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Dispersive effects induced by weak hydrostatic imbalance in the presence of topography and 

stratification are incorporated into a new model of barotropic (vertically integrated) 

mesoscale ocean dynamics. This barotropic model is obtained by first expanding the 

solutions of three dimensional Euler...Boussinesq equations in a regular perturbation 

expansion in terms of the several small dimensionless parameters appropriate to mesoscale 

ocean dynamics. Vertical integration from a fixed bottom topography to the free surface 

interface with the atmosphere and balancing orders in the expansion at fourth order in the 

small aspect ratio parameter, then yields a system of reduced barotropic equations. These 

reduced barotropic equations are considerably more tractable than the starting equations and 

have appropriate limits to known dispersive wave equations such as the forced Kadomtsev

Petviashvili equation in one limit, and the rotating shallow water equations in another. This 

new model of barotropic ocean dynamics may be of use in developing numerical algorithms 

for global ocean circulation modeling. 



1 Introduction 

The fuada.mental equations describing ocean dynamics are the incoillpressible );avier
Stokes equations written in a rotating frame. with appropriate boundary conditions 
impo:;ed at the free surface and fixed bottom boundaries. To complete the problem 
statenlent. one must add to these equations a thermodynanlic equation of state for the 
density's dependence on temperature and salinity, as well as dynamical equations gov
erning the advection and diffusion of these two thermodynamic quantities. 

In three-dimensional numerical simulations of global ocean circulation, the code 
currently accepted as the standard in the oceanographic community is the finite difference 
model associated with the names of Bryan, Cox, Semtner, and Chervin (see ref. [9}). 
This model takes advantage of the smallness of the ratio of material to gravity-wave 
speeds. by distinguishing between the 2D barotropic (or vertically integrated) veloci ty 
field and the deviation from barotropic. called baroclinic. 3D velocity field. Since the 
fastest gravity wave speed~ to a good approximation, only a.ffects the the barotropic 
velocity field. the equations determining this velocity field are solved taking, for instance. 
small time substeps in order to assure resolution of the gravity wave time scale. while 
the baroclinic velocity field, which evolves on a much longer time scale~ is kept fixed 
and treated as a forcing. The baroclinic field is then computed using the full time step. 
updated and the process repeated. The effective speed of the computation is thus strongly 
influenced by the barotropic velocity field solver. Hence, a scheme that would provide a 
good approximation for the barotropic velocity field for sufficiently long times would be 
extremely valuable in cutting down the computation time. Our approach to developing 
such a scheme is to attempt to take advantage of all the small parameters in the problem. 
This paper reports preliminary results in this direction. 

Ocean dynamics is characterized. by several dimensionless parameters that are small 
in magnitude. In particular, if one focuses on a resolution of about 50 km for the smallest 
resolved horizontal structures, then the aspect ratio between the largest vertical scale (the 
ocean's depth) and smallest interesting horizontal length scale is small (of order 0.1, or 
less). Other small dimensionless parameters are: the ratio of a typical fluid particle speed 
to the gravity wave speed (the ratio mentioned earlier as the basis for the finite difference 
model of Bryan et 41.); the ratio between gravity wave amplitude and the ocean's depth; 
and the relative changes of tempera.ture and salinity over the ocean's depth. In contrast to 
other treatments, the Roesby number measuring the ratio of the eddy turnover frequency 
to the Earth's rotation frequency is not taken to be small here, because of the applications 
envisioned for our model to relatively fine horizontal resolution. 

Our analysis of this problem so far takes advantage of the scale separations implied 
by these small dimensionless parameters. To do this, we expand the ocean's dynam
ical variables in powers of these small parameters and seek a balance of scales in the 
vertically-integrated equations. In the work reported. here, we study the nondissipative 
case and retain the small vertical acceleration terms in the Euler-Boussinesq equations 
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that would otherwise be neglected in the so called "primitive equations·' approximation 
(see. e.g" [2] and [9]). The balance of scales \\"e have found results in a ne\'" closure scheme 
for the vertically-integrated dynamics of the ocean in the nondissipati ve case. The first 
advantage of this new closure scheme for the vertically-integrated equations is that it 
accounts for stratification, rotation and bottom topography in a two-dimensional set of 
equations, rather than the three-dimensional Euler-Boussinesq equations. The second 
advantage is that the boundary conditions are incorporated into the closure equations in 
their derivation. rather than being separately imposed. Both of these advantages allow 
the new closure model to be numerically simulated much more quickly and easily than 
the three-dimensional Euler-Boussinesq equations. Moreover, the new closure scheme 
can extend known equations in the classical Boussinesq dispersive water wave family to 
account for the effects of rotation, vorticity, stratification, and bottom topography. 

