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Dispersive effects induced by weak hydrostatic imbalance in the presence of topography and
stratification are incorporated into a new model of barotropic (vertically integrated)
mesoscale ocean dynamics. This barotropic model is obtained by first expanding the
solutions of three dimensional Euler-Boussinesq equations in a regular perturbation
expansion in terms of the several small dimensionless parameters appropriate to mesoscale
ocean dynamics. Vertical integration from a fixed bottom topography to the free surface
interface with the atmosphere and balancing orders in the expansion at fourth order in the
small aspect ratio parameter, then yields a system of reduced barotropic equations. These
reduced barotropic equations are considerably more tractable than the starting equations and
have appropriate limits to known dispersive wave equations such as the forced Kadomtsev-
Petviashvili equation in one limit, and the rotating shallow water equations in another. This
new model of barotropic ocean dynamics may be of use in developing numerical algorithms
for global ocean circulation modeling.




1 Introduction

The fundamental equations describing ocean dynamics are the incompressible Navier-
Stokes equations written in a rotating frame. with appropriate boundary conditions
imposed at the free surface and fixed bottom boundaries. To complete the problem
statement, one must add to these equations a thermodynamic equation of state for the
density’'s dependence on temperature and salinity, as well as dynamical equations gov-
erning the advection and diffusion of these two thermodynamic quantities.

In three-dimensional numerical simulations of global ocean circulation, the code
currently accepted as the standard in the oceanographic community is the finite difference
model associated with the names of Bryan, Cox, Semtner, and Chervin (see ref. [9]).
This model takes advantage of the smallness of the ratio of material to gravity-wave
speeds. by distinguishing between the 2D barotropic (or vertically integrated) velocity
field and the deviation from barotropic, called baroclinic. 3D velocity field. Since the
fastest gravity wave speed, to a good approximation, only affects the the barotropic
velocity field, the equations determining this velocity field are solved taking, for instance.
small time substeps in order to assure resolution of the gravity wave time scale, while
the baroclinic velocity field, which evolves on a much longer time scale. is kept fixed
and treated as a forcing. The baroclinic field is then computed using the full time step.
updated and the process repeated. The effective speed of the computation is thus strongly
influenced by the barotropic velocity field solver. Hence, a scheme that would provide a
good approximation for the barotropic velocity field for sufficiently long times would be
extremely valuable in cutting down the computation time. Our approach to developing
such a scheme is to attempt to take advantage of all the small parameters in the problem.
This paper reports preliminary results in this direction.

Ocean dynamics is characterized by several dimensionless parameters that are small
in magnitude. In particular, if one focuses on a resolution of about 50 km for the smallest
resolved horizontal structures, then the aspect ratio between the largest vertical scale (the
ocean’s depth) and smallest interesting horizontal length scale is small (of order 0.1, or
less). Other small dimensionless parameters are: the ratio of a typical fluid particle speed
to the gravity wave speed (the ratio mentioned earlier as the basis for the finite difference
model of Bryan et al.); the ratio between gravity wave amplitude and the ocean’s depth;
and the relative changes of temperature and salinity over the ocean’s depth. In contrast to
other treatments, the Rossby number measuring the ratio of the eddy turnover frequency
to the Earth’s rotation frequency is not taken to be small here, because of the applications
envisioned for our model to relatively fine horizontal resolution.

Our analysis of this problem so far takes advantage of the scale separations implied
by these small dimensionless parameters. To do this, we expand the ocean’s dynam-
ical variables in powers of these small parameters and seek a balance of scales in the
vertically-integrated equations. In the work reported here, we study the nondissipative
case and retain the small vertical acceleration terms in the Euler-Boussinesq equations




that would otherwise be neglecred in the so called “primitive equations  approximation
(see.e.g.. (2] and [9]). The balance of scales we have found results in a new closure scheme
for the vertically-integrated dynamics of the ocean in the nondissipative case. The first
advantage of this new closure scheme for the vertically-integrated equations is that it
accounts for stratification, rotation and bottom topography in a two-dimensional set of
equations, rather than the three-dimensional Euler-Boussinesq equations. The second
advantage is that the boundary conditions are incorporated into the closure equations in
their derivation. rather than being separately imposed. Both of these advantages allow
the new closure mode] to be numerically simulated much more quickly and easily than
the three-dimensional Euler-Boussinesq equations. Moreover, the new closure scheme
can extend known equations in the classical Boussinesq dispersive water wave family to
account for the effects of rotation, vorticity, stratification, and bottom topography.

