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Abstract 

In this paper we investigate the dynamical behaviours of a contin­
uous intense charged particle beam in an acceleration and transport 
system. It is assumed that fermion particles, such as electron and 
prolon, in the beam follow Fermi-Dirac statistics in the equilibrium 
stale. Parametric resonances, chaotic motion, and halo formation in 
transverse direction of motion are investigated analytically. The an­
alytical expressions for the parametric resonances and the maximum 
transverse position deviation, above which chaotic motion starts to 
occur due to transverse beam envelope oscillation, are derived. An­
alytical formulae for the current loss rate are established, which can 
be served as scaling laws and a guide in a numerical simulation based 
machine design. 

Introduction 

To generate, accelerate, and transport high current ion beams have 
become serious subjects of research since the beginning of 1940s orig­
ina.lly related with military applications [1] [2]. Recently, high power 
ion beams are more and more demanded in the related possible a.p­
plications such as thermonuclear energy production, transmutation of 
radioactive wastes, the production of tritium and the special materials, 
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and the conversion of plutonium [3J-[9J. One of the major challenges 
on the lina.c is to keep the machine maintenance hand-accessible which 
can be roughly quantified by a rule-of-thumb of the average particle 
loss rate < 1 nA/GeV1m [3J. The lost particles are mainly from the 
halo which surrounds the beam core. The origin of the halo formation 
has kept physicists working for years on analytical models and numer­
ical simulations [10J-[24] (the references cited here are, of course, far 
from com plete). Among others the particle-core model proposed by 
O'Connell, Wangler, Mills, and Crandall [10J is the simplest and the 
most explored, which illustrates many important features of the dy­
namics of the particles which constitute the halo with the assumption 
that the core has a uniform density and zero emittance. Now we sum­
marize briefly the main results from what have been previously done 
nu merically and theoretically on halo formations. Once there exists an 
envelope oscillation a parametric resonance might occur when the par­
ticle oscillation frequency is about half of that of the core oscillation 
(which is analytically predicted by Gluckstern [l1J and numerically 
confirmed by, for example, Wangler et al. [12J and Ryne et al. [13J. 
An important result from the particle-core model is the prediction that 
these resonantly- driven halo particles have a maximum amplitude for 
a given mismatch amplitude, which is confirmed by numerical sim­
ulation studies. By making stroboscopic plot in phase space (which 
is first used in halo studies by Lagniel [14] [15]) one finds that there 
exist three distinct regions defined by a separatrix. The first is the 
so-called core-dominated region where particles spend most of their 
time inside the core. The second is a outer region, or the so-called 
focusing-dominated region, where particles spend most of their time 
outside of the core. In this paper we define the particles located in 
this region are halo particles. Finally, the regions surrounding two 
fixed points on the x axis (radial direction), one on each side of origin, 
where the particle oscillations are close to one half of the core fre­
quency and the above mentioned parametric resonance prod uces large 
energy transfers. The three types of particle stroboscopic trajectories 
in phase space are schematically illustrated in Fig. 1. For a more 
complete summary of what we have known about halo formation the 
reader is suggested to read the book written by T. Wangler [2J. 

The problem with the existing models is that it is not obvious to 
predict the particle loss rate [24J. In this paper we try to explain an­
alytically the halo formation processes in detail, and try to estimate 
the halo current loss rate analytically. In section 2 we discuss the par­
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Figure 1: Schematic illustration of three types stroboscopic trajectories in 
phase space. The particles located in the focusing-dominated region are 
defined as halo particles. 

ticle density distribution for a round continuous beam in a continuous 
solenoid focusing channel. The fermion particles, such as electron and 
proton, which constitute the beam are assumed to follow Fermi-Dirac 
statistics in the equilibrium state. In sections 3 and 4 we investi­
gate the transverse motions of the particles originally located in the 
quasi-uniform density and nonuniform density regions, respectively. 
The conditions under which parametric resonances and the chaotic 
motions in both regions are established a.nalytically. In section 5 ana­
lytical estimation of the halo particle loss rate is given and analytical 
current loss rate formulae are established. Finally, in section 6 we give 
the conclusion. The mathematical details are presented in appendices 
A and B. 

