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Abstract 

In this paper by considering delta function sextllpole and octllpole 

pert urbations and !lsi ng d ifTerence action-angle va,riable eq uations, an

a,lytical formulae for the dynamic apert.ure of circular accelerators are 

derived based on the Chirikov criterion of the onset of st.ochastics 

motions. Comparisons with num erical simulations are made, 

Introduction 

One of t.he preoccupations of the circula.r acccif-rClLor designcr is (,0 estimat.e 
the ilJflue nce of nonlinear forces on the single particle's motion. These nOI}

linear forces manifes t themselves as the systclTlal,ic and random errors from 

optical elements, the voluntarily illtrodllccd fllllctionaJ onps, such as t.he sex
tupoles used for the chrornat.icity corrf'ctiol1s and t.he octupoles used for st.a

bili z ing the particles' collective mot.ion, or from nonlinear beam-beam ilJL('r
action forces. Even though the nonlinear for ces mentioned ahove compared 
with the linear forces are usually very small, what is observed in realit.y, 
however , is tbat when the amplitudes of the trCl.nsve rsc oscillation of a parti 
cle are large enough, the transve rse motion might become lI11strthk and til(' 
pa. rticle itself will finally be lost. on tIle vacuum chamber. Apparently, t.lle' 
above implied maximulll oscillation amplit.udes, Ax,y, correspollding to tll(, 
stable motions are functions of t.he specific longit.udinal position. $, along t.\w 
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machine, and these functions A.T,y(S) arc the so-called dynamic aperture's of 
the machine. A reasonahly designed rnachir)(' should satisfy the condition 
Ax,y(s) 2: M.T, y(S), where Mr,1j(s) are the m<'cilallical cross section dimell
sions of the vacuum chamber. In the following sections we will show how 
the nonlinear forces limit the dynamic apertures and what is the relat.ion 
between them. From the newly established analyt.ical formula for the dy
namic aperture one gets the scalillg law between the nonlinear perturbat.ioll 
strength and the dynamic aperture) and t.his scaling law is compared wit.h 
some numerical simulations. 

Hamiltonian Formalism 

The Hamiltonian formulation of dynanlics is best known not only for its 
deep physical and philosophical inspiration to the physical world, but also 
for its technical convenience of solving various nonlinear dynamical problems. 
The general Hamiltonian for a particle of rest. mass, mo, and charge, e, in a 
magnetic vector potential, A, and electric pot.ential,. <1>, is expressed as: 

2 2)1/2H(q, P, t) = e<1> + c ((p - eA) + moc ( 1 ) 

where c is the velocity of light and p is t,he momentum with its components, 
Pi, conjugate to the space coordinates) qi. The equations of motion can be 
readily written in terms of Hamilton's equations: 

dPi 8H 
- (2)
dt Oqi 

dqi oH 
- (3)
<It OPi 

For our specific dynamic problems in a circular accelerator it is convenient to 
chose curvilinear coordinates instead of Cartesian ones for us to describe the 
trajectory of a particle near an a priori known closed orbit. The Hamiltonian 
in the new system, (X,8,y) (where x,s, and y denote the coordinates in the 
Frenet-Serret normal, tangent, and binormal triothogonal and right-handed 
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coordinate system), is given by [1]-[7]: 

(-1 ) 
where p is the radius of curvature and the torsion of the closed orbit, is 

everywhere zero. Since it is useful to use the varia.ble, 8, as the independellt 
va.riable ra.ther than time, t, one getfl the ne w Hamiltonian by using a simple 

ca.nonical transformation: 

1 ) 1/ 2 
fl, = -eJ1 s-(J +x/p) c2(E2 - m~c4) - (Px - e /1:r)2 - (Py - eAy)2 -c<l>( 

Uj) 
Noting that the term ~(E2 - m~(4) in cq ..5 is eqllal to p2 with P being t.he 

tota.l mechanical momentum of the rarticle, by ufling a.nother trivial ca.nonical 
t ra.nsf ormation: 