In this Newsletter, we nondimensionalize the Euler-Boussinesq equations by using
the scaling appropriate to mesoscale ocean dynamics to identify small dimensionless
parameters. We find a particular balance among these small parameters that eventually
produces nontrivial dynamics from a regular perturbation expansion. The equations
resulting from this expansion at fourth order in the small vertical-to-horizontal aspect
ratio are integrated vertically and found to close as a dynamical system. Thus we obtain a
set of closed barotropic equations that are decoupled from the baroclinic dynamics up to
sixth order in the small aspect ratio. Finally we use the classic Marsigli example ([4], pp.
96-98), to provide an appropriate interpretation of the stratification variable summoned
by our closure scheme.

2 Derivation of the model equations

The dynamics of an inviscid, incompressible fluid in a three dimensional domain is de-
scribed, in the Boussinesq approximation, by the motion equation,

dUu 1 g

— ==—Vop+2Q Ux 2z - ref + P)2 1
dt Pref oP Prej (p i P) ( )
the incompressibility condition,
d _ 0 (2)
dt - 4]
and the conservation of mass (continuity),

In these equations f—t = 0;+U-Vj is the material derivative, Vg is the three dimensional

gradient
Vo := (aza ay’ 9:) :=(V,8.);



and U is the fluid velocity
U:={u.v.w):=luw)

Other nutation is: density deviation p; pressure p; vertical unit vector Z: and constant pa-
rameters. p-.r. the reference density: 20 the Coriolis parameter: and g. the gravitational
acceleration.

Equation (2) is consistent with nondiffusive advectiv. equations for temperature and
salinity. (Since we are dealing with ideal fluids. all diffusivity is being neglected.] The
kinematic boundary conditions appropriate for an inviscid fluid are (see fig. 1)

d¢
) = — at z={(z.y.t
w o 2 G{z.y.t)
w = —u-Vh at z=~h(r,y). (4]

and U is tangential on any vertical lateral boundaries (free-slip). The dynamic boundary
condition is (neglecting surface tension)

p=p at z=((z,y,t). (3)

We nondimensionalize equations (1) through (5) by introducing six units L. H, c.
U, (o and p,es and three dimensionless small parameters a, 3 ¢ as follows

L(z®, y",ez"), €:= -I-Z— < 1,

(z,y,2)

L
t = —t°, = H,
c ¢ g

(wow) = fe(wvew’), fi=<l,
P Prefp’
P = presc’pt,
. Go
C = COC? a=-—£7<1. (6)

By introducing these units we are preconditioning the solution to lie in a thin domain, and
to have fluid velocities that are small compared to the gravity wave speed. Furthermore,
the typical amplitude (o of the free surface above the equilibrium z = 0 is taken to be
small compared to the depth H (that is a = {3/ H <« 1). In these units the dimensionless
rotation frequency becomes Ro™! := QQB% = 3%“, the inverse of the Rossby number
(which is taken to be O(1) for mesoscale ocean dynamics).

In nondimensional form equations (1) and (2) become (after dropping *)

,du
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where the material derivative is now £ := 2 + ju.V + Ju<. [n addition 0 (7} we
have the rescaled divergence-free condition with Vo = (9,.0,.€¢7'0..
Ur + vy +w, =0 (%)
and the boundary conditions
Juw = a-—g at = (lr.y.t),
dt
w = —u-Vh at z=-h(z.y). (9

