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Abstract 
Inequalities for Gram determinants are used to obtain inequalities of the r.m.s. emittances in the 

case of coupled 2,3 dimensional motions of particle beams. It is also generalized to the case of 
motion with a larger number of degrees of freedom . As a consequence, due to coupling of the 
degrees of freedom, the increase of the product of projected emittances is a general phenomenon. 

1. Introduction 
In a one-dimensional motion of a particle beam the r.m.s. emittance £1 is defined as the 

square root of the determinant of the (J matrix. The latter is formed by the second-order 
statistical centered moments of the particle population in the two-dimensional phase space. 
The r.m.s. emittance £J is given by[lj: 

£1 = -J(x2) (x ,2) - (x x'? (1) 

where x,x' are the two conjugate coordinates in phase space with respect to the barycenter of 
the population and < ... > designates the statistical average of the enclosed expression over the 
particle population of the beam. 

In the case of coupling between the two directions of betatron motion and eventually 
between betatron and synchrotron motions, one has to consider a 2 or 3 dimensional motion. 
If one would have to take account of a coupling with spin motion, the motion would become 
4-dimensiona1. 

The generalization of the r.m.s. emittance to a p-dimensional motion is straightforward. 
The (J matrix is a pxp matrix formed by the second-order statistical centered moments: 
<xaxp>, <xax'p> and <x'ax'p> (a, p = 1, ... ,p). The r.m.s. emittance tl, ... .p is the square 
root of the determinant of the (J matrix. Its main feature is its invariance in a linear motion. 

For each degree of freedom a one can still define a r.m.s. emittance ta as: 

(2) 

that is the projected emittance in the Xa, x'a subspace. If the p degrees of freedom would be 

independent, the p-dimensional emittance tl ... p is just the product of the p emittances ta, 

a = 1, .. . ,p. Here it is shown that the p-dimensional emittance tl. .. p is in fact lower than this 

product when the motion is coupled and then satisfies the inequality: 
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(3) 


becoming an equality only if the motion is uncoupled. It is the generalization of a result 

obtained by L. Rivkin[2] in the case of a 2-dimensional motion: 

(4) 


where x and y designate the two coordinates of a betatron motion as usual. 
For a motion with more than 2 degrees of freedom, the inequality (3) is in fact the two 

ends of a series of inequalities. These are similar to the Faguet's inequalities[3] that generalize 
the Hadamard inequality for Gram determinants. One will mainly consider the 2-dimensional 
and 3-dimensional motions that are the most usual cases in particle beam dynamics. One 
leaves the general proof to the Appendix. In Section 2. one again derives the inequality (4) for 
a 2-dimensional motion using one Faguet's inequality. For 3-dimensional motion the series of 
inequalities reduce to a double inequality that is derived in Section 3. 

2. Emittance inequality for a 2-dimensional motion 
The proof is obtained using a first inequality of Gram determinants derived by 

M. Faguetl3j as a Lemm. 
The phase space coordinates of a particle are x, x', y, y'. The nu mber of particles in the 

beam is n and their coordinates are numbered by the index i running from 1 to n. 
In Rn (the real vector space of dimension n), let one introduce 4 vectors U, U', V, V'. 

The coordinates of U are: 1I1' U2,"" Un, where Ui = x/{n is proportional to the coordinate Xi 
of the i-th particle (i = 1, ... ,n). Similarly, the coordinates of U', V and V' are respectively: 
lI'i = x'/{O, Vi = y/{O and V'i = y'/{O. With that notation the 10 second-order moments 
<x 2>, <xx'>, <xy>, <xy'>,... are the 10 scalar products of the vectors U, U', V, V'. 
For instance: 

(xy)=~ I
n 

XiYi = I
n 

Ui·Vi = U.V (5) 

i=1 i=1 

and the determinant of the (J matrix is just the Gram determinant of the 4 vectors U, U', V, 
V': 

U.U U .U' U.V U .V' 
U '. U U'. U' U'. V U'. V' = G(U ,U', V,V')det (J = 
V.U V . U' V.V V.V' 
V'. U V'. U' V'. V V'. V' (6) 

The Faguet's inequali ty, obtained as a Lemm, is: 

G (X ,Y,Z)G(X) ~ G(X,Z)G(X ,Y) (7 ) 

where X, Y, Z are any three sets of vectors in Rn. L et here apply that inequality for a void 
set X = 0, with G(X ) = 1, and Y = (U,U'), Z = (V ,V '): 
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obtained by L. Rivkin[2] in the case of a 2-dimensional motion: 

(4) 


where x and y designate the two coordinates of a betatron motion as usual. 
For a motion with more than 2 degrees of freedom, the inequality (3) is in fact the two 
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U.U U. U' U.V U .V' 


det (J = 
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V.U V .U' V.V V.V' 
V'. U V'. U' V'. V V '. V' (6) 

The Faguet's inequality, obtained as a Lemm, is: 
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G(Y,Z) :::; G(Y)G(Z) (8) 

I.e. : 

G(V, V ',V,V') :::; G(V ,U ')G(V,V') 	 (9) 

Taking the square root of the latter (Gram determinants ar never negative), one obtains the 
inequality (4), previously derived by L. Rivkinl2J. 

The inequalities (4) and (9 ) become equalities if the vectors V, V' are both orthogonal to 
the vectors U, U', i.e . the fo ur coupli ng moments <xy>, <xy'>, <x'y>, <x'y'> vanish. 
Inversely, it can easily be shown that the equali ties hold only if either the vectors U, U' or V, 
V' are linearly dependent (i.e. the emittance Ex or Ey vanishes), or U, U' are both orthogonal 
to V, V' (i.e. the four coupling moments vanish). 