- - - Px,y II Ifs 
q = q,05 = 8, P:r,y = Po' . = Po (6) 

olle gets another Hamiltonia.n: 

cAs ( F _ eAx 2 _ cAy 2) 1/ 2 e<l> 
H = - Po - (1 + x / p ) Po - (P.T. - nl) - (py - Po) (7)

Po 

where Po is the mechanical momentum of the reference particle, and P = 

Po + 6P, lnserting eAs/ Po in eq. 7 by: 

cAs Byx2 1 ~ 1 an-I By I ( ')"
rJ = - 2 2 B - -B W,::l n- 1 x=o,y=o:r + zy
10 POoP n=1 n. ox 

one gets finally the Hamiltonian which se rves as th e starting point of most. 
of the dynamical problems in a circular accelerator: 

x 2 By Ix=o,y=o 1 ~ 1 an-I Hy . n 

If = 2 2 B + -B W, a .. l.r=o,y=o(:r + lY)71 - 1PooP n=1 n. J 

6]-> ( P-A".)2 (q)- (J + :r / P) ( 1 + Po - Px - -Po 

where 80 is t.he bending rna.gllctic field 011 the orbit of the r('ferewc parti clc , 
a.nd RII in general is a. compl(-~x va.ria.hl(~. 
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3 	 Dynamic apertures due to nonlinear reso
nances and stochastic motions 

In this section a necessary distinctioll will br made between two essentially 
different cases: a proton machine and a.n electron one. The rea.son is simpk. 
In the first case there is no dissipative forces (which is gernerally true) and 
the pa.rticle's motion can be described in the frame of Hamiltonian systC:'uJ. 
In the second case, however, one has to t,ake int.o account the synchrot.roll 
radiation damping effect (even neglecting the qllantuIll radiation excitation) 
which results in putt,ing the particle's motion into a non-Hamiltonian systelll. 

3.1 Proton storage ring 

To start with we consider the linear horizontal motion of the reference particle 
assuming that the magnetic field is only transverse (Ax = Ay = 0) and has 
no screw fields, and <I> is a constant. The Hamiltonia,n can be simplified as 

(10) 

where x denotes normal plane coordinate, p = d.r/d5, and 1\"(5) is a. periodic 
fllnction satisfying the relation 

f{(s) 	= I\(s + L) (11 ) 

where L is the circumference of the ring. The solution of the deviation, x, is 
found to be 

( 12) 

when~ 

(B) 

As an essential step towards further discussion on the motions under nonlin
ear perturbation forces, we introduce action-angle variables a.nd the Ha.mil
tonian expressed in these new varia.bles: 

I 

\lJ = 	f' {Jd(.5 
I

) + <Po (1;J )10 J: 8 



J = Ex = () 1_( _ ( I!) )----,-- ) ( :1:2 + (/31:(8) .[, _ fi2~ ;r ) 2)
2 2px .s 

J 
( I (i ) H(J, \lI) = fJ3.(8) 

Since the H(J, 1.fJ) = J/ ,(]x(.s) is still a function of the indepe l\d ent variahle, 
s , we will make another canonical transformation t.o fn-'eze t.he new Hamil
t.onian: 

I.fJ I = IJ! + 27f V _ r .ds' ( 17)
L Jo (JA 8') 

J I = J (J 8) 

27f1/ 
( 1 <) )HI = LJ1 

Bdore going on further, let's remember the relation between t.he Ia,st act.ioTl
angle variables and t.he particl e devia.tion J:: 

(20) 

Be ing we ll prepared, we start our journey to find Ollt the limit.at.ions of t.he 
nonlinear for ces on the stability of the particle's motion. To facilitate tile 
analytical treatment of this complicated problem we consider at this stage 

only sextupoles and octupoles (no screw terms) and assume that the contri
butions from the sextupoles and octupolcs in a ring can be made cquiva.I<:-'Tlt. 
t.o a point sextupole and a point octupolc. The perturbed Hamiltonian call 

t.hus be expressed: 

p2 [{(s) 2 1 82 Bz 3 1 ;)387. -100 OC. 