2 Particle density distribution 
To transport a space-charge limited intense current beam an optical 
focusing elements have to be installed along the beam line. The single 
particle motion in the beam is determined by the applied focusing 
force and the space charge force. Apparently, to establish equations 
for the single particle and the collective motions in a consistent way 
is not obvious since it depends on the concrete particle distribution. 
In 1950s Kapchinskij and Vladimirskij studied a )1 perfect beam" (but 

3 



not realistic) which has uniformly filled projection ellipses and they 
derived the envelope and single particle transverse motion differential 
equations for a continuous beam as follows (we limit ourselves to round 
rt.nd continuous beams) [25]: 
- Envelope equation: 

d2R 2 J( (;2
-+wR----=O (1)
dz 2 0 R R3 

where R is the beam envelope in a continuous solenoid focusing chan­
nel, J( = 2(h/lo)/((3,)3, 7rE is the beam un normalized transverse 
emittance, , and (3 are the normalized particle 's energy and velocity 
(v/c), respectively, Iv is the beam current, and 10 = 47rE07rmoc3/g with 
mo/q being the mass charge ratio of the particle (/0 = 1.7 X 104 A for 
electron). 
- Single particle equations: 

(2) 

when x < R, and 

(3) 

when x > R. Since the KV envelope equation is derived from a 
specific microcanonical distribution, the validity for the other kinds 
of distribution is not automatic. According to Lapostolle [26] and 
Sacherer [27], one can use the same form of envelope equation for 
any possible particle distributions provided that the envelope and the 
em ittance are defi ned as 

(4) 

(5) 

From now on the form of the envelope equation expressed in eq. 1 is 
regarded as particle density distribution independent. Now we distin­
guish two cases: the matched and mismatched beams. Considering 
now a continuous focusing channel, for the first case one means: 

]( E2 

W6 R - R - R3 = 0 (6) 

and 

(7) 
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for x < R, where w; = (2/R4. For the matched case, apparently, 
when ( = 0 the motions of particles within the beam envelope can be 
equivalent to those of particles in collision free gas of zero temperature 
(in this paper we consider only fermion gas such as electron and pro­
ton which have half-integral spins). For the zero emittance matched 
bea,m envelope radius, Ro, one finds Ro = J7{ /wo. When ( I- 0 the 
sta.tionary envelope radius will become R = Ro + bR. Putting this 
exrress ion into eq. 1, for bR < < R, one finds 

(8) 

From eq. 1 one knows tha.t if R deviate a little bit from Ro at zero 
emittance limit the envelope oscillates approximately like an harmonic 
oscillator: 

(9) 

where WR = V2wo which is called the envelope oscillation frequency. 
Now we are at the s tage to estimate the stationary particle density dis­
tribution function, n(x). As noted above we regard the particles in the 
matched beam as the particles in a fermion gas, and in consequence, 
the density distribution follows Fermi-Dirac statistics: 

nE=On(E) - --___---- (10) 
- 1 +exp ((E - p,)/kT) 

where E is the particle's energy, p, is the chemical energy of the gas, 
k is the Boltzmann constant, and T is the temperature of the gas. 
The energy of a particle is proportiona.l to the square of its plasma 
oscillation amplitude and kT is proportional to the square of Debye 
length, AD. One rewrites eq. 10 as 

nx=on( x) - -------=--=-~ (11 ) 
- 1 + exp ((x 2 - R6)/ Ab) 

w here AD is estimated as follows: 

(12) 

or 
AD 

(13)
Ro 
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Figure 2: Sta.tionary particl e density distribution (Fermi-Dira.c distribution) , 
where ).D/ Ro = 0.5 and Ro = 1. 

which is a little bit different from that found by 1. Hofmann and J. 
Struckmeier [28] . Now we look at a more general situation when the 

beam is not matched with R = Ro + 6.R and 6.R < < Ro. In analogy 
with oR we know that 6.R oscillates with envelope frequency, WR also. 
In the equilibrium state (there is no diffusion process exists) pa rticles 
are ass umed to follow Fermi-Dirac statis tics as in the case of matched 
beam. The general expression for AD is obtained as: 

2 

\ 2 Vthermal 
 (14)"'D = 

W 2 
P 

where w1n = 2w56.R/ Ro, 6.R and oR are statis tically independent. 
When 6.R = 0 eq . 14 reduces to eq. 12. In the case where the 
contribution from the definite emittance can be neglected eq. 14 can 
be si m plified as: 

