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ABSTRACT 

Using new and first detections of the rm.s temperature fluctuations at 10° 
and the quadrupole anisotropy on the cosmic microwave background radiation 
by COBE group together with the upper limits on small scale anisotropies, con­
straints on various cosmological models are obtained. Complete analysis on the 

quadrupole anisotropy for flat and open universe models has been done. We 
calculate not only Sachs-Wolfe effect and the etrect of time variation of the grav­
itational potential, but also the intrinsic fluctuations from the initial perturba­

tions at the decoupling time which play an important role in many cosmological 

models, in particular, models with initially isocurvature perturbations. With the 
results of COBE and the upper limits on small angle observations of temperature 

fluctuations, we found that CDMs with h = 1.0 and HDMs with h = 0.5 are 
surviving if we consider only models which are consistent with the inflationary 
scenario. On the other hand, provided that the density parameter {} is very low, 
there is no model which is consistent with all scale observations of temperature 

fluctuations and observations of galaxy correlation functions. 
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/ r At IasI COBE has delecled the quadrupole amplitude of the Cosmic Mi­

crowave Background(CMB) fluctuations and the intrinsic Gaussian tempera­

ture fluctuation smoothed on ur, 0".q(100) (Smoot tt 11.1. 1992). The CMB 

anisobopies had been searched for a long time after the discovery of the CMB, 

but they could not be detected until today. Some scenarios are proposed for for­

mations of galaxies and large-scale structures such as clusters of galaxies. In the 

scenarios based on the self-gravitational instability, the present structures in the 

universe originate from primordial fluctuations and the growth of matter density 

fluctuations eventually result in photon fluctuations, which should be detected 

today in the form of the CMB anisotropies. Also in other scenarios such as the 

explosion models and the formation models by cosmic strings and domain walls, 

the CMB anisotropies should be produced by Sachs-Wolfe effect(Sachs and Wolfe 

1967) due to the growth of the matter density fluctuations. Hence we believed 

and expected that the CMB anisotropies should be detected. In this sense, the 

results of CORE are rather very natural than a great surprise to us. Using the 

results of COBE, however, the galaxy formation models can be constra.ined more 

severely than before: the models had been constrained by comparing the ex­

pected CMB anisotropies in each model with the observed upper limits of the 

anisotropies. Now we can use the values of the detected fluctuations instead of 

the upper limits when constraining on models. 

M ucb work has been done for the estimations of the CMB anisotropies on 

various cosmological models. The CMB quadrupole moment, of course, has been 

calculated by many authors (Wilson and Silk 1981; Peebles 1982; Wilson 1983; 

Tomita and Tanabe 1983; Bond and Efstathiou 1984; Kolman and St&robinskii 

1985; Gouda and Sasaki 1986; Efstathiou and Bond 1986; Vittorio et al. 1988;. L"..... 
.,.,.).L 
~.. Holtzman 1989; Gorski and Silk 1989). But all of these were unsatisfactory in 

the sense that their considerations were restricted either to the spatially flat \~)T 
background or to an incomplete evaluation of the quadrupole moment. In other 
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words, so Car there has appeared no work which considers an open universe model 

and completely includes both the generalized Sachs-Wolfe effect or Rees-Sciama 

efl'ect(i.e., that which includes the efFeet of time variation of the gravitational 

potential (Wilson 1983» and intrinsic photon fluctuations at decoupling in eval~ 

uating the quadrupole moment. This unsatisfactory situation is mainly due to a 

technical difficulty in ~imating the present quadrupole and/or higher multipoles 

of the eMB anisotropy in an open universe. However, we have succeeded in de­

riving a formula by which one may calculate any multipole moment of the eMB 

anisotropy with practically arbitrary precision (Gouda, Sugiyama and Sasa.k:i 

1991a,b). Using this formula, we can estimate the nos CMB quadrupole mo­

ment in various cosmological models with both open and flat badcground( Gouda, 

Sugiyama and Sasaki 1991a,b). 