The first equation in (9) implies @ = O(J). To keep the notation compact. in the
following we will drop the parameter a in front of ¢, thinking of ¢ and its derivatives
as order O(a) quantities. The system (7) is similar to system (2.1) in ref.[2]. except
that we ignore sound waves from the beginning, by imposing exact incompressibility.
The oceanographic “primitive equations” ([2},[9]) are obtained in dimensionless form
by dropping the vertical acceleration term in (7), thereby strictly enforcing hydrostatic
balance. This vertical acceleration term is retained here for the barotropic closure scheme
we derive, since it introduces additional dispersion arising from hydrostatic imbalance.
These notes focus on the effects of dispersion due to hydrostatic imbalance. topog-
raphy and stratification on the barotropic (vertically integrated) dynamics. For this, we
need the transport equations for vertically integrated quantities (see for example Wu
[10]). Namely, the material derivative of a function f = f(z,y, z,t) satisfies the equation

df 0
L] = GVt (10
in which straight brackets denote vertical integration
e -
fli= [ fzy,2.8) dz = (¢ + B)F. (1)
So [f] is the integral of f across the whole fluid layer —h < z < ¢ and ¥ is the vertical

average of f.
In particular, setting f = 1,u,w, and p, gives respectively,

On+B8V-(nu) = 0 n:=(+h,



30(n) + 3*V - (puu)

—nVp+ Ro™! 3%t x 2.
Jed(n@) + 32V - (pTE) = —-Z—(b}ﬂwﬁ)).

di(np) + 3V -(npu) = 0. (12)

These four equations represent conservation of volume, horizontal momentum, ver-
tical momentum, and mass, respectively. Although exact, these relations cannot be used
as equations of motion in general. since new unknowns in the form of higher order mo-
ments appear as a consequence of averaging. Our aim here is to obtain closure for these
equations under suitable approximations for the dependent variables u, w, p.

We now introduce regular perturbation expansions with small parameters ¢ and -~
whose magnitudes relative to a, 3 and € are to be determined,

= ug + fuy + O(8%),

= wg + dwy + O(8?%),

po+ 01 + 72 + 0(7°),

= yp1+ 72 + O(7). (13)
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We substitute these expansions into the rescaled motion equations (7) and seek a partic-
ular balance in the equations resulting at order O(¥?) that goes beyond geostrophic and
quasi-geostrophic balance. In the rescaled horizontal motion equation (7), we require

~Vp; to be of the same order as ﬁ%, hence

B = O(y).

In this ordering, hygirosta.tic balance in the vertical motion equation will be broken at
order O(4?), since % (%? + pg) is of the same order as Be%"?, which implies

¥ = O(?8) and hence B = O(€?).

At the next order in 7, the term ¥?Vp, in the rescaled horizontal motion equation
balances with 6324, provided 72 = O(63), which implies

v = 0(6) = O(e?).

These considerations fix the order of the parameters o, 3, ¥ and § relative to e. Namely
O(a) = O(B) = O(7) = 0(8) = O(e?). (For convenience in what follows we shall
suppress coefficients of order O(1) and simply identify 42 = (G¢* etc. .) The order of the
parameter Ro~! is still free with respect to ¢. Geostrophic balance is recovered in this
ordering when Ro = O(f?). Quasi-geostrophy is recovered when Ro = O(8) (see [8]).




For mesoscale ocean dynamics Ro = O(1); therefore the Coriolis force first comes into
the mesoscale dynamics at order O(.3?%). in the u, equation.

Having found the scale relations that introduce nonhydrostatic dispersive effects at
order O 3%}. we next use these relations to derive the equations of dispersive barotropic
ocean dynamics. [n the w equation at order O(e™!) we have hydrostatic equilibrium, i.e..

dpo
0z

=0 (14)

and from the u equation in (7) at O(1) we have Vpy, = 0. Hence pp = —z + const. .
Consider the w equation in (7) at O(e)

0 -
ap:+p1_0=>pl_—/ prdz + 0(z,y. 1), (15)
and compare with the u equation at order O(€?),
5\10
Vp = —-——. 16
P1 ot (16)
Taking cross derivatives in the two expressions above for p; gives
82110
— = V. 17
ataz 43 ( ‘)
Since advection of mass implies, at order O(¥),
dp
m = U, ].8
ot (13)

the right hand side of (17) is independent of time. Hence, integration of (17) implies ug
is expressible as

ug = t/ Vpdz' + uy(z, y,t) + d(z, y, 2), (19)
and the first term grows linearly in time unless
Vo =0. (20)