AD)2 :=:::: 6.R (15)( Ro Ro 
Apparently, for a matched beam with E = 0 the particle density 

stationary distribution is uniform with an unambiguous beam radius 
Ro. If, however , AD # 0 there exists a nonuniform density dis tribution 
zone located near x = Ro as shown in Fig. 2. To s tudy single particle 
dynamics we assume that for x < flO-AD and x > RO-AD the particle 
transverse motions are described by eqs. 2 a nd 3 , respectively. To 
appreciate the magn itude of the un normalized rms emittance ina Ii nac 
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we recall the analyt.ical result from ref. 2 that. after one-fourth plasma 
wavelength, Ap = 27TRo/J3K, the rms emitLance of the injected beam 
into linac will reach a saturated value due to th e charge re-distribution 

process: 

E = 7T Ro (f( (16)
24 V15 

Even this result is obtained from an initially parabolic de nsity round 

beam of zero emittance, it is still use ful for illustrating the physical 
picture and the magnitude estimation . Equiprecl with eqs. 11, 14 
and IG , one can estimate th e equilibrium particle density dis tribution 
which se rves as our start point for the further discussions. To s umm a­
rize what we ha ve learned from th e above analysis, one assumes that 
for a beam constituted by fermion particles in a continuous focusing 
c hannel the stationary tra nsverse density dis tribution follows Fermi­
Dira.c sta tistics. For th e particles within the d e nsity quasi-uniform 
region they exec ute simple plas ma oscillations. For the particles lo­
cated in the nonuniform density region their dynamic be haviours are 
ass umed to be de termined byeq. 3 . 

The particle dy nam ics under en veJope mod ulation pertu r bations 
in both regions a.re discussed in detail in the following two sections . 

3 Instability due to parametric 
resonance: Arnol'd tongues 

In a continuous focu s ing channel the particles in the quasi-uniform 
den sity reg ion of a matched beam is shown to exec ute s imple pla.sma 
oscillations . Th e question now is what will ha ppen to these particles if 
the beam envelope is modulated due to eit her periodic focusing chan­
nel or mismatch? In this section a mism atched bea m in a continuous 
fo c using channel is considered sin ce fo r a matched periodic focu sing 
channel the procedure to treat the problem is the same. From eq. 2 

it is found that if the bea m envelope is modul a ted from th e matched 
r adius, flo, by 6Rc( z ), the differential equation of motion reads: 

(17) 


wh e re 6Rc(z ) = 6Rc(z + Lc) , a nd Lc is th e e nvelope modulation 
period. If 6Rc:(z) is expressed as a s inusoidal function of longitudinal 
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Figme 3: The shaded a.reas (Arno['d tongues) correspond to the para.metric 
reSOIla.nce regions. 

position, z, the stability region of x will be determined by Mathieu 
equation [1]. Not sticking to the mathematic rigor we assume that 
~Rc(z) is approximated by: ~Rc(z) = ~Rco when 0 ~ z < Le/2 and 
~Rc(z) = -~Reo when Lj2 ~ z < Le. Defining 

(18) 


and 
Lc)2 2J(~Rco

r:v= ( ( 19) 
27r R5 

one gets the stable and the parametric resonance regions described by 
the functions [29]: 

w; ~ n ± 
w 2 

10 ' n = 1, 2, 3, ... 
v8n3 

(20) 

and 
I 2V2w 

wp ~ k/2+ ~,k = 1,3,5,'" (21) 

For k = 1 we obtain the result obtained by Gluckstern [11] that when 
the particle frequency is about one half the core frequency the para­
metric resonance occurs. In this paper we generalize this particular 
conclusion to a more general one: when the particle frequency is about 
an integer' limes one half the core frequency the parametric resonance 
occurs. The instability regions (Arnol'd tongues) are schematically 
illustrated in Fig. 3 by t.he shaded a.reas. From eqs. 20 and 21 
one knows that the widths of the instability regions decrease with 
increasing resonance orders, and that the lower order resona.nces are 
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much more dangerous than the higher ones. What is very important 
to note is that when the reso nance co ndition is satisfied the ampli­
tudes of all the particles in the quasi-uniform density region increase 
at the same time, in consequence, the envelope radius increases until 
the resonance state is broken. This means tha,t parametric resonance 
can ind\lce larger amplitude core oscillation (start.ing from an initially 
s mall envelope oscillation) which will have a severe consequence on 
the motions of the particles located outside the core (quasi- uniform 
d ensit.y region) as we will see in the next section. To avoid parametric 
resona,nce the beam parameter has to be chosen carefully. It is found 
that the beam unnormalized emittance 10 should satisfy the following 
relation: 