In this Newsletter, we nondimensionalize the Euler-Boussinesq equations by using 
the scaling appropriate to mesoscale ocean dynamics to identify small dimensionless 
parameters. We find a particular balance among these small parameters that eventually 
produces nontrivial dynamics from a regular perturbat.ion expansion. The equations 
resulting from this expansion at fourth order in the small vertical-to-horizontal aspect 
ratio are integrated vertically and found to close as a dynamical system. Thus we obtain a 
set of closed barotropic equations that are decoupled from the baroclinic dynamics up to 
sixth order in the small aspect ratio. Finally we use the classic Marsigli example ([4], pp. 
96-98), to provide an appropriate interpretation of the stratification variable summoned 
by our closure scheme. 

Derivation of the model equations 

The dynamics of an inviscid, incompressible fluid in a three dimensional domain is de
scribed, in the Boussinesq approximation, by the motion equation, 

dUd'" =__I_Vap + 20 U x z - L(p,.,,! + p)z (1)
• p,..! p,..! 

the incompressibility condition, 
dp _ 0 

(2)dt-' 

and the conservation of mass (continuity), 

Va· U = o. (3) 

In these equations :t = at +U . Va is the material derivative, Va is the three dimensional 
gradient 
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and Li i~ the fluid \'elocity 

U:= (u. t'.IC) := IU. tc). 

Other nuta~:on is: density de\-iarion p; pre~sure p: ~;erti('al unit vector z: and con~tant pa
rameter<;j. P_,,?!. the refprence den~iry; 2f1 the Coriolis par~.meter; and g~ the gra\,'itational 

accelerat ion. 

Equation (2) is consistent with nondiffusive advectiotl equations for temperature and 

salinity. (Since we are dealing v;ith ideal fluids. aU diffusivity is being neglected.) The 
kinematic boundary conditions appropriate for an inviscid fluid are (see fig. 1) 

d( 
w at z = (( x. y, t)

dt 
l.L' = -u· Vh at :: = -h(x,y). (4:1 

and U is tangential on any vertical lateral boundaries (free-slip). The dynamic boundary 
condition is (neglecting surface tension) 

p=p at z=((x,y,t). (5) 

We nondimensionalize equations (1) through (5) by introducing six units L. H, c. 
U, (0 and Pre/ and three dimensionless small parameters a, p t: as follows 

(x,y,z) - L(x· ~ y., t:z·), t: := LH 
«: 1, 

t - L t*, c = 19H,
C 

(u,v,w) - /3c (u·, v·, t:w·) , /3:= 
U 
- <: 1, 
c 

P - Pre/P* 
2 * P - pre/C P , 

(0, a=-<C::1. (6)- '0'*, H 

By introducing these units we are preconditioning the solution to lie in a thin domain, and 
to have fluid velocities that are small compared to the gra.vity wave speed. Furthermore, 
the typical amplitude '0 of the free surface above the equilibrium z = 0 is taken to be 
small compared to the dep·th H (that is a = (0/ H <:: 1). In these units the dimensionless 
rotation frequency becomes RO-l := 2ntc = 2BL , the inverse of the Rossby number 
(which is taken to be 0(1) for mesoscale ocean dynamics). 

In nondimensional form equations (1) and (2) become (after dropping *) 

i3~~ = -Vp+Ro-1/Puxz, 
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. du' 
.-h. tit 

dp :: o. ( I' dt 

\rhere the materiai derivative is now 4; ;== *+ Ju . V ~ Ju:/.. In addition to r I we 
have the rescaled divergence-free condition \~·ith Va == (dr- all' ~:ld::i. 