That is, any vertical shear at order O(3) must be time independent; otherwise, secular
terms will develop. Thus the term Uo(z,y, 2) is the only 2-dependence possible for ug in
the present balancing scheme. For definiteness, we will set g = 0 for the rest of this letter
and drop the prime for uy(z,y,t). We will examine the effects of the time independent
vertical shear term elsewhere, in [3]. Equations (18) and (20) imply p1 = p1(2), and we
will take for the equilibrium density stratification

p1(z) = sz + const., (21)



where 5 is a negative constant. This equilibrium density stratification is typical over
most of the ocean [7]. Since dp;/dt = 0 we must regard the dynamics of the fluid as

taking place in a nonhomogeneous medium of fixed background density pref + vp1(2)-
[ncompressibility implies

dw ‘
F“’}:-v-u0=>wo_—.-:v-uo-a(x.y,t). (22)
We can evaluate the function ¢ from the boundary condition at = = —A&,
~Ug - Vh = wol-h =hV . Ug + ¢,
hence (22) becomes
wo = =V - (z 4 h)u,, (23)
which will be useful later. In the w equation at order O(J3¢?) we have
5p2 dwg
R 24
0z + o ot’ (24)
and so from (23)
1 z
P2(2,,2,8) = 52007 w0 + 20,V - (huo) - / p2d?’ + (2.9, 1). (25)

Only partial differentiation with respect to time appears in (25), since our ordering scheme
requires us to neglect in the material time derivative the advective transport term that
would otherwise appear in (24). Next, we eliminate both % in (15) and ¥’ in (25) by
using the free boundary conditions for the pressure

P = Pl=¢= (Po +9p+ 7' + 0(73)) o=

= const.—( +7 (— [Cm(z)dz + w(x,y,t)) +7°pa(2,9,¢,t) + O(7°). (26)

Hence the difference between the pressure at any z and the specified surface pressure, p,
18

(4
Ap:=p—p=¢( +'rf, pi(2)dz’ +7*Apy, (27)
where

¢
Apr= [ ey, 7, 00d2 + -;-zzatv do + 20,V - (hug) + O(a). (28)

We remark that p,|; is of the same order as (, and as the transport terms neglected in
(24), namely O(a). For the reader’s convenience the scaling and matching considerations
so far are summarized order by order in fig. 2.




We still need to evaluate Vp, where
Vp=Vp+(1+3p(0))V¢+ 5 V(Apg) + O(7°, o). (29)

Evaluating the average of (28) leads to

g : . Ry R?_ .
V(Apz) = (2 +h)Vpy - (;V&(V - (huo)) — —é—-vat(v : uo)) + O(a). (30)

Here the first term comes from taking the horizontal gradient inside the integral in
(28), neglecting surface terms of order O(«) then averaging and exchanging order of
integration. The second set of terms in (30) again neglects surface terms and transport
terms of order O(«).

For closure in the barotropic equations we need a dynamical equation for the first
term in (30). From equation (7) at order O(j3%), multiplied by z + h and vertically
averaged, we obtain after some algebra

O(z +h)Vpr+0(a) = —s(z+h)Vug
2
by eq. (23) = s% (-g—V(V < (hug)) — —%—V(V . uo))
= s (g-V(V - (hug)) — %EV(V ~ uo)) + O(@). (31)

We remark that a choice of the density stratification different from the linear law assumed
in (21) would lead to the same structure for the right hand side of (31), i.e., the terms
hV (V-(hug)) and h?V(V -ug) would still be there but with different constant coefficients
depending on the particular form of p;(z).

Now we are in position to write a closed set of equations for the stratified barotropic
fluid. Referring to the first and second equations in (12) gives

ﬁt+ﬂ(ﬁ-V)ﬁ=—%w+ Ro™'pu x i—gv-n(ﬁ'ﬁ-ﬁfi). (32)

Since u = ug + fu; + O(62) and ug has been taken to be independent of z, we have
Ud — U T = §(Tuy — W) + 0(8°%), (33)
and hence the last term in (32) is negligible. After substituting for Vp from (29) and