In this Letter, we search the mode1s in which the expected eMS anisotropies 

are consistent with the observed ones in the following procedure; we calculate 

the rms temperature fluctuations smoothed on 10·, D".~(1O.), in various rep­

resentative cosmological mode1s including ones with open background. In each 

model we normalize· the amplitudes of the temperature fluctuations by coin­

ciding the expected D".~(1O.) with the observed one by COBE. According to 

the above Scheme, we estimate the nos quadrupole moment using the formula 

mentioned before and also the small angle scale anisotropies with the fluctua­

tions normalized. Then we constrain mode1s by comparing the expected nos 

quadrupole moment and sman angle scale anisotropies in each model with the 

observed ones, respectively. This procedure has a merit as follows: the ampli­

tudes of the fluctuations have been often normalized appropriately, based on a 

quantitative measure of the present cosmological structures which reflects the 

amplitude in linear region(Gouda, Sasaki and Suto 1989jSugiyama 1989). How­

ever different normalization schemes in which we use the different quantitative 

measures give the different amplitude and so the a.mbiguityoC thenormaliza.­

tion exists. Moreover, there is a biasing problem· that is whether galaxies trace 

the mass or not, when we normalize fluctuations by familiar methods using the 

galaxy correlation function, J3 and ~ on. Here we can obtain expected values of 

CMB fluctuations directly from the observational data D".~(10·) of COBE. Using 

this new normalization scheme, we calculate the expected values of quadrupole 

and small scale fluctuations and constraint models excluding the ambiguity. 

II. METHODS 

We consider liner fluctuations around a Robert80n-Walker space-time with 

curvature K ~ O. To evaluate the present-day quadrupole anisotropy, the data at 

decoupling time have been prepared by solving numerically the evolution equa.­

tions for density perturbations, for which we have adopted the gauge-invariant 

formalism (Bardeen 1980; Kodama and SasaJei 1984). The numerical method 

is the same as the one used in Gouda, SasaJei and Suto (1989) and Sugiyama 

(1989). The initial spectrum is assumed to be a power-law: la(k)12 ex kn, where 

k' :::::: 1:' + K and a is the gauge-invariant total density perturbation. Note 

that our power-law indf'.x differs by 4 from that used in e.g., Peebles (1987) for 

isocurvature perturbations (i.e., fI = flpeebles + 4). The merit of this definition 

is that both adiabatic and isoeurvature fluctuations are scale free, i.e., Harrison­

Zeldovich spectrum, when it takes fI = 1. The evolution is numerically solved 

until the universe becomes sufficiently matter dominated and optically thin. 

The observable temperature anisotropy a",('1o' X('10) , '7), defined with respect 

to the ma.tter restframe(Kodama and Sasaki 1986, 1987), is given analytically by 

solving the null geodesic equation of photon after the deeoupling era, where '10 

is the conformal time at the present-day and '7 is the direction cosine of photon 

propagation (Gouda, Sugiyama and Sasaki 1991a). am consists of three terms, 

i.e.,ain., a •• c and a 4i/' Here 9 in• describes intrinsic photon fluctuations at 

decoupling, a .. c the Sachs-Wolfe effect, and aoj the effect of the time variation 

of the gravitational potential(Wilson 1983). We call the term aGS :::::: a..c + 9 t1iJ 

the generalized Sachs-Wolfe effect. After some algebra, one can get a formula for 

the present quadrupole component oCam (Gouda, Sugiyama. and Sasaki 1991a), 
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which has not derived by someone else for an open universe model. With that 

formula the rms qlladrupole anisotropy is evaluated. 

The rms temperature fluctuation smoothed to a total 10° FWHM, 0-• .,(10°), 

(Smoot d .1. 1992) is given by 0-• .,(8
FWBM 

= 10°) = [G(9 = 0,9.)]1/2, where 

G(9,9.) is the intrinsic temperature angular correlation convoluted with a Gaus­

sian smoothing angle fl. and is given by the ordinary method(see e.g., Gouda, 

Sasaki and Suto 1989). In the observation of COBE, the sky maps of temperature 

are made by smoothing with a total 10° FWHM Gaussian and then 9. is 4.°25. 