U r + t'y .,.. tL'z == 0 

and the boundary conditions 

d(
3u' == Qdt at ===((.x.y.t), 

W == - u . V h at z == - h( .x ~ y ). ( 9) 

The first equation in (9) implies Q == 0(,3). To keep the notation compact. in the 
following we will drop the parameter Q in front of (, thinking of ( and its derivatives 
as order 0(0) quantities. The system (i) is similar to system (2.1) in ref.[2]. except 
that we ignore sound waves from the beginning, by imposing exact incompressibility. 
The oceanographic "'primitive equations" ([2},[9}) are obtained in dimensionless form 
by dropping the vertical acceleration term in (7), thereby strictly enforcing hydrostatic 
balance. This vertical acceleration term is retained here for the barotropic closure scheme 
we derive. since it introduces additional dispersion arising from hydrostatic imbalance. 

These notes focus on the effects of dispersion due to hydrostatic imba.lance. topog
ra.phy and stratification on the barotropic (vertically integrated) dynamics. For this. we 
need the transport equations for vertically integrated quantities (see for example \Vu 
(10)). ~amely, the material derivative of a function 1 = I(x, y, z, t) satisfies the equation 

dl ] a (10)[ dt = at [I] + ,lV . [/u] 

in which straight brackets denote vertical integration 

(11) 

SO [I] is the integral of / across the whole fluid layer -h < z < ( and 7 is the vertical 
average of /. 

In particular, setting f ~ 1, u, w, and p! gives respectively, 

",:= (+ h, 
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These four equations represent conservation of volume, horizontal momentum, ver
tical momentum, and mass, respectively. Although exact, these relations cannot be used 
as equations of motion in generaL since new unknowns in the form of higher order mo
ments appear as a consequence of averaging. Our aim here is to obtain closure for these 
equations under suitable approximations for the dependent variables u, w, p. 

vVe now introduce regular perturbation expansions with small parameters 0 and: 
whose magnitudes relative to Q, ,3 and f are to be determined, 

U - Uo + OUt + O(02 
), 

W Wo + OWl + O(02), 

P - Po + IPI + 12P2 + 0(/3 
), 

P - IPI + 12P2 + O(13 
). (13) 

vVe substitute these expansions into the rescaled motion equations (i) and seek a partic
ular balance in the equations resulting at order 0(/2) that goes beyond geostrophic and 
quasi-geostrophic balance. In the rescaled horizontal motion equation (i), we require 
'1 V PI to be of the same order as f3 0Jft, hence 

In this ordering, hydrostatic balance in the vertical motion equation will be broken at 
order 0(12

), since 1(~+ P2) is of the same order as tJeo;:, which implies 

At the next order in '1, the term "Y2VP2 in the rescaled horizontal motion equation 
balances with 6/3~, provided ""{'1. = 0(613), which implies 

These considerations fix the order of the parameters 0, j3, 1 and 6 relative to f. Namely 
0(0) = 0(f3) = 0(1) = 0(6) = 0(f2). (For convenience in what follows we shall 
suppress coefficients of order O(1) and simply identify 12 = J3e2 etc.. ) The order of the 
parameter Ro-t is still free with respect to f. Geostrophic balance is recovered in this 
ordering when Ro = 0(tJ2). Quasi-geostrophy is recovered when Ro = 0(13) (see [8]). 
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For mesoscale ocean dynamics Ro = O( i)~ therefore the CorioLis force first comes into 
the mesoscale dynamics at order O( j2). in the u 1 equation. 

Having found the scale relations that introduce nonhydrostatic dispersive effects at 
order O( J2). we next use these relations to derive the equations of dispersive barotropic 
ocean dynamics. In the tL' equation at order O( (S-l) we have hydrostatic equilibrium. i.e .. 

opo + 1 = 0 (1-1:)az 
and from the II equation in (7) at 0(1) we have Vpo = O. Hence Po = -z + canst .. 
Consider the w equation in (7) at O( E), 

apI JZ Iaz + PI = 0 => PI = - PIdz + lb( x, y ~ t), (1.5 ) 

and compare with the II equation at order O( €2), 

auG 
VPl = - at . (16) 

Taking cross derivatives in the two expressions above for Pl gives 

a2uo 
(17)ataz = V Pl· 

Since advection of mass implies, at order O("y), 

apl = 0 (18)at ' 
the right hand side of (17) is independent of time. Hence, integration of (17) implies llo 

is expressible as 

Uo = t J% V Pldz' + u~(x, y, t) + uo(x, y, z), (19) 

and the first term grows linearly in time unless 

VPl = O. (20) 