* {KR (22)
{ < { 0=V2" 


The practical implication of {* is that the resultant emittance coming 
from the ion source and the space-charge effect shown in eq. 16 should 
be less than 10*. 

4 The onset of halo due to nonlinear 
resonances and stochastic motions 

From what discussed in sect ion 2 one knows that the number of the 
particles originally located in the focusing-dominated region is ex­
tremely few. From now on we focus our attention to the motions 
of the particles originally located just near Ro a nd show how these 
particles can finally diffuse into the focusing-determined region due 
to beam envelope oscillation. As we have assumed in section 2 the 
trajectory of a particle located in the nonuniform density region is 
determined by eq. 3. If we define x = Ro + L).x, where L).x « Ro, one 
finds L).x satisfies the following nonlinear differential equation: 

It has been s hown numerically that the solution of L).x is stable and 
periodica.l [10] [14]. Now let's consider the case when there is an en­
velope modulation, L).R , around Ro due to either periodic focu s ing or 
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mismatching. The differential equation governing the particle motion 
near Ro turns out to be: 

2 
d t:l.x 2 J( J( ((t:l.X)2 t:l.X) 3 )--2- + wot:l.x + -t:l.x - - - Ro + ... +(dz Ro Ro Ro 

J(~R(t:l.X)2_ . .. =O (24) 
Ro Ro 

For the matched case t:l.Rmatch has the same period as that of the pe­
riodic focusing lattice, £. In this sect ion we discuss only the matched 
periodic focusing channel, and denote t:l.Rmatch = t:l.Ro. To simplify 
the mat.hemat.ics treat.ments we assume that t:l.Ro(z) is represen ted by 
a periodic delta function of period L and amplitude t:l.Ro as s hown in 
Fig. 4. It is shown (see appendix A) that under the periodic envelope 
oscillation perturbation if the amplitude of a particle's deviation t:l.x 
is larger than some limit, say t:l.x max , the motion of this particle will 
become chaotic, and t:l.x max is analytically expressed as follows: 

16R8 )l~
t:l. - 0 (25 )Xmax - ( 9£2 J(2t:l.Ro/3(z)2 

where /3(z) is the beta function of the focusing channel. To appreciate 
quantitatively t:l.x max expressed in eq. 25 we consider a continuous 
proton beam of h = 5A (in the practical sense, h is peak current for 
a long bunch), Ro = O.005m, t:l.Ro = O.002m, £ = 5m, ,13(z) = 8m, 
and plot in Fig. 5t:l.xmax / Ro vs the beam kinetic energy, W(MeV). It 
is clear tha.t no matter how strong the focusing is there exists always 
ra.ndom moving particles at the low energy part of the lina.c if definite 
envelope oscillation presents. 
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Figure 5: 6.Xmax / Ro vs the energy of a proton beam of h 5A, Ro 
O.005m, 6.Ro = O.002m, L = 5m, and j3( z ) = 8m. 

5 Estimation of beam current loss rate 

The questions now are what will be the dynamic behaviour of a particle 
executing random motion and how it contributes to the halo forma­
tion. According to the discussion given in appendix B one knows that 
the particles located near Ro (x = Ro + 6x) with 6x ~ 6x max will 
diffuse outwards into the focusing-dominated region and contribute to 
the halo. The random motions of these particles can be described by 
a possibility function which satisfies the Fokker-Planck equation and 
the diffusion coefficient is obtained analytically. 