(30) we find a closed set of dynamical equations for {, @ and A (since T = ug + O(6),
and reinstating the order parameter a for ():

a§£+ﬂv‘(ac+h)ﬁ=0,
ot
ﬂ%g + B3 (UW- V) U+ Ro 'SP xT=—-1Vi—o(l +75)V(— A+ %.?,
%% = sD, (34)



where we define

A =%z + h)Vpa, (33)
h .. h? _
D:=+J ;:—'V(V-(hu))—%—V(V-u) . (36)

and p(z.y.t) and 5 denote the specified surface pressure and the surface equilibrium
density deviation, respectively. We remark that the first equation in (34) is exact. while
the second and third equations have an error term of order O(3¢?*, yetc.). Restoring
dimensions now gives our final equations

9¢

3t F V- (C+h)a=0,
Jou . l . g g oD
— -V)u +2Q = - Vp—g(l+ V(- A+ —,
51 +(u a+2Qz x u Ores p—g( Prej) ¢ Pres ot
88—? =oD, (37)
where now __
A:=(z+h)Vp, (38)
h _., h? — .
D:= —2-V(V (k) — -E-V(V )], (39)

and o = s7Z%L = 4 ig a negative constant.

Equations (37) are dispersive shallow water equations that incorporate effects of
weak deviations from hydrostatic balance, weak stratification and strong, O(1), topogra-
phy. The key approximations in deriving equations (37) are: weak baroclinic horizontal
velocity dependence, imposed after equation (20); and weak horizontal density gradi-
ents. The latter of these approximations is imposed in order to eliminate secular velocity
growth. The effects of the mean vertical shear still allowed by (19) will be addressed
elsewhere [3]. Equations (37) restrict to those of Wu [10], provided the stratification is
absent (A = 0 and o = 0), and there is no rotation (2 = 0). In Wu’s derivation, the
initial flow has no vorticity. Hence, there exists a velocity potential for U at all times,
and the asymptotic expansion proceeds in terms of this potential. In this case, the mean
vertical shear o(z,y, z) in (19) is absent.

We notice that the solutions @ of egs. (37) give information about u, and p;. In
fact, at order O(63), we have

6111

W + (UO . V)UQ + Ro™'% x uo = —Vp,, (40)

where p; is given by (28) in terms of uy and powers of z, after p; has been determined
from

— = —Sswyp. (41)

ot
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Hence. replacing ug (= U + O(8)) by U@ in (40) and (41), and neglecting terms of order
O(&) gives a system of equations recovering uy(s.y.z.t) and po(r.y, z.t).

[n the absence of stratification (¢ = 0) and without the dispersion caused by hydro-
static pressure imbalance (D = 0). these equations reduce to the standard, topograph-
ically forced. rotating shallow water equations. Dropping overbars and surface forcing
terms. these are

V. =0,
dt + nm =
Ju 5 .
=+ (u-Viu+20z x u=—gVn + gVh. (42)

[t remains to give an interpretation of the acceleration due to stratification, —-;f':}-A.
For this, we refer to ancient experiments of Marsigli, as described in [4].

In the seventeenth century, L. M. Marsigli considered convective adjustment due to
horizontal density gradients as the mechanism for producing the undercurrent flowing
through the Bosphorus Strait toward the Black Sea from the Mediterranean. To verify
this mechanism, Marsigli set up laboratory experiments with a partition separating two
compartments containing water of different salinities. When the partition was removed,
water at lower depths would flow from the compartment of higher salinity {(as in the
Mediterranean) toward the compartment of lower salinity (as in the Black Sea), thus
explaining the mechanism for the undercurrent. Of course, the explanation comes from
differences in hydrostatic force for the two compartments, which is precisely the effect
being modeled in egs. (37) by the acceleration vector ——37A To see this, we compute

the hydrostatic forces acting on the partition for the set-up shown in fig. 3a. Here we
assume for simplicity p = pres + ¥2p2, i.e., no equilibrium stratification (p; = 0), and
restrict density variations to p; only. Immediately after the removal of the partition, the
difference in hydrostatic forces along the partition would yield an initial acceleration field
for the fluid particles. Namely, a (small) force Af