That is, any vertical shear at order O({3) must be time independent; otherwise, secular 
terms will develop. Thus the term uo(x, y, z) is the only z-dependence possible for Uo in 
the present balancing scheme. For definiteness, we will set Uo = 0 for the rest of this letter 
and drop the prime for u~(x, y, t). We will examine the effects of the time independent 
vertical shear term elsewhere, in [3]. Equations (18) and (20) imply PI = PI (z), and we 
will take for the equilibrium density stratification 

Pl(Z) = sz + canst., (21 ) 
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where .s is a negative constant. This equilibrium density stratification is typical over 
rnost of the ocean I. Since OPl/ at = 0 'Ne must regard the dynanlics of the fluid as 
taking place' in a nonhomogeneous medium of fixed backgr0und density prf!j + "'ypd z). 

Inc0mpressi bility implies 

awo 
- V . Uo => Wo = -.:V . Uo ~ o(:r. y, t ). (22)oz 

vVe can evaluate the function d> from the boundary condition at z = -h, 

-Uo' Vh =WOI-h =hV· Uo + </>, 

hence (22) becomes 
Wo = - V . (z + h) uo, (23) 

which will be useful later. In the w equation at order O( t1E2) we have 

fJP2 __ awo 
t24)oz + P2 - at' 

and so from (23) 

P'z(x, y, z, t) = kZ20tV · Uo + Zc1t V . (huo) - rP2dz' + ~,t(x, y, t). (25) 

Only partial differentiation with respect to time appears in (25), since our ordering scheme 
requires us to neglect in the material time derivative the advective transport term that 
would otherwise appear in (24). Next, we eliminate both tP in (15) and t/J' in (25) by 
using the free boundary conditions for the pressure 

p ,- plz=( = (Po + ,Pt + ,21'2 +0(,3)) Iz=( 

- canst. - ( +.., ( - / PI (z)dz + 1P(x, y, t)) + ..,2P'z(x, y, (, t) + O(·l). (26) 

Hence the difference between the pressure at any z and the specified surface pressure, p, 
IS 

t::..p := p - p = ( +.., 1.' PI (Z')dzl +..,2t::..P'z, (27) 

where 

t::..P'z = 1.' P2(x, y, z', t)dz' + ~z28tV . Uo + z8tV . (huo) + 0(0). (28) 

We remark that P2 k is of the same order as (, and as the transport terms neglected in 
(24), namely O(a). For the reader's convenience the scaling and matching considerations 
so far are summarized order by order in fig, 2. 
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\Ve still need to evaluate Vp, where 

Vp = Vp + (1 + rpdO))V( + -f2V(~P2) + 0(,3,0:2,). (29) 

Evaluating the average of (28) leads to 

(30) 

Here the first term comes from taking the horizontal gradient inside the integral in 
(28), neglecting surface terms of order O(a) then averaging and exchanging order of 
integration. The second set of terms in (30) again neglects surface terms and transport 
terms of order 0(0:). 

For closure in the barotropic equations we need a dynamical equation for the first 
term in (30). From equation (7) at order 0({32), multiplied by z + h and vertically 
averaged, we obtain after some algebra 

-----:--
Ot(z + h)VP2 + 0(0:) = -s(z + h)Vwo 

byeq. (23) - s!: (!:V(V . (huo)) - h
2 

V(V . uo)) 
T} 2 6 

_ s (~V(V. (hllo)) - ~2 V(V. uo)) + O(a). (31) 

We remark that a. choice of the density stra.tification different from the linear law assumed 
in (21) would lea.d to the same structure for the right hand side of (31), i.e., the terms 
hV(V ·(huo)) and h2 V(V·uo) would still be there but with different constant coefficients 
depending on the particular form of PI (z). 

Now we are in position to write a closed set of equations for the stratified barotropic 
fluid. Referring to the first and second equations in (12) gives 

- + /3(- V)- I-V+ R -1/3- " i3 v (- --) (32)Ut U . U = - f3 p 0 U X Z - 1'/ • 'T} uu - U U . 