If = - +-- ;1: +~B~.T L L J(s-kL)+~B~:r 1.1 L J(s-k"J
2 2 3. P uX Ir=- oo 4 . . P o:r Ir=- oo 

(2J ) 
Representing eq . 21 by a.ction-angle variables (J) and WI) ' and lI s ing 

(22) 


one has 

00

L J(s - kl.l) 
);=-"'-, 



L
')0 

o(s-kL) 
k= -,_ .' 

where .)1 and S2 are just used to diffcrentiat~ the locations of the sextupok 
and the oct.upole perturbations. By virtue of Hamiltonian one gets the' dif
ferential equations for \II 1 and .11 

(21 ) 

(2!») 

(26) 

I 2
d\ll1_27W V2JJ / (3x(SI)3/2 3T. ~ f( lAL)-- - - - + 	 bL cos \l'1 L - f\;2 	 U S 

ds L P 	 k=-oo 

2(3;(S2) 4 ~ + 	 .1Jb3 Lcos $1 L 0(5 - kL) (27) 
P k=-co 

Now it is the moment to change this differential equations to the difference 
equations which is suitable to analyse the possibilities of the onset of stochas
ticity [8][9]. Since the perturbations have a natural periodicity of L we will 
sample the dynamic quantities at a sequence of 8i with constant interval L 
assuming that the characteristic time hetween two consecutive adiahatic ill
variance breakdown intervals is shorter than Lj c. The differential equatiolls 
In eqs. 26 a.nd 27 a.re reduced to 

J 1 = 	~(\fJI' J 1 ) (28) 

~ = W;-(IlI I ,J1 ) 	 (2<)) 

where the bar stands for the next sampled value after the corresponding 
unb<lred previous value. 

(30) 
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- V2f3X(SI)3/2y;I/2 ;{ . '2,13 (.S2)2- -1 ,
WI = WI + 27T1/+ b2Lcos \VI + x 

JIb3 Lcos WI (31)
P P 

Egs. 30 and 3J arc the basic difference equations t.o s tudy the nOlllillear 

resonance and the onset. of stochas ti c ities considering sextupole and octupolc 
perturbatioIls. By using trigonome tric relatioll 

m 1n! 
cosmOcosnO = rm L cos(n - Tn + 2r)O (T2) 

r=O (m - r)!r! 

OIl(' has 
3 2 

cos () = -3 ( cos 30 + 3 cos ()) (11)
2' 

4 1 4! 

cos () = 24 (cos 461 + 4 cos 2& + ((4/2)!)2) 


Apparently, the right hand sides of eqs. 30 and 31 contain sinusoidal fUTlc

tiolls of phases, \Ii I, 2\Ii I, 3\Ii I, and 4W •. If tbe tune 1/ is fa.r from the resonance 

Ii lies // = min, where m and n are integers (71.=1, 2, 3, and 1\ for tltis specific 
problem), the invariant tori of the unpert.urbed motion are preserved under 

t.he presence of the small perturbations by virtue of t.he Kolmogorov-Arnold

Mose r (KAM) theorem. If, however, 1/ is close t.o the abow~ m e ntioned res

onance line , the sit.uation is gett.illg complicat.ed and under some cOlldit.iolls 

t.he KAM invariant tori can be broken. Taking the t.hird order resonance, 
777./3, [or exa.mple, we keep only the siullsoidal function with phase 1\[1 I ill 
eq. 30 and the dominant phase inde pe ndent nonlinear t e rm in eg. :31, and 

as the result, we have egs. 30 and 31 reduced to 

J; = .II + Asin3W I ( '}'5 ) 

\[II = \VI + BJI (36) 

with 
A - (Jl f3.r(.stl)3/2 { J 

- V2p ) '2 ' 
(37) 