At first, in each cosmological model we normalize the fluctuation accord­

ing to the scheme that the expected rms temperature anisotropy (u(IOO) == 
0-• .,(100 )/To) is~equal to the observed one(o-.I:y(IOO)/To = 1.1 x 10-5 ). And 

then we estimate the rms quadrupole moment of the anisotropy Qrm.(= Q/To) 

according to this normalization in each model. Finally, we compare the expected 

quadrupole moment Qrnuin each model with the observed one (Q/T = 5 x lO-')o 
and search the models whose quadrupole moment is consistent with the ob­

served one. In this comparison, we must note that the theoreticall, expected 

rms quadrupole moment is not directly comparable to the observed one and the 

quadrupole moment in our universe will be distributed like X2 with 5 degrees of 

freedom under the assumption of random phase Gaussian distribution(Abbott 

and Wise 1984). From this, it follows that there is a probability of 90% of mea­

suring a quadrupole Q, 
Q

0.48 < -:-- < 1.5. 
Qrm. 

Furthermore, we estimate the temperature anisotropy 6T/T at 7.'15 and at 

1 ° in each model using the temperature fluctuations normalized according to the 

above scheme. Comparing the results with the observed upper limits of ST/T 

at 7.'15 by Readhead d al. (1989) and at 1° by Meinhold and Lubin (1991), 

we constrain models more severely than from only the large-angular anisotropy 

alone. 
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III. RESULTS 

The models that we have examined in this Letter are baryon-dominated uni­

verse models(BDMs)j cold dark matter models(CDMs) with initially adiabatic 

and isocurvature perturbations; hot dark matter models(HDMs) with initially 

adiabatic perturbation; and Peebles' reionized universe models(Peebles 1987). 

As for dark matter dominated models, we set the baryon density parameter 

0. =0.03. We have taken the non-dimensional Hubble parameter h normalized 

by 100km/s/Mpc, 0.5 and 1.0. Models with initial power spectrum n = 0, 1 and 

2 have been calculated except Peebles' models. As for Peebles' models, higher 

initial power are needed to reionize the interstellar matter and we have chosen 

n = 1,2 and 3. Here, we have neglected the secondary effect on CMB fluctua.­

tions induced by ionized matter, so-caHed Vishniac effect (<>striker and Vishniac 

1986; Vishniac 1987) for Peebles' models. This effect plays an important role 

on small scale fluctuations, but do not produce large scale anisotropies. In our 

calculations, neglecting this effect may make the expected fluctuations on 7.'15 

scale underest.imated. As a result, the constrains on Peebles' models by the small 

scale observation may be slightly more strict than those obtained in this Letter. 

In Fig.I, the expected quadrupole anisotropies for various models with h = 
1.0 are shown. Constraints are obtained at 90% confidence level as previously 

mentioned. Including the constraints by the small scale anisotropies, results for 

all models ace shown in Table 1. 

IV. CONCLUSIONS AND DISCUSSIONS 

In a variety of open and flat universe models, we have calculated the rms 

quadrupole moment normalized according to the scheme that the tleontic.lI, 

expected u(100) in each model is equal to the observed one by COBE. Comparing 

the results with the observed quadrupole moment by COBEand the upper limit of 
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ST/T at 7.'15 by Readhead d al.(1989) and at 1° by Meinhold and Lubin (1991), 

we have found the surviving universe models as shown in Table 1. It shows that 

models with n > 1 are constrained mainly from the result by Readhead et al. 

(1989) and models with n'" 1 and n < 1 are restricted mainly from the results 

by Meinhold and Lubin (1991)and by COBE, respectively. If we consider models 

which are consistent ~th the inflationary scenario such that 0 = 1 and n = 1, 

BDMs with initially isocurvature perturbations and h = 1.0, HDMs with h OJ, 

are survived and CDMs with adiabaJ.ic perturbations and h = 1.0 is marginally 

alive. Most of the adiabatic CDMs may be ruled out if we would like to seek the 

models which are consistent with the observations on both large and small angular 

scales. On the other hand, if we believe the dynamical estimates on the density 

parameter, i.t., 0.1 < 0 < 0.3 (see t.,., Peebles 1987), only Peebles' reionized 

universe models with n = 1 or isocurvature CDMs with n < ~ can explain such 

low value of O. Isocurvature BOMs with h = 0.5 and n = 1 may also have a 

chance to realize the low 0 universe. It should be noted that we neglect the 

observational error when constraints on cosmological models are set. Including 

the observaiional error, however, constraints obtained here by the quadrupole 

anisotropy are still 80% confidence level. 