Since u = Uo + 6Ul + 0(62 ) and Uo has been taken to be independent of z, we have 
2Uii -li u =6 (U1Ul - UIUt} +0(63 

), (33) 

and hence the last term in (32) is negligible. After substituting for Vp from (29) and 
(30) we find a. closed set of dynamical equations for (, U and A (since u = no + 0(6), 
and reinstating the order parameter a for (): 

a~ +,8V· (aC + h)u =0, 

,80;: + ,82(if· V)u + Ro-1,82zX if = -,,"(Vp - a(l + ""(p)V( - A + 88~' 

aA =sD (34)at ' 

9 



where we define 
(a.5 ) 

(36) 

and fJ( x. y, t) and p denote the specified surface pressure and the surface equilibrium 
density deviation, respectively. \Ve remark that the first equation in (:34) is exact. while 
the second and third equations have an error term of order O(i3e.\ {3 ete.). Restoring 
dimensions now gives our final equations 

~; +V·((+h)u=O, 

au r. " 1 V - (1 p)v 9 A aD(-- +-a'-+(u·Vat )u+2azxu=-
pre! 

p-g +
Pre! Pre! t 

aA
-=O'Dat ' (37) 

where now 
A:=(z+h)Vp, (38) 

D:= ( 
h'2V(V. (hu))  h 

2 
)S-V(V. u) , (39) 

and 0' := s, PH' = ~ is a negative constant. 
Equations (37) are dispersive shallow water equations that incorporate effects of 

weak deviations from hydrostatic balance, weak stratification and strong, O( 1), topogra
phy. The key approximations in deriving equations (37) are: weak baroclinic horizontal 
velocity dependence, imposed after equation (20); and weak horizontal density gradi
ents. The latter of these approximations is imposed in order to eliminate secular velocity 
growth. The effects of the mean vertical shear still allowed by (19) will be addressed 
elsewhere [3]. Equations (37) restrict to those of Wu [10], provided the stratification is 
absent (A = 0 and 0' = 0), and there is no rotation (0 = 0). In Wu's derivation, the 
initial flow has no vorticity. Hence, there exists a velocity potential for U at all times, 
and the asymptotic expansion proceeds in terms of this potential. In this case, the .mean 
vertical shear iio(z,y,z) in (19) is absent. 

We notice that the solutions u of eqs. (37) give information about Ul and P2. In 
fact, at order O(5{3), we have 

8U
l ( V) R -1" V (40)8t + uo· uo + 0 Z x uo = - P2, 

where P2 is given by (28) in terms of no and powers of z, after P2 has been determined 
from 

(41) 
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Hence. replacing Uo (= IT + 0(8)) by IT in (.f0) and (41). and neglecting terms of order 
0(8) gives a system of equations recovering ud.c. y. z. t) and P2(X. y, z. n. 

In the absence of stratification (1' == 0) and l,\-ithout the dispersion caused by hydro
static pressure imbalance (D = 0). these equations reduce to the standard, topograph
ically forced. rotating shallow water equations. Dropping overbars and surface forcing 
ternlS. these are 

811 + V. nu == 0at " , 

~~ + (u . V)u +2f!z x u = -gV." +gV h. (42) 

It remains to give an interpretation of the acceleration due to stratification, - -LA. 
Pr"!j 

For this. we refer to ancient experiments of Marsigli, as described in [4]. 
In the seventeenth century, L. ~1. Marsigli considered convective adjustment due to 

horizontal density gradients as the mechanism for producing the undercurrent flowing 
through the Bosphorus Strait toward the Black Sea from the Mediterranean. To verify 
this mechanism, Marsigli set up laboratory experiments with a partition separating two 
compartments containing water of different salinities. When the partition was removed, 
water at lower depths would flow from the compartment of higher salinity (as in the 
Nlediterranean) toward the compartment of lower salinity (as in the Black Sea), thus 
explaining the mechanism for the undercurrent. Of course, the explanation comes from 
differences in hydrostatic force for the two compartments, which is precisely the effect 
being modeled in eqs. (37) by the acceleration vector - -1LA. To see this, we compute

Prel 
the hydrostatic forces acting on the partition for the set-up shown in fig. 3a. Here we 
assume for simplicity P = Pre! + i 2P2' i.e., no equilibrium stratification (PI = 0), and 
restrict density variations to P2 only. Immediately after the removal of the partition, the 
difference in hydrostatic forces along the partition would yield an initial acceleration field 
for the fluid particles. Namely, a (small) force ~f 

~f = -9i2(P+ - p_ )zx := -9i2tl.pzx 

is directed along the x-axis from the higher-density ('12p+) compartment toward the 
lower-density ('12p_) one. Vertically averaging this force gives initial acceleration of a 
column of wa.ter located at the partition, i.e., --2