In this paper we propose two different ways to appreciate and 
estimate two beam loss rates. The first beam loss rate we are going to 
discuss is the average beam loss rate on the mechanical boundary of 
the beam transport system, which has an apparent practical meaning. 
We may make a rough estimation in the following way. From appendix 
B it is known that the particles located in 6x ~ 6xmax witt diffuse 
outwards. The current, I d , which participates this diffusion process 
can be calculated as: 
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Figure 6: Schematic illustration of halo particle loss at the mechanical bound­
ary. 

x 
- h l == 1 d 2Id- 2 x 

RO x=Ro+~x",ar 1 + exp ( x\-(5) 

_ Ab I ( exp ((x 2 
- R6)/ Ab) ) (26)- h R6 n 1 +exp ((x 2 - R6)/Ab) Ix=Ro+~xmaI 

One can imagine that a uniform halo disk is formed around the beam 
core started from x = Ro + 6xmax . Due to the beam envelope 
oscillation the dimension of the disk, which extends to the radius, 
R m , of the mechanical aperture of the transport system, oscillates 
with x = Rm ± 6Ro. Obviously, the particles located in Rm ~ 
:r ~ Rm + 6Ro are lost, as shown schematically in Fig.6, and this 
loss will be filled through the diffusion process. If the particle re­
distribution distance, or the so-called relaxation distance Ap/4 [2], is 
shorter than the envelope oscillation period, the beam current loss 
rate, R(A/m), can be estimated as the R = Id(6Ro/ Rm)2 / L, where 
Rm > > Ro . If, however, the relaxation distance is longer than L , one 
has R = 4Id(6Ro/ Rm)2 / Ap. To summarize, we give a simplified beam 
current loss rate formula as follows: 

R ~ hI 6R5 In (1 + exp (26xmax/6Ro)) (27) 
[RoR'fn exp (26xmax/6Ro) 

where [ = L when L ~ Ap/4, [ = Ap when L ~ Ap/4, and I is 
the ratio of the average beam current with respect to the peak bunch 
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F igme 7: The c urre nt loss rates vs the energy of a proton bea m of h = 1J\, 
Ro = 0.005m, Rm = lORa, f = 0.1, L = 5m, and /J( z) = Sm. 

current. Even the current loss rate described by eq. 27 is a somewhat 
pessimistic value, it can be used as a kind of scaling law and as a guide 
in a numerical simulation based practical machine design . In Fig. 7 we 
give an exam pie to s how how one can use eqs . 25 and 27 to estimate 
the current loss and how this current loss varies with beam parameters, 
where we choose Ro = 0.00.5m, h = lA, f = 0.1, L = 5m, j3( z) = 8m, 
b.Ro = 0.0025m and b.Ro = O.OOlm, respectively. In the figure the 
tolerable current loss rate [32] [33] is presented by the dark dots, a.nd 
it is obvious th a t in this case b.Ro should be less than O.OOlm . 

As for the second b€am loss rate, we regard the particles diffu sed 
into the focusing-dominated region as being "lost". In the following 
we are interested in the current Joss rate in this sense. Extrapolat­
ing from what is learnt from the numerical simulat.ions one concludes 

that when ~x 2: ~xsepar at rix ~ 2b.Ro, the particle locates in the 
focusing-dominated region. For example, if Ro = 1, b.Ro = 0.5 then 
th e particles with b.x 2: 1 are loca.ted in the focu sing-dominated re­
g ion [10}. From section 4 one knows tha.t th e p<lrticles located in 
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Figure 8: For a proton beam of h = lA, Ro = O.005m, tlRo = O.0025m, f = 
0.1, L = 5m, and /3(z) = 8m, we show how the current loss rate S varies with 
beam energy, l¥, and distance, z. (a) The current loss rate S vs the beam 
en ergy at z - z' = 1m. (b) S vs the downstream distance (no acceleration) 
for W = 30MeV . (c) S vs the downstream distance (no acceleration) for 
W = 45Me V. (d) S vs the downstream distance (no acceleration) for W = 
65MeV. 

