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Abstract

In this paper by considering delta lunction sextupole and octupole
perturbations and using difference action-angle variable equations, an-
alytical formulae for the dynamic aperture of circular accelerators are
derived based on the Chiritkov criterion of the onset of stochastics
motions. Comparisons with numerical simulations are made.

1 Introduction

One of the preoccupations of the circular accelerator designer is to estimate
the influence of nonlinear forces on the single particle’s motion. These non-
linear forces manifest themselves as the systemalic and random errors from
optical elements, the voluntarily introduced functional ones, such as the sex-
tupoles used for the chromaticity corrections and the octupoles used for sta-
bilizing the particles’ collective motion, or from nonlinear beam-beam inter-
action forces. Even though the nonlinear forces mentioned above compared
with the linear forces are usually very small, what is observed in reality,
however, is that when the amplitudes of the transverse oscillation of a parti-
cle are large enough, the transverse motion might become unstable and the
particle itself will finally be lost on the vacuuim chamber. Apparently, the
above implied maximum oscillation amplitudes, A, ,, corresponding to the
stable motions are functions of the specific longitudinal position. s, along the




machine, and these functions A, ,(s) are the so-called dynamic apertures of
the machine. A reasonably designed machine should satisfy the condition
Agy(s) =2 M, ,(s), where M, ,(s) are the mechanical cross section dimen-
sions of the vacuum chamber. In the following sections we will show how
the nonlinear forces limit the dynamic apertures and what is the relation
between them. From the newly established analytical formula for the dy-
namic aperture one gets the scaling law between the nonlinear perturbation
strength and the dynamic aperture, and this scaling law is compared with
some numerical simulations.

2 Hamiltonian Formalism

The Hamiltonian formulation of dynamics is best known not only for itls
deep physical and philosophical inspiration to the physical world, but also
for its technical convenience of solving various nonlinear dynamical problems.
The general Hamiltonian for a particle of rest mass, mg, and charge, e, in a
magnetic vector potential, A, and electric potential, ®, is expressed as:

1/2

H(q,p,t) = e® + ¢ ((p — eA)? + moc?) (1)

where ¢ is the velocity of light and p is the momentum with its components,
p:, conjugate to the space coordinates, ¢;. The equations of motion can bhe
readily written in terms of Hamilton’s equations:

d]),' . oH

dt — dq; (2)
dqi B (97‘[

dt W (3)

For our specific dynamic problems in a circular accelerator it is convenient to
chose curvilinear coordinates instead of Cartesian ones for us to describe the
trajectory of a particle near an a priori known closed orbit. The Hamiltonian
in the new system, (z,s,y) (where z,s, and y denote the coordinates in the
Frenet-Serret normal, tangent, and binormal triothogonal and right-handed



coordinate system), is given by [1]7[7]:

1/2
A L —eA\
Hi(q,p 1) =e®+c|(p.—eA) +(p, —eA) + Ps 8% + mgc®
L+ax/p
(1)

where p 1s the radius of curvature and the torsion of the closed orbit is
cverywhere zero. Since it is useful to use the variable, s, as the independent
variable rather than time, ¢, one gets the new Hamiltonian by using a simple
canonical transformation:

: 1/2
H, = —eA,—(1+2/p) (Cl—2(E2 —mie") — (pr — eA ) — (py, — e/ly)2> / —c®
(5)
Noting that the term $(£? —mdc') ineq. 5 is ecqual to P? with P being the
total mechanical momentum of the particle, by using another trivial canonical

transformation:

§=q,8=8pry =725 H=— (6)

one gets another Hamiltonian:
eA,
Fo

where Py 1s the mechanical momentum of the reference particle, and P =

o+ AP. Inserting eA,/ Py in eq. 7 by:

eA,  B,2’ 1 i I 0B,
f)o B 2/)2]30 Bop n! 0.7:”"'

n=I|

r (5 eA,
B T

Ay N\ ed
H=- (L ra/o) R ) i

IJ::O,y=0(~T < iy)” (8)

one gets finally the Hamiltonian which serves as the starting point of most,
of the dynamical problems in a circular accelcrator:

