental evidence. 



Introduction 

Understanding the quantum transport of carriers in crystals under spatially- and time
varying electromagnetic fields is necessary to accurately model the characteristics of modern 
and future micron and submicron semiconductor devices.1

,2 Here we describe our analysis 
of collisionless electron transport in the high-field regime. In particular, we derive the cor
rections to the semiclassical equations where the applied fields are no longer weak and show 
how it affects the transport of carriers when effects of scattering are not ignored. 

Drift of carriers (electrons or-holes) in semiconductors are driven by two different fields. 
One is due to the periodic potential arising from the atoms which make up the crystal 
lattice. The other is due to applied external fields and spatial distributions of dopants, 
electrons and holes, and may be spatially inhomogeneous and time varying. Where the latter 
inhomogeneous fields are small, one may derive the well-known semiclassical equations of 
motion for electrons3 (for notational simplicity, we refer to electrons only; however, analogous 
expressions may be written for holes for all expressions which appear in this text), 

~x - v = iVa.e:(k), (1a) 

(1b) 

Here, the applied force on the electron F is the classical Lorentz force. Quantum effects 
in the electron motion are expressed soley by the group-velocity of the electron v being 
dependent upon the n-th band energy e: of the homogeneous semiconductor material. The 
band energies are the eigenvalues of the Bloch electron eigensolutions {'Un, e:}"ez of the 
Schrodinger equation for the spatially-periodic crystal potential. The velocity of the electron 
here is in fact not directly dependent on the applied force. 

These semiclassical equations describe the trajectory of an electron in the position
momentum (x, k) space, and are the leading-order asymptotic results from the Schrodinger 
equation when the external fields are sufficiently weak (Note that the position and momen
tum variables have been appropriately scaled such that Heisenberg's uncertainty principle is 
not violated). Since the scattering of electrons by collisions with other electrons, holes, im
purities, and phonons have been neglected, no jumping of electrons is allowed in (1) between 
different bands or between two separated points of the same band. Thus, the semiclassical 
equations accurately describe electrons traveling a distance short enough such that no such 
scattering effects are encountered. 

The effects of electron scattering are taken into account by the Boltzmann equation, 

(2) 

where g = get, x, k) is the electron density. The left side of this equation describes the drift 
or streaming of the electrons as given by the semiclassical model. The scattering operator, £', 
on the right side, accounts for intraband and inter band tunneling caused by collision events. 

Where the mean free path for £, is short and the force F is weak (and excluding the 
magnetic field), an asymptotic expansion (the Hilbert expansion) may be used to reduce the 
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Boltzmann equation to the Basic Semiconductor (or van Roosbroeck) Equations, 

(3) 

where n = J9 d3k is the spatial distribution of the electrons. Electron diffusivity D and 
mobility J.£ are determined by the scattering operator and satisfy Einstein's relation, 

D (4)
J.£ = ksT' 

Furthermore, Hagan, Cox and Wagner4 have derived asymptotic reductions of the Boltzmann 
equation where the force F is no longer taken small. In their high field semiconductor 
equations, the electron diffusivity and mobility become nonlinear functions of F. Even in 
this limit, Einstein's relation is still satisfied. 

There is, however, a discrepancy between Einstein's relation and experimental obser
vations2 at high fields. Such discrepancy may arise from the field dependence of the scattering 
operator C. We have shown5 that such discrepancy may also arise from the neglect of higher
order terms in the semiclassical equations (1). To illustrate, the small parameter used, in 
asymptotically reducing the Boltzmann equation to the Basic Semiconductor Equation, is 
given by the ratio of the mean free path to the typical device size. For micron-sized devices, 
this ratio is on the order of Ef"toJ 10-2 • In asymptotically reducing the Schrodinger equation 
to the semiclassical equation, the small parameter used is the ratio of the crystal lattice 
constant (the typical distance between atoms which make up the crystal) and the typical 
(macroscopic) device size, which is on the order of E f"toJ 10-'. Since the Basic Semiconductor 
Equation (3) is valid to O(f2),' the next-order corrections to the semiclassical equations do 
arise as next-order corrections to Einstein's relations. In fact, since such corrections depends 
upon the Lorentz force, the neglected terms are expected to become more significant as the 
field strength in a semiconductor increases. 

In our work,5 we use a multi-scaling asymptotic method in order to derive the next-order 
terms of the semiclassical equations. The external field is not taken to be weak; however, 
it is defined to be slowly-va.ryi.ng in both time and space. These corrected semiclassical 
equations show that intraband scattering driven by the Lorentz force leads to a correction 
in the Einstein's relation. We also show that our asymptotic solutions are valid as long as 
any two ~ifferent band energies, e:(k) and e~(k) for m :F n, are sufficiently separated for a 
given k. A brief overview of our work follows. 