B_3f3.r (S2)2Il (38)- 4p )3 J 

where we have dropped the cons t<l..n t phase in eg. :n. IL is helpflll t.o t.ransform 
~qs. 37 and 38 into the form so-called s tandard mapping [9] rxpn'ssrd as 

(10) 

http:complicat.ed


(-10 ) 

with e= 3w, I = 38J1 and /\-0 = 3A B. By virtll(' of t.he Chirikov crit.erion [9] 
it is known that. when 1/(01 ;:: 0.97164 [J 0] re"onClnc:e overlaping occurs which 
result.s in particles' stochastic motions and diffusion processes. Therefore, 

(.11 ) 

can be taken a.s a natural criterion for the det.ermina.tion of the dynamic 
apert.ure of t.he machine. Putting eqs. :37 and 38 into eq. 41, one gets 

(tl2 ) 

and cOllsequently, one finds maximum J, corresponding t.o 177/3 resonance 

(43 ) 

The dynamic aperture of the machine is therefore 

(tlIJ) 

Sq. 44 gives the dynamic a.perture of a sextuple and octupole strength deter
mined case which is believed to be true for the most. small emittance electron 
storage rings. Obviously, the dynamic aperture scales with the one third 
power of the sextupole and the odupole strength, respectively. If in a stor
age ring the perturbation from the sextupoles can be omitted, in a similar 
way one finds the maximum J 1 corresponding to mill resonance mode 

(45 ) 

and t.he corresponding dynamic aperture 

(46 ) 
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From E'q. -16 one rcads thaI. t.he dynami c apE'rl.llr<" Arfyn ,m/4, is proportiollal 
to tilE' sqlJare root of thf' ocl.llpolc ,c;trf'ngt.h . I ls ua.]ly, Ollf' Ins Adyn,m/l < 
Arf .\fn ,m /1' 

Now 1 would like to s pend some ink Oil Ule scrnario of those particles 
wlloSE' mot.ion." do not satisfy th e cOIl<iil.ic)Jl givell byeC[. 41. Oner a. pal'
ticlr b<:gins to CXE'cul.r s tochasti c Illotion I.hr pllaS(> mixillg OCCIll"S, a.tld Lii(' 
mapping given by eqs . 19 alld 40 ca.n be r('ga.rd f~d as a Ma.rkov procpss [II], 
and ill consequence, th e possibility dist.rihutioll function F(8 , /) satisfies 1.11(' 
Fokkcl-Plallck equatioJl: 

of o(AF) lrP(DF) 
(1\ 7)as =- a/ +2" a/ 2 

where 
« 6.1 » 

A=--~
L 

a.nd 
« (6.1)2 » 

D=---- - ( ;j q ) 
/ J 

wIwre (; he not.ation < < > > dcnot.rs L he ()vrrage over p ha.s(' f). From PC]. :~!) 

011(' know ,,, 

alld obviously, one ha.s 
A = 0 (.11 ) 

and 

D= 
[(J 
-
2T; 

In se rt.ing eqs . .51 and .52 into cq. 17 onr grts 

I a2 (DF) 
(.s:\)

2 D/2 

Due t.o t.he diffusion, n('rclless t.o say, t.he alllplil.uc!c of t.he part.icle'.c; l1lo l. ioll 
is increasing wit.h t.he dist.a nce a.nd finally the pa.rt.i c l(' is los t. 011 the V().(" IIIIJ)l 

dlarnbc;r wa.lI. 

http:dcnot.rs


3.2 Electron storage ring 

In an elec tron s torage rin g Lh~ phys ica l picLlll'c is more complicated due to 
the syn chrotron radi a tion damping. To treat thi s problem let 's resort to til<' 
so-called standard dissipati ve mapping [8] which is different but similar to til<' 
st.an dard mapping showll in cqs . :39 a.nd 10, and expressed as follow s: 