1"Y'l~. It is ea&y to see from the 
Pre' 

definition (38) that this vertical average is equal to the acceleration vector _-1L A for 
Prel 

this density distribution. Similarly, calculating differences in hydrostatic forces for other 
simple initial density distributions (such as in figs. 3b,c) again yields the same value as 
- -1L A for the initial acceleration of the barotropic motion. The ensuing dynamics will 

Pre/ 
involve oscillation and circulation generated by the gravity wave force and the Coriolis 
force. This dynamics will be discussed in more detail elsewhere. 
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Conclusion 

Our pllrpose in this letter has been to report preliminary results concerning the dispersive 
effects of hj"drostatic imbalance and stratification in the barotropic approximation. by 
developing an asymptotic series for mesoscale ocean dynamics that closes at order O( E4) 

for solutions with weak vertical shear and weak horizontal density gradients. The result
ing closure scheme is the set of dispersive shallow water equations (:37). These equations 
describe the barotropic (vertically integrated) motion. in the absence of dissipation and 
without any coupling to the baroclinic motion. The effect of the dispersive terms in (37) 
is to limit the range of frequencies available to the barotropic motion. (The barotropic 
motion has the highest frequencies present in the problem of mesoscale ocean dynamics.) 
Equations (37) also extend the rotating shallow water description to include hydrostatic 
imbalance and stratification, while they extend the classical Boussinesq family of equa
tions such as KP to include stratification, rotation and vorticity. The relationships among 
these families of equations are sketched in fig. 4. In later work, we will address the effects 
of higher order (O( f6)) nonlinear transport, baroclinic coupling and dissipation. 
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Figure captions 

Figure 1. The geometry of the fluid layer. 

Figure 2. '''Flow-chart'' of the derivation of eqs. (37), order by order in the asymptotic 
expansion. 

Figure 3. Three different initial conditions for Marsigli's experiment. The vertically averaged 
forces acting on the partition at x = 0 are: a) -i2~6.p; b) -f2¥~pj c) -i2~~p. 

Figure 4. Relationships among the various barotropic equations. 
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"Flow Chart" ofDe/~i~'ation 

O(e -1) w-eq ==> Po = -; + rc(.X,,,y ,t) 

O(1) u-eq Vpo = 0 

..,.-
0(£) w-eq ==> PI = ! PI (z)d: 

0(£2) u-eq ==> VPl = 0 

0(£,2) incompressibility ==> V.(z+h)uo =-"'0 
and b.e. @ Z= -h 

0(£,3) w-eq ==> P2 =P2 (UO,P2) 
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3D EULER BOUSSINESQ EQS FOR 

STRATIFIED ROTATING INCOMPRESSIBLE FLUIDS 


Expand in small dimensionless parameters 
and integrate in the vertical direction 

2D DISPERSIVE STRATIFIED 

ROTATING SHALLOW WATER EOS 


Neglect stratification and 
impose hydrostatic balance 

Expand in stretched, 
moving coordinates 

K-PEQWITHROTATING 
STRATIFICATION AND ROTATION SHALLOW WATER EQS 

Rigid lid, no No transverse 
horizontal divergence coordinate dependence 

I BAROTROPIC EQ m-/I IFOR POTENTIAL VORTIC= :K-dV EO WITH STRA TIFICA TION 
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Tues., July 21 	 "To Be Announced," Edwin Power, Univ. College of London, 3:00 p.m., 
CNLS Conference Room 
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Nhan Phan-Thien, Univ. of Sydney, 3:00 p.m., CNLS Conference 
Room, followed by tea 

Wed., July 29 	 'To Be Announced," Timothy Sullivan, Kenyon College, 3:00 p.m., 
CNLS Conference Room, followed by tea 

UPCOMING CNLS WORKSHOPS 
Technical 

Title Dates Location Host 

Reactive Turbulence Workshop 8/3-7/92 CNLS B. Nichols 

Future of Machine Learning 8/6-7/92 Los Alamos A. Lapedes 

Nonlinear RF Excitation of the Ionosphere 1/11-14/93 Santa Fe D. DuBois 

CNLS PUBLICATIONS - NEW RELEASES 

92-1722 	 Steen Rasmussen, Rasmus Feldberg and Carsten Knudsen, "Self-Programming
0/Matter and the Evolution 0/Proto-Biological Organizations" 