In deriving the results stated above, we do not consider whether or not the 

matter :8uctuations in the allowed models in Table 1 are consistent with the 

observed quantities of matter structures such as galaxy two-point correlation 

functions and so on. Here, as an example, we try to constrain the allowed models 

in Table 1 by examining whether the expected J {25h-1Mpc) in each model is
3

consistent with the observed value, 780Mpc3h-3. We estimate the biasing factor 

b in each model, which isdefi.ned by b == VC{O, 10°, J3 )/C(O,lOO,OOBE), where 

0(0,10°, J3) is the intrinsic temperature angular correlation function estimated 

according to the normalization scheme by J (25h- 1Mpc) and C(0,10°,COBE)
3

is the observed one by COBE. We find from the definition of b that the allowed 

models in Table 1 are still survived if 6", 1, which means that the expected J
3 

in 

the models is nearly equal to the observed one. The result is as foDows: all allowed 
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models in Table 1 with n = 0 have b ;;e, 5 and then are not desirable. Adiabatic 

BOMs with n = 1 might be marginally allowed since b fV 4. However we can not 

expect such large baryon densities from the primordial nucleosynthesis. As for 

isocurvature BOMs with n = 1, b fV 5 - 10 and then it may be difficult to be 

still alive. A1t.hough the reionized universe scenario is considered, it is difficult to 

save isocurvature baryon dominated universe since the Peebles' models with n = 1 

must be large biasing factor b ~ 10. Moreover it is difficult for models with scale 

invariant initial spectrum n =1 to produce ionized matter since ionization may be 

produced by higher power spectrum. The biasing parameter of adiabatic CDMs 

and BOMs models with n =1 is nearly equal or less than 1 and these models 

with {} ~ 1. are desirable. As for isocurvature COMs, small {} demands large b 

and it is difficult to realize low density universe. Even if in these isocurvature 

COMs, we choose n = 1 for h = 1 and h =0.5, b = .. and b = 6.5, respectively. 

So it . may be difficult to realize the isocurvat ure CO Ms. 

Basically, the normalization scheme based on other observed quantities, e.g., 

J3 at other scales, correlation function itself and peculiar velocities yields the 

similar amplitudes of the lluctuations within the factor 2 or so over a wide range 

of parameters(Gouda, S8$8ki and Suto 1989; Sugiyama 1989). Then we will get 

the similar results shown above when estimating the constraint on the model 

from other quantities of matter structures and/or peculiar velocities. 

As a result, only dark matter dominated models with n ~. 1 and n ~ 1 are 

desirable. It is remarkable that these model.q are just consistent with in:8ationary 

scenario. The angular resolution of COBE's data is 7° which is larger than the 

horizon scale at the recombination. Then the fluctuations observed by COBE 

are completely uncausal at the recombination epoch. Since only the in:8ation can 

make uneausal regions which is once causaly connected (Sato 1981), it may be 

the proof of the infiationary scenario that such fluctuations are existed. 

COBE has also showed the profile of the angular correlation function C(o). 

Smoot d al.(1992) show the best fitted model for C(o) if the power spectrum 
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of the fluctuation obeys the power law. However the t.heoretical fonnula of the 

rms multipole moment used in their paPer when deriving this result is valid for 
.... ,.: 

the case that the familial' Sachs-Wolfe elect dominantly contribute to the total. 

large-angle fluctuations of photon, e.g. for the models with both flat background 

and initially adiabatic perturbations. So one has to analyze the C(a) also, in 
" 

other various models ~ which the total large-angle anisotropies al'e dominantly 

contributed not only from the Sachs-Wolfe etrect but also from the effect of time 

variation of the gravitational potential and/or intrinsic photon fluctuations. 

Wright d .1.(1992) eJso analyze some cosmological models using the results of 

COiJE. However they do not estimate the quadrupole moment for open universe 

models aDd/or isocurvature models and thire works are limited in the case of 

scale invariaDt initial spectrum. We gave the complete analysis on the opeu 

and/or isocurvature models and also surveyed the models with n #: 1. Their 

estimation of quadrupole moment for flat and adiabatic fl~ctuations gives the 

similar results of ours if their nonnalization scheme is changed to OUIS. However 

the cOnclusion for the restriction of the models give the slightly different ones 

from oUIS because the normalization scheme of oUIS by 0'",(10°) is different of 

theirs by 6M/M at 81l- l Mpc and moreover they give the more severe constraint 

on the models by restricting the allowed range of the biasing factors within the 

narrow limits. For example, they conclude that adiabatic CDMs with n = 1, 

n = 1 and h = 0.5 is desirable. It is shown in Table 1 that this model can not 

be survived by the constraint on 1°. The biasing factor b of this model is 0.6. 