22Bylrm0y=0 1 & 1 OB,

"= 2p? By Bop z—:l n! ({);('71—1> lr=0,y=0( + 2y)"
AP (‘?A . 2 (:A 2\ /2 ({¢
—(] ; 1 = (5 - .‘L)ﬂ(_-‘—g> 9 3
( + T//)) ( X3 P <P_ P, Py P, o ( )

where By is the bending magnetic field on the orbit of the relercnce particle,
and B, in general is a complex variable.
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3 Dynamic apertures due to nonlinear reso-
nances and stochastic motions

In this section a necessary distinction will be made between two essentjally
different cases: a proton machine and an clectron one. The reason is simple,
In the first case there is no dissipative forces (which is gernerally true) and
the particle’s motion can be described in the frame of Hamiltonian system,
In the second case, however, one has to take into account the synchrotron
radiation damping effect (even neglecting the quantum radiation excitation)
which results in putting the particle’s motion into a non-Hamiltonian system.

3.1 Proton storage ring

To start with we consider the linear horizontal motion of the reference particle
assuming that the magnetic field is only transverse (A, = A, = 0) and has
no screw fields, and ® is a constant. The Hamiltonian can be simplified as

- 22_ n 1\'(.5'):I_2

5 5 (10)

where z denotes normal plane coordinate, p = dx/ds, and I\ (s) is a periodic
function satisfying the relation

K(s)=K(s+ L) (11)

where L is the circumference of the ring. The solution of the deviation, z, is

found to be
v = e (s) cos((s) + o) (12)

s ds
o A.(s)
As an essential step towards further discussion on the motions under nonlin-

ear perturbation forces, we introduce action-angle variables and the Hamil-
tonian expressed in these new variables:

where

¢(s)

(13)

s (s’

U= RN 0
o Bu(s') + ¢ (L1)
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H(J,0) =

() (16)

Since the H(J,¥) = J/B:(s) is still a function of the independent variable,
s, we will make another canonical transformation to freeze the new Hamil-

tonian: ) l
TV s s’
U=+ —/ _ 7
1 =) (17)
Ji=J (18)
2wy '

Before going on further, let’s remember the relation between the last action-
angle variables and the particle deviation z:

. 2my s ds’
= mcos (‘I’l - T'q +..A ﬁfr(_“'_)> .

Being well prepared, we start our journey to find out the limitations of the
nonlinear forces on the stability of the particle’s motion. To facilitate the
analytical treatment of this complicated problem we consider at this stage
only sextupoles and octupoles (no screw terms) and assume that the contri-
butions from the sextupoles and octupoles in a ring can be made equivalent.
to a point sextupole and a point octupole. The perturbed Hanmiltonian can
thus be expressed:

pt K(s) , 1 OB

H=t14 2L Y S(s—kL)+

L B, ,
T+ >
2 2 3'Bp Ox?

Ty £ I/ (S .,—“lﬁfl/

M Bp Jx? t k:Z_:m_o (s )
(21)

Representing eq. 21 by action-angle variables (., and W,), and using

k=—00

Bz = Bo(l + .’Ifl)] + Q‘Zl)z + .’F31);3) (22)
one has
3/2 oo
= 22”,1, " (2‘]‘[”?}(5‘)) byLcos® W, > 8(s — kL)
§ p h=—na

[\




.. ))2 st
+<~’1_f’r/§i?£bgr,coswl S 8ls — kL) (23)

k=—x

where 5, and s, are just used to differentiate the locations of the sextupole
and the octupole perturbations. By virtue of Hamiltonian one gets the dif-
ferential equations for W, and .J;

(1.]1 011]
h _ 94, (24)
ds o,
a9l )
dS, a]l
dJ (2J,8:(s1))?,  deos® U, &
@ =B
ds 3 TS k;j s kL)
_Be(2)), ‘[COS VeSS (s — kL) (26)
k=—00
dv, 2 27128, (5,)%* &
dsl — ;V + V2 ] i (1) by L cos® W, kzz_;co 6(s — kL)
2062 (s =
£ 22052 1 oty 3 (s — ki) (27)
Y k=—oc0

Now it is the moment to change this differential equations to the difference
equations which is suitable to analyse the possibilities of the onset of stochas-
ticity [8][9]. Since the perturbations have a natural periodicity of L we will
sample the dynamic quantities at a sequence of s; with constant interval L
assuming that the characteristic time between two consecutive adiabatic in-
variance breakdown intervals is shorter than L/c. The differential equations
in eqs. 26 and 27 are reduced to

li

T =Ty, ) (28)

‘1/1 —_—\I’_l(\pl,vh) (20)

where the bar stands for the next sampled value after the corresponding
unbared previous value.