The ineq uality (4) means that, in a linear motion for which the emittance Ex,y is a 
constant, the cou pl ing leads to an increase of the product of the two projected emittances 
Ex and Ey of a beam initially uncoupled. The coupling is usually detrimental to the beam 
qualities. 

3. 	Emittan ce double inequality for 3-dimensional 
motion 

The proof is obtained in the same way using the Faguet's inequality (7). Now, the phase 
space coord inates of a particle are x, x', y, y', z, z'. In Rn let one introduce 6 vectors V, V', 
V, V', W, W'with the coordinates: Uj = x/{O, U'j = x'/0n, Vj = y/0n, V'i = y'/0n, 
Wj = z/0l1 and W'j = z'j/0l1. Here again, the 21 second-order moments are the 21 scalar 
products of these 6 vectors and the determinant of the <J matrix is their Gram detenninant. One 
first applies the Faguet' inequality (7) with X = 0, Y = (U, U') and Z =(V,V', W, W') : 

( I 0)G(U , U',V,V' ,W , W'):::; G(V,V',W , W')G(U, U') 

and a second time with X = (V , V'), Y = (V,V ') and Z = (W, W'): 

G( U , U',V,V',W, W') G(U, V'):::; G(V, U' ,W , W') G(V, V',V,V') (II) 

Multiplying the two preceding inequali ties (10) and (11) and taking the square root, one 
obtains: 

G(V, U',V,V',W, W'):::; v' G (V, U ',V.V ') G( V ,V',W , W') G(U, U',W, W') (12) 

i.e. in terms of r.m.s. emittances: 

( I 3)£ X.y ,I.- -< 'I E x,y Ey,I. EI. .x 

where Ex,y.7, is the emittance of the 3-dimensional motion and Ex,y, Ey,7" El.,x are the projected 
emittances of the 2-dimensional motions x-y, y-z, z-x respectively. 

Finally, using the inequality (4) for the latter emittances, one obtains the double 
inequality: 
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( 14) 

Hereagain, the equality holds if, and only if, eiLher one projected emittance ex, ey or ez 

vanishes or aU the 12 coupling mom nts vanish. 
In the 6-dimens ional phase space t x.y,z is proportional to the volume of a hypereUipsoid 
surrou nd ing the part icles. T he physical meaning of this double in qu ali ty is that the square of 
that volume is smaller than the product of the volumes of the projections on the 4-dimensional 
subspaces (x, x ', y, y'), (y, y', z, z'), (z, z', x, x') and of the vo lumes of the projections on 
the 2-dimens ional subspaces (x , x'), (y , y'), (z, z'). Therefore, in a linear motion the 
coupling can only increase these products of projected emittances. II generalizes that property 
well-known for a coupled 2-dimensional motion. 

APPENDIX 

Hereafter, one doesn't distinguL h between a coordinate x and its conjugate momentum 
x'. The phase. pace coordinates of a particle are Xa where the index a runs from 1 to 2p (p is 
the number of degrees of freedom of the motion). One will order the coordinates such that 
X2k is the conjugate mo mentum of X2k-l. To distinguish the coordinates of different particles, 
Xai wi ll designate the coordinates of the i-th particle . The number of particles is n and the 
index i runs from 1 to n . 

In Rn let one introduce 2p vectors Va with the coordinates: Uj ::: xa/-fil, proportional to 
the coordinate Xai of the i-th particle . With that notation the second-order moment <xaxp> is 
the sca lar produc t Ua .U p. The detenninant of the cr matrix is the Gram determinant of the 

2p vectors Va: G(V I, V 2, .. ·, U2p) . 
For a set of m vectors X!, . .. ,Xm in Rn, M. Faguet[3j has derived the following series of 

inequali ties of their Gram detenninants: 

~ ( IT G(x J,. . "xk- I ,Xk+!,' . " x !_1 ,XI + I " .. ,x m))(m-I Xm-2) ~... 
l ~k<l~m 

j ,2- .. (111-[) 
(A 1) 

. ..< f IT G(xs r,xs,,.· .,xs,»)(m- I Xm-2} " r ~... 
- \! ~sr <.. . <s,$ rn 

_ 1_ 
m- I m 

. . . < ( IT G ( xs r ,x~2) ) ~ 5-11) G (Xs) 
1$S r<S2::>:m 

T he two end terms of the scrie' are just tbe well -known Hauamard inequalilY: 

m 
(A2)G (x I" . ·,xm) ::; IT G(xs) 

s=! 
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These inequalities are not convenient for the 2p vectors Ua as they don't take into 
account that each doublet U2k- l , U2k correspond to a pair of conjugate coordinates. In fact, 
in the derivation of the series of inequalities (Al) by M . Faguet nothing would be changed if 
one formally replaces each vector x by a doublet of vectors. Therefore, one can readily write 
a similar and convenient series of inequalities for the 2p vectors Ua: 

< f Il G(Uj"'"U2k_j,U2k+j""U21_I,U21+1,' " U 2P ))(P- IXP-2) <... 
- \ I~k<l~p ­

1.2.. (p-r) 
(A3 )...~ f n G(U2SI-j,U2sJ'U2s2-I,U2s2' .. ,U 2sr_ I ,U2sJ)(P-IXp-2} . . r ~... 


\ 1 ~Sl<'" <Sr~p 


P~I P 
. .. < f Il G(U 2s l-I,U 2sl'U 2s2-I,U 2S2) ~ Ils=' G(U 2s-1 ,U 2s ) 

- \ I~SI <S2$m )
In the particular cases p = 2 and 3 one recovers the inequalities (9) and (12). These 
inequalities generalize at any degree of freedom the increase of the projected-emittance 
products as a result of the coupling on a beam initially uncoupled. 
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