92-1785 	 James M. Hyman, Robert J. Knapp and James C. Scovel, "High Order Finite 
Volume Approximations to Differential Operators on Nonuniform Grids" 

92-1790 	 o. L. Bakalis, R. D. Jones, Y. C. Lee and B. J. Travis, "A Recurrent Neural 
Network Approach/or the Solution to the Inverse Problem 0/Iterated Function 
Systems" 
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92-1791 	 Janno Hietarinta and Seppo Mikkola, "Chaos in the One Dimensional Newtonian 
Three-Body Problem" 

92-1844 	 Serge Aubry, "Bipoiaronic Charge Density Waves Polaronic Spin Density Waves 
and High Tc Superconductivity II 

92-1894 	 John E. Pearson and William 1. Bruno; "Pattern Formation in an N+Q Component 
Reaction-Diffusion System" 

92-1895 	 John E. Pearson, "Pattern Formation in a (2+1) Species Activator-I nhibitor
Immobilizer System" 

92-1911 	 Gregor Kovacic, "Singular Perturbation Theory for Homoclinic Orbits in a Class of 
Near-Integrable Hamiltonian Systems" 

92-1968 	 Stephanie Forrest and Alan S. Perelson, "Computaton and the Immune System" 

92-1974 	 Toshiyuki Gotoh and Robert H. Kraichnan, "Statistics ofDecaying Burgers 
Turbulence" 

INTRODUCTION TO LONG·TERM VISITORS, STUDENTS AND POSTDOCS 

Our most recent arrivals and very brief interests: 

Roger Dodd, San Jose State Univ., fluids and condensed matter systems 

Philip Gotdberg, City Univ. of New York, nonlinear optics, plasma physics 

Toshiyuki Gotoh, Nagoya lost. of Technology, turbulence 

Jia Li, Univ. of Alabama., environmental and epidemological models 

Gottfried Mayer-Kress, Iniv. of CA, Santa Cruz, computer visualization 

Edriss Titi, Univ. of CA, Irvine, fluid turbulence and ocean dynamics 

ORGANIZATION OF THE CENTER 

Susan Coghlan, 5-1556 Systems Manager 
Gary Doolen, 7-1444 Acting Director 
Roben Ecke, 7-6733 Acting Deputy Director 
Dorothy Garcia, 7-1444 Secretary 
Frankie Gomez, 7-1444 Administtative Specialist 
Kristie Harris, 7-1444 UGS 
Erica Jert~ 7 -S436 Acting Deputy DileclDl 
Y. C. Lee, 7-871.5 Senior Scientific Advisor 
Janet Pacheco, 7-1444 UGS 
Barbara Rhodes, 7-1444 Secretary 
Susan Spach, 7-1444 Secretary 
Felicia Trujillo, 7-1444 UGS 

For more information on newsletter items or lor suggestioltSlor future issues. contact Barbara Rhodes. 
(505)667-1444. MS-B258. by FAX at (505)665-2659, or by e-mail at "ofJice@goshawlc.lanl.gov" 

Los Alamos National Laboratory, an Affmnative Action/Equal Opportunity Employer. is operated by the 
University of California for the United States Department of Energy under contract W -7405-ENG-36. 

21 

mailto:ofJice@goshawlc.lanl.gov


rtificial Life Makes 
or Lively Conference 

ANTA F1:  About 400 scientists 
m around the world are focusing 
a week on the blurry boundary 
ween llcience fiction and fact as 
y uQveil life fonns they bave 
.teel in everythina

I»ea to computers. 
frum tell 

~el, life in computers. 
Irelcome to the Third Artificial 
re Workshop, where researchers 
ton. quest for DeW definitions of 
fe" 4Ild ".rtificial" They bave 
"eed to diaqree. 
We're tryina to define life II we 
"' f. here (on Earth), and. doIl't 

think we can. We don't know' 
enough," conference oraanizer 
Christopher Ltington said Monday 
at the start of the weeklong confer
ence sponsored by the Santa Fe 
Institute, a Don-profit acientific re
search inlltitute and think tank, and 
Los Alamos National ....ntoOeIL. 

LtinltOO ill an intematioDllly rec
OIDized IU'" of artificW Ufe, anew 
diacipline in which ICieqtlltl try to 
create lifelike (tr'.illna. .nd 
bioloiical Iyltemll in the tett tube 
or computen. 