6.x mar :s; 6.x :s; 26.Ro will diffuse into the focusing-dominated region 
and contribute to the halo populations, and one finds (see appendix 
B) that the loss ra.te ca.n be approximately expressed as follows: 

<;( II' I') 
... z , Z, = 

Irf(I ­ I')
j21fD*(z _ Z')(Z _ Z') exp 

((I - 1')2)
- 2D*(z _ z') 

( ) 
28 

where 
{ = 9(1&/ 10)(3(z)L 6.R2 

R6((3,)3 0 
(29) 

I' = 9(1&/ {o)(3(z)L 6. x2 
4R6Uh)3 ma x 

(30) 
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* I 1 (31 )V = V = 2LI'l.X=I'l.Xm"r 

I - I A}; In (1 + exp ((x 
2 

- R6)/A};)) Ix =Ro+26>Ro (32) 
r - b [(6 exp ((x 2 - R6)/ A};) x=Ro+6> x 

mar 

The physical meaning of S(z, liz', J') is that the beam current loses 
part o[it into the focusing-dominated region (due to the particles' ran­
dom motions at z = z') at the rate of S(z, I) down stream. S(z, I) is of 
importance especially when the beam is mismatched locally, say near 
z', and one is interested in how the loss rate varies downstream. To 
show the usage of eq. 28 we give some examples in Fig. 8. Considering 

a proton beam of h = lA, f = 0.1, Ro = 0 .005m, f"<1Ro = 0.0025m, 
L = 5m, and (3(z) = 8m, Fig. 8(a) shows the loss rate S(z, I) varies 

with respect to the beam energy, W(MeV), at z - z' = 1m. Figs. 
8(b) to 8(d) show the the current loss rate S(z, I) downstream (no 
acceleration) with the proton beam of W = 30MeV, W = 45MeV, 
and W = 65MeV, respectively. It is obvious that S(z, J) provides us 
a more detailed physical image of halo formation process. In prac­
tice, collimators are useful to sweep off halo particles, and their lo­
cations, however, should be chosen carefully. Taking the case shown 
in Fig. 8(b) for example, to sweep off the halo particles produced 

at W = 30MeV the collimator should be installed downstream more 
than 20 meters. 

6 Conclusion 

In this paper we have investigated analytically the halo formations 
in continuous beams. It is assumed that for the matched beam with 
definite transverse emittance the density distribution follows Fermi­
Dirac stat.istics (for fermion particles). The conditions for the parti­
cles' transverse motions to have parametric resonances and nonlinear 
force induced stochastic motions are derived analytically. For the 
parametric resonances it is found that when the particle frequency 
is about an integer times one half the core frequency the parametric 
resonance occurs. For the nonlinear force induced stochastic motions 
it is shown that the particles located a.t f"<1x > f"<1x max (see eq. A-35) 
execute stochastic motions and diffuse away from the beam core con­
tri bu ti ng to halo particles. The number of this ki nd of particles can 
be estimated by using transverse Fermi-Dirac distribution. Finally, 
the way t.o estimate the beam current loss rate due to the transverse 
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7 

halo is illus trated and analytical loss rate formulae are established. In 
tbis paper we present only the results on th e transverse motion of a 
continuous beam and omit the discussions on the halo formation due 
to the longitudinal motion of a bunched beam which has been the 
subject of the research works in refs . 34,3.5 and 36. 
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Appendix A 

We represent eq. 24 by a corresponding Hamiltonian: 

7{ == f!0 _ ~{ (6 x ) 3 + J{ (6 x ) 4 + I( (6R) (6 x ) 3 (A-I)
3 Ro 4 Ro 3 Ro Ro 

with 

(A-2) 


where p == d6x/dz, wo(z) and 6Ro(z) are periodic functions satisfying 
the relation 

Wo (z) = Wo (z + L) (A-3) 

6Ro(z) == 6Ro(z + L) (A-4) 

Clearly, the Hamiltonian, 7{, contains two parts: the linear force rart, 
Ho, and the nonlinear force part. It is natura.l to consider the nonlinear 
part a..'3 a perturbation to flo. For the unperturbed Hamiltonian the 
solution of 6x is found to be [37]: 

(A-5) 


with 
t ds (A- 6)rjJ(z) ==.fo f3x(z) 

where f3:r(z) is the beta function of the focusing lattice, and f. x is 

a constant which should not be confused with the beam emittance 
defined in section 2. As an essential step towards further discussion on 
the motions under nonlinear force perturbation, we introduce action­
angle variables and the Hamiltonian expressed in these new variables 
becomes: 

J 
(A-7)Ho(J, 1l1) == f3x( z ) 

where r dz' 
(A-S)Il1 == .fo f3x(z') + <Po 

and 

(x 1 ( 2 (( ,f3~6X) 2)J = - = - -) 6J; + f3x z)6J; --- (A- g) 
2 2,f3x (z 2 
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Since the Ho(J, W) = J/!3x(z) is still a function of the independent 
va.riable, z, we will make another canonical transformation to freeze 
the new Ha.miltonian: 