Af = —g7%(py — p- )2k 1= —gy*ApzX

is directed along the z-axis from the higher-density (4%2p,) compartment toward the
lower-density (v%p~) one. Vertically averaging this force gives initial acceleration of a

column of water located at the partition, i.e., — 7”;-'9,5. It is easy to see from the

definition (38) that this vertical average is equal to the acceleration vector —-—LA for
this density distribution. Similarly, calculating differences in hydrostatlc forces for other
simple initial density distributions (such as in figs. 3b,c) again yields the same value as
—;,-?:;A for the initial acceleration of the barotropic motion. The ensuing dynamics will
involve oscillation and circulation generated by the gravity wave force and the Coriolis
force. This dynamics will be discussed in more detail elsewhere.
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Conclusion

Our purpose in this letter has been to report preliminary results concerning the dispersive
effects of hydrostatic imbalance and stratification in the barotropic approximation. by
developing an asymptotic series for mesoscale ocean dynamics that closes at order O(e*)
for solutions with weak vertical shear and weak horizontal density gradients. The result-
ing closure scheme is the set of dispersive shallow water equations (37). These equations
describe the barotropic (vertically integrated) motion. in the absence of dissipation and
without any coupling to the baroclinic motion. The effect of the dispersive terms in (37)
is to limit the range of frequencies available to the barotropic motion. (The barotropic
motion has the highest frequencies present in the problem of mesoscale ocean dynamics.)
Equations (37) also extend the rotating shallow water description to include hydrostatic
imbalance and stratification, while they extend the classical Boussinesq family of equa-
tions such as KP to include stratification, rotation and vorticity. The relationships among
these families of equations are sketched in fig. 4. In later work, we will address the effects
of higher order (O(¢®)) nonlinear transport, baroclinic coupling and dissipation.
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Figure captions

Figure 1. The geometry of the fluid layer.

Figure 2. “Flow-chart” of the derivation of eqs. (37), order by order in the asymptotic
expansion.

Figure 3. Three different initial conditions for Marsigli’s experiment. The vertically averaged
forces acting on the partition at z = 0 are: a) ——72925Ap; b) —-729‘%@Ap; c) —72%’3;&;).

Figure 4. Relationships among the various barotropic equations.
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"Flow Chart” of Derivation

O(e-1)

o(l)
O(¢)

O(€?)

O(€2)

O(&)

w-eq

u-eq

u-eq

incompressibility
and b.c. @ z= -h

w-eq

15

Do = -2+ 7(x,y,t)
Vpp =0

p; = f p; (z)d:
Vp, =0

VO(Z'I"h)uO = -Wp

P2 = p; (Uy,P>)



A =




A

.



-




3D EULER BOUSSINESQ EQS FOR
STRATIFIED ROTATING INCOMPRESSIBLE FLUIDS

Expand in small dimensionless parameters
and integrate in the vertical direction

i

2D DISPERSIVE STRATIFIED
ROTATING SHALLOW WATER EQS

Neglect stratification and
impose hydrostatic balance

Expand in stretched,
moving coordinates

ROTATING K-P EQ WITH
SHALLOW WATER EQS STRATIFICATION AND ROTATION
Rigid lid, no No transverse
horizontal divergence coordinate dependence
BAROTROPIC EQ

FOR POTENTIAL VORTICITY] K=dY EQ WITH STRATIFICATION

19 .



UPCOMING CNLS COLLOQUIA

Wed., July 1 "Exact Solutions in the Laplacian Pattern Formation,” Mark Mineev,
Courant Inst., 3:00 p.m., CNLS Conference Room, followed by tea

Tues., July 7 "Singular Perturbation Theory for Homoclinic Orbits ina C lass of Near-
Integrable Hamiltonian Systems,” Gregor Kovacic, Rensselaer
Polytechnic Inst., 3:00 p.m., CNLS Conference Room

Wed., July 8 "Bring High Performance Computing into the School Room,” Mark
Mitchell, Montant State Univ., 3:00 p.m., CNLS Conference Room,
followed by tea

Tues., July 14 “To Be Announced,” Moshe Gottlieb, Ben Gurion Univ., 3:00 p.m.,
CNLS Conference Room

Wed., July 15 "To Be Announced,” Jia Li, Univ. of Alabama, 3:00 p.m., CNLS
Conference Room, followed by tea

Tues., July 21 "To Be Announced,” Edwin Power, Univ. College of London, 3:00 p.m.,
CNLS Conference Room

