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Abstract

Inequalities for Gram determinants are used to obtain inequalities of the r.m.s. emittances in the
case of coupled 2,3 dimensional motions of particle beams. It is also generalized to the case of
motion with a larger number of degrees of freedom. As a consequence, due to coupling of the
degrees of freedom, the increase of the product of projected emittances is a general phenomenon.

1. Introduction

In a one-dimensional motion of a particle beam the r.m.s. emittance €, is defined as the
square root of the determinant of the ¢ matrix. The latter is formed by the second-order
statistical centered moments of the particle population in the two-dimensional phase space.
The r.m.s. emittance €; is given byl!!:

er = Vi k2 x P ()
where x,x' are the two conjugate coordinates in phase space with respect to the barycenter of
the population and <...> designates the statistical average of the enclosed expression over the
particle population of the beam.

In the case of coupling between the two directions of betatron motion and eventually
between betatron and synchrotron motions, one has to consider a 2 or 3 dimensional motion.
If one would have to take account of a coupling with spin motion, the motion would become
4-dimensional.

The generalization of the r.m.s. emittance to a p-dimensional motion is straightforward.
The ¢ matrix is a pxp matrix formed by the second-order statistical centered moments:
<XgXp>, <XoX'p> and <x'gx'p> (@, B = 1,...,p). The r.m.s. emittance €1, is the square
root of the determinant of the ¢ matrix. Its main feature is its invariance in a linear motion.

For each degree of freedom « one can still define a r.m.s. emittance €4 as:

that is the projected emittance in the x,, X' Subspace . If the p degrees of freedom would be
independent, the p-dimensional emittance €; _ is just the product of the p emittances €,
o = 1,...,p. Here it is shown that the p-dimensional emittance €, is in fact lower than this

product when the motion is coupled and then satisfies the inequality:




Ef poovap & €180, &, 3)

becoming an equality only if the motion is uncoupled. It is the generalization of a result

obtained by L. Rivkin[?] in the case of a 2-dimensional motion:

Ex,y S Exéy @)

where x and y designate the two coordinates of a betatron motion as usual.

For a motion with more than 2 degrees of freedom, the inequality (3) is in fact the two
ends of a series of inequalities. These are similar to the Faguet's inequalities(3] that generalize
the Hadamard inequality for Gram determinants. One will mainly consider the 2-dimensional
and 3-dimensional motions that are the most usual cases in particle beam dynamics. One
leaves the general proof to the Appendix. In Section 2. one again derives the inequality (4) for
a 2-dimensional motion using one Faguet's inequality. For 3-dimensional motion the series of
inequalities reduce to a double inequality that is derived in Section 3.

2. Emittance inequality for a 2-dimensional motion

The proof is obtained using a first inequality of Gram determinants derived by
M. Faguet3] as a Lemm.

The phase space coordinates of a particle are x, x', y, y'. The number of particles in the
beam is n and their coordinates are numbered by the index 1 running from 1 to n.

In R, (the real vector space of dimension n), let one introduce 4 vectors U, U', V, V"
The coordinates of U are: u,, u,,..., u,, where u; = x;/\n is proportional to the coordinate x;
of the i-th particle (1 = L,...,n). Similarly, the coordinates of U', V and V"' are respectively:
u's = xi/An, vi= yi/Nn and v = y'/\'n. With that notation the 10 second-order moments
<x2>, <xXx'>, <xy>, <xy'>,... are the 10 scalar products of the vectors U, U', V, V",
For instance:

n n
(k) =L xiyi=D uivi= UV (5)
i=1 =1

and the determinant of the ¢ matrix is just the Gram determinant of the 4 vectors U, U', V,
V'

U.U U.U Uu.v U.V
dets=| U.U U.U Uu.v U.V -GU,Uu,V,V)
V.U V.U V.V V.V
v.u v.U Vi.v V.V (6)
The Faguet's inequality, obtained as a Lemm, is:
G(X.Y,Z)G(X) < G(X,Z)G(X.Y) 1)

where X, Y, Z are any three sets of vectors in Ry,. Let here apply that inequality for a void
set X =0, with G(X)=1,and Y =(U,U"), Z=(V, V')
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| er =V x?)- (x xP | (1)
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the population and <...> designates the statistical average of the enclosed expression over the
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In the case of coupling between the two directions of betatron motion and eventually
between betatron and synchrotron motions, one has to consider a 2 or 3 dimensional motion.
If one would have to take account of a coupling with spin motion, the motion would become
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o = VIx2)(x'2) - (¢ X ) (2)

that is the projected emittance in the Xq, X' Subspace . If the p degrees of freedom would be

independent, the p-dimensional emittance €, is just the product of the p emittances €,
o = 1,...,p. Here it is shown that the p-dimensional emittance €, _, is in fact lower than this

product when the motion is coupled and then satisfies the inequality:
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becoming an equality only if the motion is uncoupled. It is the generalization of a result

obtained by L. Rivkin[?] in the case of a 2-dimensional motion:
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where x and y designate the two coordinates of a betatron motion as usual.