7 = ex p( - f) I + f\oll. sill 0 (.')1 ) 

where f = 2L, Tx is t.he damping Lime of the be t.a.tron osc illat.ion in the 
Tx C 

horizontal direction, and J.l = (1 - exp( -f))/1'. Apparently, whe n [' ----'t 0, 
eqs. 54 and 55 return to the standard mapping given by eqs. 39 and 40. The 
crit. f' rion for a.voiding the onse t of the st.ochast.ic motion in the di ssipative 
system is gi ve n by 

(56) 

The expressions for Lhe dynamic (I.pert.mes of t.h e electron storage rings cor
responding 1,0 the two expressions ror the prot.on ones derived in the previous 
sllbsection are 

(57) 

and 
4 (3 () ) 1/2

A = /2.1 f3 (8) = P - x S (.5R)dyn,m/~ V m ax ,m/4 x . ( )3(31.' (S 2 )2 L,/lild 

Th e whole discussion in this section is fo cused on t.he mot.ion in the hori
zont.al plane, and the passage to tIle vert.ical plane is cons ide red t.o be t.rivial. 
Following the sa m e idea one can investigate more complicated cases, sll ch as 
the coupled transverse motion and the coupled betatron-synchrotron motion, 
however, they will be e xcluded from t.his papcr. 

4 Comparison with some simulation results 

In t.his section we ma.ke some co mparison s I)f' twf'en the fIl1I1H'ric(l1 simulation 
results and t.he ana.lytical fonnula shown in <'<J. S7. The first , e xalllple is 

10 
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ALLADIN• 
• 

The simul ation results are fitteed by the curve 
y= 13 . 29x "(-0.3) 

2 4 5 6 

Sextupo]e field strength (relative scale) 

Figure j: ALLADIN dynamic arert.ure depenuellce on t.h e sex turolc 

strengt.h . 

the ALLADIN [12] dynamic aperture depelldellcc on the sextllpolc st rength. 
The numerical simu lation results and the fitting curve arc shown in Fig. 

] where we can find Adyn ex 1//;;'.1:1 with :::: ~ 1/3 (!.SEX I is til(' sext upole 
s t.re ngth). Secondly, le t' s see the KEl< Photon Factory [1:3] dynamic a pertlll(, 
dppendence on t.he octupolc strength. Fig. 2 shows t.he nUllwrical simulatio" 

result.s and t.he fitting curve. Again we find tlw !1rlyn ex: 1/I~t \-\lit.h :::: ~ In 
(f OCI is the sextupole strength). Both examples a.grcp quite \·vell wit.h wlla.!. 
predicted by eq. 57. 

To validate qu a ntitatively tbe ana.lyLi cal dynami c aperture f'xrression 

shown in eqs. 41 and 57 more comparison works ncpd to be clone in t.he 
fll t lire. 

ConcIusion 

Cousidering de lt a function sextupole aile! ocLlIpolc> pe rturbations, allalytical 
exprc>ssion for the dynamic a.perture of a circular rnachinp is ohta.ined by 
lIsing the Chirikov criterion. It i:'l s how1J t.hat whell Lhe dYllamics aperture 

is sextupole and oct urole strength e! dc>rtllirl('c!, which is tnif' for most ca,,('s, 
Uw dyna.rnic aperture scales with the Ofl(' t.hird [lower of LlI(' scxtllpol e aJld 
octllpok s tre llgth, n~spectiv(>I'y, a.nd t.his conclusioll is connrm f' ci hy Llw s irrlll-

I J 
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KEK Photon factory 

-- Ay (em) Positive loct 

'"" Ax=2.3IoCI"(-O.33) 

~AY=C~5JO"'(O.386) 

-----..... 

lOCI (A) 

Figure 2: I<EI< Photon Factory dy nami c arwrture dependence on thfC oc 
t.upol c strength . 

lation results from the ALLADIN and KEI< Photon Factory machines . This 
work is by no means aimed to replace the powerful numerica l simulations in 
LhfC study of dynamic aperture, but givf's useful theoretical insight. 
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