MOil people think they bow life 

MORE:,... SCIENT..,. on PM! At 

~cientists To Show Off Artificial life at Conference 

llNUEO FROM PAGE Al 

m they see it: From humans to 
lcinths, living things can repro
:e and adapt over generations 
II an instructional genetic DNA 
Ie. Trees and bacteria can be 
Ie. but not a rock. 
Ilngton thlOks it's possible tbat 
[Iy different forms of life bave 
eloped on planets with differeot 
:es of elements, temperaturel, 
IOspheres and distancel from 
r suns. 
1(1 life elsewhere in the cosmos 

could be much 
more bizarre. 

"We jUlt bave 
a sinlle eum
pie" on Earth, 
Langton said_ 
"Tbe definition 
of life should be 
a list of be· 
havlors, not a lilt 
of stuff. The 

",ron malerial is im,ria,... 
,veQ LeVY, aUlhor of the book, 
tifictl Ute," said the implica
, of Ihis new research 10 well 
,ad .be realm of science. 
I!ople's thoughts veer toward 
,icism," be said. "At one point 
~rth there was no life. Nature 
tied Ihe Rubicon, and nature 

us life. If there was a God, 
I tools did he or she use, and if 
e w.s not a god, what was the 
ern?" 
yinK til .. ".Jerstand the deriva
ot life rt!ally is an anempt to 
~rstalld ourselves. and the study 
rtificial life otfers vital clues, 
:ton sai<l. 

GREG SORBER , JOuRNAl 

Scient.... at the Third Artificial Life WOtbhop .... "8Clnated 
with lb.. computet' .. tNt ..... natu........ to 1M flah and 
other anlmala evoev. lind aometImu become extinct. 
Langlon, 43, an anti·w.r ICtivist With stars dying behind him, 

and self-taulht computer backer, Ltington said his idea that computer 
said he became interested in artifi
cial life while programming I corn· 
puler at Massachusetts General 
Hospital. 

While absorbed in bis lask, the 
program "Ufe" was runpinl on a 
computer screen behind bim. 

"Life" was developed by John 
Horton Conway, a brilliant and 
eccentric mathematician who stu
died the abstract frinles of number 
theory. Conway employed the laws 
of physics to create stellar con
stellations within a computer that 
evolve and die in unpredictable 
patterns. 

PI'OII1UDI bad a life wal born. 
..At one point I lOt the feelinl 

there ••• IOID.oDe elle in the room 
•• if • friend of mine wall aoinl to 
come up and say, 'Boo,' .. he said. 
"The hair on the back of my neck 
!ftood up. It lot down past my 

:-VOllI Iystem. Tblt caused me to 
.• ink ,bout IILIcbioea differently. I 

believe you can bave real Ufe inside 
a coaaputer." 

l..aaIton baa ... named cbief 
editor of a DeW ldeatific journal, 
..Artificial ute," whicb the M.as
..cbuletts Institute of TecbnololY 
Prell will start publiablnl ne~ 
year. 

Cbarles Taylor, a UCLA biology
profeuor atteodin. the conference, 
shook hill bead over Lantrton's life
in-a-computer belief. 

". don't know where to draw the 
boundary," he said. 

Uke otbers studyinl artiricial 
life, Taylor said the research is as 
disturbing as it is exciting. 10
creasipgly powerful computers, for 
example. could go from controlling 
their own behavior and that of 
robots to directing human behavior, 

from traffic to economies. 
Wilhin 20 yearl, Taylor said, com

puters will su."... the power of the 
hUrnlen brain and could become 
1,000 timel more powerful afler 
that. 

"We may well be to computers 
wbat horses and dOIS are to us," he 
said. "If control of information 
controls the world, tbat could be the 
computerll. " 

ReleUCb involvina ."ifictal life 
could be equaDy beneficial. 

Scientists now are usina princi
ples involved in artificial life to 

, 

, 

understanct the immune system . 
ecology and other "complex adap
tive systems" that Taylor said 
"seem to have a life of their own." 

Waving to sun-drenched cotton
wood trees outside. Steuart Kauff
man, a biochemistry and biophysics 
professor althe University of Penn
sylvania, said he and others are 
searching for an explanation of how 
and why simple systems give rise to 
complexity. 

..A new arena of science is being' . 
born. Something is breWing. but 
none of us know quite wbat it is." 

I 