QN2 pdeos® Uy (NiBe(sa))?y j deos'®y o

-
Ji=J, 3p AW, P v,
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Eqs. 30 and 31 are the basic difference equations to study the nonlincar

resonance and the onsef, of stochasticities considering sextupole and octupole

Jibs L cost W, (31)

perturbations. By using trigonometric relation

1 m!

cos™ Ocosnf) =27 ;} m cos(n —m + 2r)0 (32)
one has 5
cos® § = ES(COS 30 4 3 cos ) (33)
‘9 1( 46 + 4 cos 20 + i ) (34)
'8 =—(c s — 34
cos 54 (€08 co (1]2)1)7

Apparently, the right hand sides of eqs. 30 and 31 contain sinusoidal func-
tions of phases, W, 2W,, 3W¥,, and 4¥,. If the tune v is far from the resonance
lines v = m/n, where m and n are integers (n=1, 2, 3, and 4 for this specific
problem), the invariant tori of the unperturbed motion are preserved under
the presence of the small perturbations by virtue of the KKolmogorov-Arnold-
Moser (KAM) theorem. If; however, v is close to the above mentioned res-
onance line, the situation is getting complicated and under some conditions
the KAM invariant tori can be broken. Taking the third order resonance,
m/3, for example, we keep only the sinusoidal function with phase 3W in
eq. 30 and the dominant phase independent nonlinear term in eq. 31, and
as the result, we have eqs. 30 and 31 reduced to

Jy = J + Asin 3, (35)
U, =V, + BJ, (36)
with 2l

(J1B-(51))
A= —"—"" |, 37
\/_2_p )9 ( )

2
p = 3Bel2) (38)

4p

where we have dropped the constant phase in eq. 31. It is helpful to transforin
dgs. 37 and 38 into the form so-called standard mapping [9] expressed as

T =1+ hygsinf (39)

=3
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O=0+17 (10)
with § = 3,/ = 3BJ; and Iy = 3AB. By virtue of the Chirikov criterion [9]

it is known that when [I/y| > 0.97164 [10] resonance overlaping occurs which
results in particles’ stochastic motions and diffusion processes. Therefore,

[I$o] <1 (41)

can be taken as a natural criterion for the determination of the dynamic
aperture of the machine. Putting e¢qs. 37 and 38 into eq. 41, one gets

9
42

and consequently, one finds maximum J, corresponding to m/3 resonance

Iy 1v/2° m (43)
I = “Ymaz,m/3 9[1)21)3\[133(82)51(31)3/2L2

The dynamic aperture of the machine is therefore

| 1] =

. . 12
|bzb3|ﬂ§<.s2)ﬂ;’“<s.)J?”;; <1 (42)

16p%3:(s5)>/? 13
9|62b3|[3§(.s-2)[3r(,51)3/2L2) (44)

Ad.y—n.,m/.’_l = A?'Jmar,m/.'}ﬁr(s) = (

[q. 44 gives the dynamic aperture of a sextuple and octupole strength deter-
mined case which is believed to be true for the most small emittance electron
storage rings. Obviously, the dynamic aperture scales with the one third
power of the sextupole and the octupole strength, respectively. If in a stor-
age ring the perturbation from the sextupoles can be omitted, in a similar
way one finds the maximum .J, corresponding to m/4 resonance mode

2p
] S ']maa:,m 4 = ¥ (45)
‘ M 3u(52)2 Lbs|
and the corresponding dynamic aperture
/2
4p0x(s) )
Adynma = Q'Jmaa:m/ s\S) = | V=5 s 46
dyn,m/4 : /1/6( ) (ﬁﬂ;(Sg)QL’bjl ( )

oe]



[rom eq. 16 one rcads that the dynamic aperture, Ay, myq, 18 proporiional
to the square root of the ocltupole strength. Usually, one has A/ <
Adyn,m/4~