27TV i2 dz'
WI =W+-­ - ­

L 0 !3x(z') 
(A-IO) 

Jl = J (A-ll) 

H -1-£27TV J ] (A-12) 

Now, let's recall the relation between the last action-angle variables 
and the particle deviation ~:r: 

(A-13) 

Before putting eg. A - 13 into eg. A-I, for the mathematical conve­
nience, the periodic function ~R is represented by a periodic delta 
function of period L and amplitude ~Ro as shown in Fig. 4 . The 
Hamiltonian 1l becomes 

1i = Ho- [( (~.1:)3+ 1<.." (~X) '~+ 1<.." (~Ro) (~.1:)3 L f 8(z-kL) 
3 Ro 4 Ro 3 Ro Ro k=-oo 

(A-14) 
Putting eq. A-13 into eg. A-14 and eliminating fast phase dependent 
varying terms in the second and the third terms in eg. A-14, one gets 

_ 27TV [( 4/2 I 4! 

1l - £J] + 4R6 (2JJ,6(z)) 24 ((4/2)!)2 


+I~ (~R~o) (2Jl!3(Z))3/2cos3WlL f 8(z-kL) (A-15) 
o 	 k=-oo 

where we have used 	trigonometric relations: 

m , 

m m 
cos ()cos n() = T	 L ( m.), ., cos(n - m + 2r){) (A-16) 

r=O m - r .1. 

23cos () = 2 ( cos 3() + 3 cos ()) (A-17)
3 

4 I 	 4! ) 
cos ()= 24 (cos4() + 4cos2() + ((4/2)!)2 (A-IS) 
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From Hamilton's equations 

dlt 
(A-19)

dz 

(A-20) 

one gets the differentia'! equations of motion in terms of action-angle 
variables : 

dWl 2Jrv 4!KiJ(z)2
dz = L + 25R~ J. (A-22) 

Now it is the moment to change this differential equations to the 
difference equations which is suitable to analyse the possibilities of the 
onset of stochasticity [38] [39]. Since the perturbations have a natural 
periodicity of L we will sample the dynamic quantities at a sequence 
of Zi with constant interval L ass uming that the characteristic time 
between two consecutive adiabatic invariance breakdown intervals is 
s llOrter than Lie. In fact this is exactly the stroboscopic map used 
firstly by Lagniel [14J in his numerical simulations on halo formations. 
The differential equations in eqs. A-21 and A-22 are reduced to 

J) = JdWl,Jd (A-23) 

WI = ~(w1,Jd (A-24) 

where the bar stands for the next sampled value after the correspond­
ing unbared previous value. 

T = J - K (t:.Ro) (2J f.I(z ))3/2dcos
3 

WI L (A- 25)
1 1 3 R~ lfJ 1 dw 1 

(A-26) 


From the trigonometric relation, apparently, the right-hand side of 
eg. A- 25 conta,ins sinusoidal functions of phases, WI and 3W). If the 
tune v is far from the resonance lines v = min, where m and n are 
integers (n=l and 3 for this specific problem), the invariant tori of 
the unperturbed motion arc preserved under the presence of the small 
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pertllrbations by virtue of the Kolmogorov-Arnold-Moser (KAM) the­
orem . If, however, v is close to the above mentioned resonance line, 
the situation is getting complicated and under some conditions the 
KAM invariant tori can be broken. Taking the third order resonance, 
mj'J, for ('xampl e, we keep only the sinusoidal function with phase 
3\V 1 in eq. A-25 and the dominant phase independent nonlinear term 
In eq. A--26, itnd a,s the result, we have eqs . A-25 and A- 26 reduced 
to 

.It = ·h + Asin 3Wl (A-27) 

WI = WI + Bh (A-28) 

with 
A = L[(6 Ro (2h(3( z ))3/2 

4 (A-29)
4Ro 

B = 3J((3~)2 L (A-30)
4Ro 

where we have dropped the constant phase in eq. A-26. It is helpful to 
transform eqs. A- 29 and A-30 into the form so-called standard map­

ping [39] (the mapping firstly established in the microtron invented by 
Veks ler [40)) expressed as 