Wed., July 22 "Completed Double Layer Boundary Element Method in Elasticity,”

Nhan Phan-Thien, Univ. of Sydney, 3:00 p.m., CNLS Conference
Room, followed by tea

Wed., July 29 "To Be Announced,” Timothy Sullivan, Kenyon College, 3:00 p.m.,
CNLS Conference Room, followed by tea

UPCOMING CNLS WORKSHOPS

Technical
Title Dates Location Host
Reactive Turbulence Workshop 8/3-7/92 CNLS B. Nichols
Future of Machine Learning 8/6-7/92 Los Alamos  A. Lapedes
Nonlinear RF Excitation of the Ionosphere 1/11-1493  Santa Fe D. DuBois

CNLS PUBLICATIONS - NEW RELEASES

92-1722 Steen Rasmussen, Rasmus Feldberg and Carsten Krudsen, "Self-Programming
of Matter and the Evolution of Proto-Biological Organizations"

92-1785  James M. Hyman, Robert J. Knapp and James C. Scovel, "High Order Finite
Volume Approximations to Differential Operators on Nonuniform Grids”

92-1790 O. L. Bakalis, R. D. Jones, Y. C. Lee and B. J. Travis, "A Recurrent Neural

Network Approach for the Solution to the Inverse Problem of Iterated Function
Systems”
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92-1791 Jarmo Hietarinta and Seppo Mikkola, "Chaos in the One Dimensional Newtonian
Three-Body Problem”

92-1844 Serge Aubry, "Bipolaronic Charge Density Waves Polaronic Spin Density Waves
and High Tc Superconductivity”

92-1894 John E. Pearson and William J. Bruno; "Partern Formation in an N+Q Component
Reaction-Diffusion System”

92-1895 John E. Pearson, "Pattern Formation in a (2+1) Species Activator-Inhibitor-
Immobilizer System”

92-1911 Gregor Kovacic, "Singular Perturbation Theory for Homoclinic Orbits in a Class of
Near-Integrable Hamiltonian Systems"

92-1968 Stephanie Forrest and Alan S. Perelson, "Computaton and the Immune System”

92-1974 Toshiyuki Gotoh and Robert H. Kraichnan, "Statistics of Decaying Burgers
Turbulence”

INTRODUCTION TO LONG-TERM VISITORS, STUDENTS AND POSTDOCS
Our most recent arrivals and very brief interests:

Roger Dodd, San Jose State Univ., fluids and condensed matter systems
Philip Gotdberg, City Univ. of New York, nonlinear optics, plasma physics
Toshiyuki Gotoh, Nagoya Inst. of Technology, turbulence

Jia Li, Univ. of Alabama., environmental and epidemological models
Gottfried Mayer-Kress, Iniv. of CA, Santa Cruz, computer visualization
Edriss Titi, Univ. of CA, Irvine, fluid turbulence and ocean dynamics

ORGANIZATION OF THE CENTER

Susan Coghlan, 5-1556 Systems Manager

Gary Doolen, 7-1444 Acting Director

Robert Ecke, 7-6733 Acting Deputy Director
Dorothy Garcia, 7-1444 Secretary

Frankie Gomez, 7-1444 Administrative Specialist
Kristie Harris, 7-1444 UGS

Erica Jen, 7-5436 i Director
Y. C. Lee, 7-8715 Senior Scientific Advisor
Janet Pacheco, 7-1444 UGS

Barbara Rhodes, 7-1444 Secretary

Susan Spach, 7-1444 Secretary

Felicia Trujillo, 7-1444 UGS

For more information on newsletter items or for suggestions for future issues, contact Barbara Rhodes,
(505)667-1444, MS-B258, by FAX at (505)665-2659, or by e-mail at "office@goshawk.lanl.gov”

Los Alamos National Laboratory, an Affirmative Action/Equal Opportunity Employer, is operated by the
University of California for the United States Deparunent of Energy under contract W-7405-ENG-36.
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r Rex Graham
ANAL STAFF WRITER
PANTA FE — About 400 scientists
m around the world are focusing
s week on the blurry boundary
tween science fiction and fact as
by upveil life forms they have
pated in everything from test
V' to computers.

Ves, life in computers.