Derivation of the Semiclassical Equations 

We now describe the asymptotic reduction of the Schrodinger equation to the semiclassical 
equation. The Schrodinger equation for an electron in a periodic crystal lattice with applied 
external fields is given as 

iii!,p = 2~. (-iliV. +;A) 2 ,p +(V - e~),p, (5) 
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where '" is the electron wave function, V is the potential due to the crystal lattice, and A 
and ~ are the vector and scalar potential due to the external field. 

Since the crystal lattice is spatially periodic, V(r) = V(r +R) for any vector R which 
defines the primitive cell. We take the external field to be slowly-varying and introduce slow 
scales t = Et' and x = E r, where 0 < E <: 1. The small parameter E is the ratio of the crystal 
lattice constant (5.431 Afor Si) to the typical device size (1"tJ 0.1 - 1.0 micron). Thus, the 
potentials are written as A = A(x, t) and ~ = ~(x, t), and the relations 

1 a ' 
E - ---A - V, ~ (6a)eat ;r: , 

H = 'V;r: x A, (6b) 

give the slowly-varying electric E and magnetic H fields. 
We carry out the multi-scale expansion as described by Whitham6 and express the elec

tron wave function in the WKB-type form 

1/1 = t/J(r, x,t)e~'(Xtt), (7) 

and define the band energy as 
a

e(x t) = -n.-fI + e~ , - at 

and the "crystal" momentum as 


e 

k(x, t) ='V;r:fI + en. A. 

Since the external field is not consta.nt, both the band energy and momentum are now 
functions of x a.nd t. 

With the scaling as given for (5), however, both are essentially constant on the crystal 
lattice scale. This obviates the need to impose restrictive boundary conditions on k, which 
pose the main difficulty in deriving the "accelerated Bloch electrons" .1. 7 Furthermore, the 
typical width of the electron wave-packet spread is taken to be intermediate to the crystal 
and external field lengthsca.lea. This, allows the electron to be described by trajectories in 
the position-momentum (x, k) space without violating the uncertainty principle. The draw
back is that the asymptotic expansion may break down near semiconductor..semiconductor 
junctions or device b~undariea, since large field gradients may be present at those locations. 

To leading order, the Bloch electron eigensolutions are obtained, 

G~ (-iAVp +Ak)2+ VCr) - E!(k)}u..(r,k) =0, (8) 

, where {"",(r, k), £!(k)}.e. constitutes a complete and orthonormal basi. for the spatially
periodic crystal-lattice .. Solutions to (8) can be found numerically using the pseudopotentiaJ. 
method.8 To derive the next-order results, we expa.nd both the Bloch eigenvalue a.nd eigen
function in E, 

e - ~ + Ee.l +.', 0' (9a). . " 

(9b) 
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and define the inner product (a,r;) =Ja*r; d3 r, where the integral is over one primitive cell. 
Leading order gives e~ = e~(k) and 4>: =an(x, t) un(r, k), where an is the slowly-varying 

coefficient to be found at next order. Since we are neglecting the effects of interband tran
sitions for now, each band n may be treated independently. The validity of this assumption 
will be discussed later. 

With the independent band assumption, (..p,..p) = a! +O(e2 ) gives the distribution of an 
electron in a given band n up to next-order corrections. Deriving the next-order terms in 
the expansions (9), we obtain the expression 

8 2 (2)ata" + "Vz ' Van = 0, (10) 

where v is the group velocity of the electron (including the O(e) correction term). 
Expression for the electron drift (10) may be rewritten in terms of characteristic co

ordinates in the position-momentum space. These characteristic equations, then, are the 
semiclassical equations of motion. With a change of variables (x, k) --+ (q, p), 

e 
p _ 1i.k- ~A, 

the Hamiltonian for the electron motion is derived, 

d S d S
-p=--Hdt q = SpH, dt Sq' 

where the Hamiltonian H is given by 

HCq,p) == e(q, k(p + ~ACq,t») ,t) + e+Cq, t), (11) 

and where the band energy now includes the O(e) term, e(x, k, t) =E!(k) +eE!(x, k, t). We 
have computed the correction term £! and present it elsewhere.5 

Thus, the next-order terms of the semiclassical equations as given by the Hamiltonian 
above arises from the corrections to the band energy. At this order, the band energy becomes 
dependent on the applied Lorentz force. In essence, the Lorentz force drives intrahand 
transitions, denoted by (Un, V,Un), which slightly alter (from leading order) the characteristic 
lines on ~hich the electron travel. The above also shows that, even with the corrections to 
the velocity v and applied force F, the electron motion still retains its Hamiltonian form. 

Since the electron motion may be described by the Hamiltonian (11), the Boltzmann 
equation still retains the form given in (2) but with O(e) correction to the v and F now 
included. This expression thus'includes the lowest-order field-dependent intraband scattering 
terms on the left side (rather than including it in the scattering operator L. on the right 
side). Neglecting the magnetic field and scaling for the Hilbert expansion, the corrections 
to the semiclassical equations leads to a correction in the electron mobility of the Basic 
Semiconductor Equations (3). Einstein's relation, to this order, is now expressed as 

D 
I-' = /csT + ;1-'1. 
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The term 1'1 which we have derived, is presented elsewhere.5 In taking the high field limit 
of the Boltz~ann equation, we expect this correction term to become more significant since 
the intraband transitions driven by the Lorentz force would increase. 