For a motion with more than 2 degrees of freedom, the inequality (3) is in fact the two
ends of a series of inequalities. These are similar to the Faguet's inequalities!3] that generalize
the Hadamard inequality for Gram determinants. One will mainly consider the 2-dimensional
and 3-dimensional motions that are the most usual cases in particle beam dynamics. One
leaves the general proof to the Appendix. In Section 2. one again derives the inequality (4) for
a 2-dimensional motion using one Faguet's inequality. For 3-dimensional motion the series of
inequalities reduce to a double inequality that is derived in Section 3.

2. Emittance inequality for a 2-dimensional motion

The proof is obtained using a first inequality of Gram determinants derived by
M. Faguet(3] as a Lemm.

The phase space coordinates of a particle are x, x', y, y'. The number of particles in the
beam is n and their coordinates are numbered by the index 1 running from 1 to n.

In R, (the real vector space of dimension n), let one introduce 4 vectors U, U', V, V',
The coordinates of U are: u,, u,,..., u,, where u; = x;/\/n is proportional to the coordinate x;
of the i-th particle (i = 1,...,n). Similarly, the coordinates of U', V and V' are respectively:
v = xi/An, vi= yi/\/—r_l and v'; = y'i/\/Tl. With that notation the 10 second-order moments
<Xx2>, <xx'>, <xy>, <xy>,... are the 10 scalar products of the vectors U, U', V, V',
For instance:

n

i Xiyi = 2 uj.vj = Uuyv (5)
i=1 i

o

= |p—

(xy) =

and the determinant of the ¢ matrix is just the Gram determinant of the 4 vectors U, U', V,
V'

U.U U.U Uvu.v U.V
dets=| U.U U.U vu.v U.V |=GgU,U,V,V)
V.U V.U V.V V.V
v.ou v.u V.V V.V (6)

The Faguet's inequality, obtained as a Lemm, is:

G(X.,Y,Z)G(X) < G(X,2)G(X)Y) (7)

where X, Y, Z are any three sets of vectors in R,. Let here apply that inequality for a void
set X =0, with G(X)=1,and Y = (U,U"), Z = (V,V'):



G(Y,Z) £ G(Y)G(Z) (8)
ie.:

G(U, UV, V) < GU,UYG(V, V") (9)

Taking the square root of the latter (Gram determinants are never negative), one obtains the
inequality (4), previously derived by L. Rivkin[2].

The inequalities (4) and (9) become equalities if the vectors V, V' are both orthogonal to
the vectors U, U', ie. the four coupling moments <xy>, <xy'>, <x'y>, <x'y"> vanish.
Inversely, it can easily be shown that the equalities hold only if either the vectors U, U’ or V,
V' are linearly dependent (i.e. the emittance €, or €, vanishes), or U, U" are both orthogonal
to V, V' (i.e. the four coupling moments vanish).

The inequality (4) means that, in a linear motion for which the emittance €, is a
constant, the coupling leads to an increase of the product of the two projected emittances
gx and €, of a beam initially uncoupled. The coupling is usually detrimental to the beam
qualities.

3. Emittance double inequality for 3-dimensional
motion

The proof is obtained in the same way using the Faguet's inequality (7). Now, the phase
space coordinates of a particle are x, x', y, y', z, z'. In R, let one introduce 6 vectors U, U"',
V., V', W, W'with the coordinates: u;= xi/Vn, uj= x'iy/Vn, vi= yi/A/n, vi= yi/vn,
w; = z/\n and w';= z'//\'n. Here again, the 21 second-order moments are the 21 scalar
products of these 6 vectors and the determinant of the ¢ matrix is their Gram determinant. One
first applies the Faguet' inequality (7) with X =@, Y = (U, U") and Z = (V,V', W, W"):

G(U, U V,VW W) <G(V,V,W, W)HG(U, UY (10)
and a second time with X = U,UY, Y=(V,V)Yand Z = (W, W'"):
G(U, U V,VIW W' G(U, U G(U, U,W, W) G(U, UV, V) (re)

Multiplying the two preceding inequalities (10) and (11) and taking the square root, one
obtains:

G(U, U V.V W, W) <{G(U,U,V.V) G(V,VW, W) G(U, U,W, W) (12)
i.e. in terms of r.m.s. emittances:
(|3.)