Welcome to the Third Artificial
le Warkshop, where researchers
3 an a quest for new definitions of
le” and “artificial.” They have
eed to dinaree,

We trying to define life as we
' here (on Earth), and 1 don't

\cientists T 0 Show Off Artificial Life at Conference

\rtificial Life Makes

Conference

think
enough,” conference organizer
Christopher Langton sajd Monday
at the start of the weeklang confer-
ence sponsored by the Santa Fe
Institute, a non-profit scientific re-
search institute and think tank, and
Los Alamos National Laboratories.

Langton is an internationally rec-
ognized guru of artificial life, a new
discipline in which acieathtl try to
create lifelike organisms and
biological systems in the test tube
or computers.

Most people think they know life

uonepuscnemmmru»

]NUED FRW PAGE At

n they see it: From humans to
icinths, living things can repro-
2 and adapt over generations
b an instructional genetic DNA
ie. Trees and bacteria can be
r¢, but not a rock.
angton thinks it's possible that
tly different forms of life have
eloped on planets with different
ies of elements, temperatures,
ospheres and distances from
r suns.
ad life elsewhere in the cosmos
could be much
more bizarre.
“We just have
& single exam-
ple” on Earth,
Langton said.
“The definition
of life should be
a list of be-
haviors, not a list
of stuff. The
ngton material is im-
erial.”
even Levy, author of the book,
fifical Life,” said the implica-
» of this new research go well
he realm of science.

‘s thoughts veer toward
jicism," he said. “At one point
rth there was no life. Nature

sed the Rubicon, and nature
t us life. If there was a God,
} tools did he or she use, and if
£ was not a god, what was the
pm?"”

ying to ...derstand the deriva-
of life really is an attempt to
‘rstand ourselves, and the study
rtificial life offers vita) clues,
iton said.
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we can. We don't know '

GREG SORBER / JOURNAL

Sclentists at the Third Artificial Life Workshop were fascinated

with this

game that uses natural laws 10 let fish and

computer
other animais evoive and sometimes become extinct.

Langton, 43, an anti-wsr activist
and self-taught computer hacker,
said he became interested in artifi-
cial life while programming a com-
puter at Massachusetts General
Hospital.

While absorbed in his task, the
program “Life" was runping on a
computer screen behind him.

“Life” was developed by John
Horton Conway, a brilliant and
eccentric mathematician who stu-
died the abstract fringes of number
theory. Conway employed the laws
of physics to create stellar con-
stellations within a camputer that
evolve and die in unpredictable

patterns.

With stars dying behind him,
Langton said his idea that computer

programs had a life was born.

“At one point I got the feeling
there was someone else in the room
as if a friend of mine was going to
come up and say, ‘Boo,’” he said.
“The hair on the back of my neck

f stood up. It got down past my

rvous system. That caused me to

.«nk about machines differently. |
believe you can have real life inside
a computer.”

Langton has been named chief
editor of a new scientific journal,
“Artificial Life,” which the Mas-
sachusetts Institute of Technology
Press will start publishing next
year.

Charles Taylor, a UCLA biology
professor attending the conference,
shook his head over Langton's life-
in-a-computer belief.

“1 don’t know where to draw the
boundary,” he said.

Like others studying artificial
life, Taylor said the research is as
disturbing as it is exciting. lo-
creasingly powerful computers, for
example, could go from controlling
their own behavior and that of
robots to directing human behavior,

from traffic to economies.

Within 20 years, Taylor said, com-
puters will surpass the power of the
human brain and could become
1,000 times more powerful after
that.

“We may well be to computers
what horses and dogs are to us,” he
said. “If control of information
controls the world, that could be the
computers.”

Research involving artificial life
could be equally beneficial.

Scientists now are using princi-
ples involved in artificial life to

-
-
»

understand the immune system,
ecology and other “complex adap-
tive systems” that Taylor said
“seem to have a life of their own.”

Waving to sun-drenched cotton-
wood trees outside, Steuart Kauff-
man, a biochemistry and biophysics
professor at the University of Penn-
sylvania, said he and others are
searching for an explanation of how
and why simple systems give rise to [
complexity.

“A new arena of science is being'
born. Something is brewing, but
none of us know quite what it is.”