Discussion and Future Work 
In deriving the semiclassical equation of motion, we have assumed that there were no 

scattering between the different bands as given by the Bloch electron solutions. Here we 
discuss briefly the validity of this independent band assumption. 

Correction to the leading order Bloch electron solution u,..(r, k) is given in (9) as 4>~(r, x, t). 
This function is obtained in the course of deriving the asymptotic results above.5 Since the set 
of Bloch electron eigensolutions represent a complete and orthonormal basis for R-periodic 
functions, we may expand 4>~ in terms of {u,.., e:}"E.I'. When such an expansion is done,5 we 
observe that a condition for the validity of the expansion (9) is given as 

(u.,., VIcUn) . F = 0(1) (12)
e:;.(k) - e:(k) 

for all m 1: n. This condition (12) indicates that interband (Zener) tunneling effects between 
two bands are significant where two Bloch eigenvalues become nearly degenerate, i.e. e:. ~ e~ 
and the. Lorentz force F is strong enough. Such conditions do arise in semiconductor devices, 
especially near junctions, barriers and device boundaries, where appreciable fields strengths 
may occur. 

Given two conduction bands, such effects are significant especially near the local minimas 
(in k-space) of the higher-energy band (local maximas of a lower-energy band for valence 
bands). The results of our asymptotic analysis presented in the previous section would then 
be valid away from such regions. Near the local minimaa of e:(k), the asymptotic expansion 
of (5) must be rescaled. 

The semiclassical equations suggests that the passage of an electron through a region in k .. 
space where the interaction between"two bands is 0(1) is rapid for high fields (see (1». Thus, 
deriving uniformly consistent asymptotic results in the entire position-momentum space 
would require solving a JHlMag. tlarough, reatmtl/Ace' problem.. We are currently carrying out 
this analysis. Note that the semiclassical equations with corrections which we have derived 
would then represent the outer solution for this problem. 

Furthermore, scattering of electrons by interactions With phonons have not been taken 
into account here. These interactions would cause intraband and interband transitions be
tween points in the bands separated in k-spa.ce. Involved in this procesa i. the absorption 
or emission of phonons with momentum K = ±(k,. - k.) (where K""i. mapped back into 
the first Brillouin zone of the periodic k-domain). These and other scattering events must 
be taken into account if one is to derive an asymptotically accurate quantum Boltzmann 
equation. We intend to carry out this derivation in the future. 
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INTRODUCTION TO LONG-TERM VISITORS, STUDENTS AND POSTDOCS 

Our most recent arrivals and very brief interests: 


Anatoly Dabine, Moscow lost. for Railroads, low-dimensional behavior of mathematical 

models in turbulent flows 

Theirry Dauxois, ENS Lyon, modeling of DNA melting and CM-S simulations 

Konstantin Efetov, Max-Planck Inst., quantum dots 

loannis Kevrekidls, Princeton Univ., numerical global bifurcation 

David Levermore, Univ. of Arizona, low-dimensional behavior in nonlinear PDEs 

Ben Luce, Clarkson Unlv., turbulence in the complex Ginzburg-Landau equation 

Peter Prelovsek, J. Stefan Inst., pairing and blustering t-J and Hubbard models 

Edriss Titl, Univ. of California, Irvine, low-dimensional behavior in nonlinear PDEs 
Jan Wehr, Univ. of Arizona., chaos and complexity in simple dynamical systems 

UPCOMING CNLS WORKSHOPS 
Technical 

Title Dates Location Host 

Low Dimensional Behavior in Nonlinear PDEs 813-31 CNLS D.Holm 

Fluctuations and Order: The New Synthesis 9/9-12 Los Alamos M. Millonas 

NEWS ITEM 

ANNOUNCING: A WorldWideWeb CNWW) Server for the Center for Nonlinear Studies 

We now have a fairly stable WWW server available to anyone on the internet The server provides 
infomration on the CNLS staff, research themes (including "movies" of nonlinear phenomena), 
and preprint system, as well as regularly updated listings of upcomin, visitors, seminars, and 
conferences. In addition. it provides links to the LANL phone directory, Job listings, libraries, and 
other information servers. Here's how to access the CNLS WWW server: 

• From a UNIX machine, usc the xmosaic utility and open the dOcument "http://cnls
www.lanLgovf.' . 
•. If you have a CNLS computer account, you can alternatively dopn to goshawk, set your 
DISPLA Y variable, and typo "xmosaic" -- your default home pap will be the CNLS welcome 
page. 

You can obtain "xmosaic" by anonymous ftp from the machine ftp.ncSLuiuc.edu in directory 
Mosaic/xmosaic-binarics. There arc also browsers available on tho net for other machines (such as 
Macintoshes, Pes and NeXTs). We also have a "line-mode" browser installed at CNLS called 
ttwww" - this allows you to web over a phone line. ENJOY! 
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