Now I would like to spend some ink on the scenario of those particles
whose motions do not satisfy the condition given by eq. 41. Once a par-
ticle begins Lo execule stochastic motion the phase mixing occurs, and the
mapping given by eqs. 39 and 40 can be regarded as a Markov process [I1],
and in consequence, the possibility distribution function F(s, 1) satisfies the
IF'okker-Planck equation:

OF  O(AF)  LODF)

s~ ol Taar il
where
A << Al>> (18)
L
and i
po <5 (AT)* >> (19)

L,
where the notation <<>> denotes the average over phase . [rom eq. 39

one knows

Al = Kosinf (50)
and obviously, one has
A=0 (51)
and -
\
D=L 52
2L (52}

Inserting eqs. 51 and 52 into eq. 47 one gets
OF 1 3*(DF)
ds 2 Ol

Due to the diffusion, necdless to say, the amplitude of the particle’s motion
is increasing with the distance and finally the particle is lost on the vacuum

chamber wall.
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3.2 Electron storage ring

In an electron storage ring the physical picture is more complicated due 1o
the synchrotron radiation damping. To treat this problem let’s resort to the
so-called standard dissipative mapping [8] which is different but similar to the
standard mapping shown in eqs. 39 and 10, and expressed as follows:

T =exp(—=T)1 4+ Kopsin 0 (H1)

=041 (55)

2’;, 7. is the damping time of the hetatron oscillation in the

where [ = =2
horizontal direction, and = (1 —exp(-T))/I'. Apparently, when I' — 0,
eqs. 54 and 55 return to the standard mapping given by eqs. 39 and 40. The
criterion for avoiding the onset of the stochastic motion in the dissipative
system is given by

kol <1 (56)

The expressions for the dynamic apertures of the electron storage rings cor-
responding to the two expressions for the proton ones derived in the previous
subsection are

16,02[5}(3)3/2 1/3 i
)3/2 2 (

A nm/3 — 2']mnrm. z\(S) = .
dyn,m /3 /3P (S) (9;:.|b2b3|[f3(.92)ﬂ,.(51 57)

and

4B, (s 1/2
Adynmt = \/ijvmarymﬂﬁz(-s) = (ﬁm) (58)

The whole discussion in this section is focused on the motion in the hori-
zontal plane, and the passage to the vertical plane is considered to be trivial.
Following the same idea one can investigate more complicated cases, such as
the coupled transverse motion and the coupled hetatron-synchrotron motion
however, they will be excluded from this paper.

3

4 Comparison with some simulation results

In this section we make some comparisons between the numerical simulation
results and the analytical formula shown in eq. H7. The first example is

10
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Figure 1:  ALLADIN dynamic aperture dependence on the sextupole
strength.

the ALLADIN [12] dynamic aperture dependence on the sextupole strength.
The numerical simulation results and the fitting curve are shown in Fig.
1 where we can find Ay, 1/15,_“ with = =~ /3 ([sexr 15 the sextupole
strength). Secondly, let’s see the KIZIK Photon Factory [13] dynamic aperture
dependence on the octupole strength. Itig. 2 shows the numerical simulation
results and the fitting curve. Again we find the Ay, o /12, with = ~ 1/3
(I, 1s the sextupole strength). Both examples agree quite well with what
predicted by eq. 57.

To validate quantitatively the analylical dynamic aperture expression
shown in eqgs. 44 and 57 more comparison works nced to be done in the

future.

5 Conclusion

Cousidering delta function sextupole and octupole perturbations, analytical
expression for the dynamic aperture of a circular machine is obtained by
using the Chirikov criterion. It is shown that when the dynamics aperture
is sextupole and octupole strength determined, which is true for most cases,
the dynamic aperture scales with the one third power of the sextupole and
octupole strength, respectively, and this conclusion is confirmed by the sirnu-




KEK Photon factory
4 ——e— Ay (¢cin) Positive loct
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E 3
8 - i
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— .
1
0
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IMigure 2: KEK Photon Factory dynamic aperture dependence on the oc-
tupole strength.

lation results from the ALLADIN and KEK Photon Factory machines. This
work is by no means aimed to replace the powerful nuinerical simulations in
the study of dynamic aperture, but gives useful theoretical insight.
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