7 = J + [(0 sin () (A-31) 

(A-32) 

with () = 3W, J = 3BJ I and [(0 = 3AB. By virtue of the Chirikov 
criterion [39] it is known that when IKol ~ 0.97164 [41] resonance over­
lapping occurs , stochastic motions and the diffusion process appear. 
Therefore, 

1[(01 ~ 1 (A-33) 

can be taken as a natural criterion for the determination of the onset 
of the halo formation. Putting eqs. A-29 and A-30 into eq. A-33, 
one gets 

(A-34) 

and consequently, one find s maximum stable 6:r(z) value correspond­
ing to m / 3 resonance: 

(A-35) 
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Readers can easily find that for the first order resonance 6..T max is 
exactly the same expression as that described in eq. A- 35. Obviously, 
if a particle is located at 6. :c > 6.xmax then this particle will execute 
random motion. In appendix B we discllss the behaviour of these 
random moving particles. 

Appendix B 

Now we look at the motions of those particles which do not satisfy 
the condition given by eq. A-33. Once a particle begins to execute 
stochastic motion the phase mixing occurs, and the mapping given by 
eqs. A-31 and A- 32 can be regarded as a Markov process [30], and in 
consequence, the possibility distribution function F(z, I) satisfies the 
Fokker-Planck equation: 

8F 8(AF) 1 8 2 (VF) 
(B-1)8z = - 81 +:2 8J2 

where 
« 6.1 » 

(B-2)A= L 

a.nd 
v = « (6.1)2 » (B-3)

L 
where the notation < <> > denotes the average over phase e. From 
eq. A-31 one knows 

(B-4) 

and obviously, one has 

A= 0 (B-5) 

and the diffusion coefficient 

v = K5 (B-6)
2L 

The solutions of the Fokker-Planck equation are discussed in detail in 
rer. 31. Once F is solved with initial condition one ca.n calculate the 
probability current, S(z, I), defined as: 

S(z, J) = AF _ 8(VF) (B--7)
81 
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Inserting eqs. B-.5 and B-6 into eq. B-1 and eq. B- 7 one gets 

8F 

8z 

182 (VF) 
-
2 81 2 

(B-8) 

and 
S(z, J) = _ 8(VF) 

81 
(B-9) 

Now , the difficulty in front. of us is that V is a function of I. When 
the diffu sion coefficient is very small one can use WKB method [31J 
to tra llsform the problem into that of solving a first order nonlinear 
partial differentiaJ equation instead of solving directly eq. B-8. In this 
paper we simplify our task by taking V as a constant, V*, which takes 
the value when the particles start to move randomly, and we obtain the 
analytical solution of F( z , I) with the initial condition F(z', liz', I') = 
o(l- f') as follows [42]: 

F( z li z' I') = . 1 ex (_ (I - 1')2 ) (B-10)
" J27rV*(z - z') P 2V*(z - z ') 

where V* = 1/2L and z > z'. The general solution for the possibility 
distribution with the initial distribution W(z', I') is given by 

W( z, J) = .I F(z, liz' , I')W( z', I')dI' (8- 11) 

[n the following, however, we will treat the problem in an approx­
imate way. From section 5 we know that the particles located in 
.6. :rmax -::; .6.x -::; 2.6.Ro will diffuse into the focusing-dominated re­

gion and contribute to the halo populations, and beam current, In in 

6xmnx -::; 6x -::; 2.6.Ro can be estimated as 

Ib l x = R<J+ 26Ro 1 2 
Ir = 2 ( ) dxRo x=Ro+6x mo x 1 + exp x2).-C~ 

= I )..1 In (1 +exp ((x
2 

- Rl)/)..1)) Ix=Ro+26Ro 
6 X (8-12)

b R6 exp ((x 2 - R6)/ )..1) x =RO+ max 

Now we take Ir as the amplitude of the delta function used above 
and obtain the current loss rate from the beam tail into the focusing­

dominated region as follows: 

1,-1(1 - I') )((1 -1')2
S(z, liz', I') = exp - (8-13)

/27rV*(z - z')( z - z') 2V*(z - z') 
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wh ere S has th e unity of Aim and is a measure of average current loss 
due to the factor J, the ratio of ave rage current and the peak bunch 
ell rren t. 
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