Exy2 S VExy €y s E7x

where g, , , is the emitlance of the 3-dimensional motion and €, y, €, ,, €, x are the projected

emittances of the 2-dimensional motions x-y, y-z, z-x respectively.
Finally, using the inequality (4) for the latter emittances, one obtains the double

inequality:
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Hereagain, the equality holds if, and only if, either one projected emittance &, €, or g,
vanishes or all the 12 coupling moments vanish.
In the 6-dimensional phase space gy y, is proportional to the volume of a hyperellipsoid
surrounding the particles. The physical meaning of this double inequality is that the square of
that volume is smaller than the product of the volumes of the projections on the 4-dimensional
subspaces (x, x', y, ¥, (v, ¥, 2, '), (2, ', X, X") and of the volumes of the projections on
the 2-dimensional subspaces (x, x), (y, ¥'), (2, z'). Therefore, in a linear motion the
coupling can only increase these products of projected emittances. It generalizes that property
well-known for a coupled 2-dimensional motion.

APPENDIX

Hereafter, one doesn't distinguish between a coordinate x and its conjugate momentum
x'. The phase space coordinates of a particle are xo where the index o runs from 1 to 2p (p is
the number of degrees of freedom of the motion). One will order the coordinates such that
X9k is the conjugate momentum of xox—j. To distinguish the coordinates of different particles,
Xoi Will designate the coordinates of the i-th particle. The number of particles is n and the
index 1 runs from 1 to n.

In R, let one introduce 2p vectors Uy with the coordinates: u; = Xai/N N, proportional to
the coordinate xg; of the i-th particle. With that notation the second-order moment <xoXp> is
the scalar product Ug.Up. The determinant of the o matrix is the Gram determinant of the
2p vectors Ug: G(Uy, Uy,..., Uzp).

For a set of m vectors X,...,Xy, in R,, M. Faguet3] has derived the following series of
inequalities of their Gram determinants:

m

G(X1yXm) < ’1_[ G(X 1y - s Xg_1:Xk+15 " Xm)
liei J

m—1

1.2
< H G(xlf"’xk—lvxk+17"'axl—l’xl+|~"'>xm) (m——le—Z) <. s
[=k<I<m
I.2-~(m—)* (A1)
< f H G(xg,, X5, -,Xsr)}(m—le—Z)nr < ..

1 [<si<-- <85, <m
-
n—

. S { l_l G(XSNXQQ)}I

1<s1<52€m

m

"<T] Gexo)
g=1

The two end terms of the series are just the well-known Hadamard 1nequality:

G(x1,-%m) < [ ] G(xy) (A2)

s=1



These inequalities are not convenient for the 2p vectors U, as they don't take into
account that each doublet Upk_;, Uyy correspond to a pair of conjugate coordinates. In fact,
in the derivation of the series of inequalities (A1) by M. Faguet nothing would be changed if
one formally replaces each vector x by a doublet of vectors. Therefore, one can readily write
a similar and convenient series of inequalities for the 2p vectors Ug:

i

p =T
G(Uy, - Uyp) < H G(Uy, - Up_1,Uzk1r - Uzp)
k=1

1.2
< T1 60Uy Unkers - Ugp 1 Usta - Uap) - 1o-2)
I<k<i<p
‘1.2-~-(p*r)

= A3
< T G(Uzs_‘,Uzs.,Uzsz_,,Uzsp-A-,UzS..-],Uzs..>}<P—'XP-21~f<_._ (A3)

1<s1< - <5 <p
1

p-1 P
ERLS f l—I G(Uzsl‘l’U25"U252“|’U252)} SH G(Ups_1,Uzs)
s=1

[<s,<s2€m

In the particular cases p = 2 and 3 one recovers the inequalities (9) and (12). These
inequalities generalize at any degree of freedom the increase of the projected-emittance
products as a result of the coupling on a beam initially uncoupled.
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