Then if we use the normalization scheme by galaxy correlations, the small scale 

anisotropies become smaller and this model is not constrained from observations 

on 1°. And the produced quadrupole an~tropy is also fitted with observations. 

In this case, however, the expected value of 0',q,(100) becomes slightly smaller 

than observations. 

We are grateful to M.SasaIri for stimulating discussions and M.Umemura 
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TABLE 1 
Constraiots 00 Cosmological Models 

model 7.15min. ldcg. Quadrupole All 

BDM 11-1.0 n-o No Constraint No Caoauairlt 0.7S<Q<O.82 0.75<0<0.82 

adiabIlic 0=1 0.16<0<0.86 0.10<0<0.74 0.62<0<0.90 0.62<0<0.74 
0=2 NoRcgioo NoR.cciOll 0.40<0 No Regioo 

b-O.s n=O 0.17<0 0.22<0 NoRqion NoRegion 

0=1 NoRcgion NoRcIion 0.6S<n<D.81 NoRcgiOll 

0=2 NoRcgion NoRcPoo 0.4Odl NoRcgiOll 
BDM h=I.0 0-0 No Constraint NoCouuaiDt 0.7S<O<O.92 0.75<0<0.92 

isocurvaIure 0=1 No Constrainl No Constra.inl 0.5Sdl 0.55<0 
0-2 No ReJiClll> NoRcgioo- 0.30<0 NoRcgiClIl 

b-O.s 0=-0 No 0Jnstrainl 0.13<0 NoRqioo. NoR.egion 

n=1 0.10<0 " 0.'27<0 0.26<0<0.89 0.27<0<0.89 
n=2, > No, Region, NoRcgioo No Constrainl NoRepon 

Peebles h=1.0 n=al No Constraint NoCoostniDl 0<0.14 0<0.14 
n=2 No Constraint NoRqiOll NoCmalniDl NoRcgioo 

n=3 No Conslnint NoRcgiOll 0<0.18 No Rcgion 

W.s n-l No ConstrIint No COns&raiat 0<1).74 0c0.74 

n=2 No Conslnint NoRcgiOll No Constraint NoRcgion 

0=3 No Constraint NoRcgion 0<0.49 No Rcgion 
(DM h-1.0 oaO 0.13<0 0.13<0 NoRcgion No Region 

adiabatic 0=1 0.63.Ql 0:-1.0 0.62<0 0-1.0 

n-2 No Region No Region 0.53<0 No Region 

h=O.s 0-0 No ConsIraiDt No Coosttaint No Region No Region 

0-1 0.80<0 NoRegioo 0.64<0 No Region 

0=2 NoRcgion NoRcgion 0.53<0 No Region 
(DM h-1.0 naO No Cooslnint No Constraint 0c0.s4 0<0.54 
isocurvalUrc n=1 No Consttainl No Consttalnt No Constraiot No Constraint 

D=2 0.55<0 No Regioa No Constraint No Rcgion 

h=O.5 oaO No ConsInint No Coosttaint 0<0.55 1l<OSS 
0-1 No Constraint 0.10<0 No Constraint 0.10<0 

n=2 0.40<0 No Rcgion No Constraint No Region 

IIDM 11-1.0 n=O No Coastraint No Constraint 0.40<0<0.60 0.40<0<0.60 
adiabatic n=1 0.65<0 No Rcgion No Constraint NoRcgion· 

0=2 : NoRegiOD NoRcgiOD O«U9 No Region 

h-O.s n-o No Coastraint No CoasInint NoRcgioo No Region 
0=1 0.78<0 0.12<0 No CooIUaint 0.78.Ql 

0=2 NoRcgioo No Region 0c0.68 NoRcgion 

note: If Ibc:re remains no allowed region onlhc density paramdCr. we mart u No Region. 

If Ihe model is not constrained. No Constraint is marb:d. 
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Figure Ca.ption 

Fig.I. The rms quadrupole moment in a) adiabatic BDMs, b) isocurvature 

BDMs, c) adiabatic CDMs, d) isocurvature CDMs, e) RDMs and f) Peebles' 

reionized models with some initial power spectrum n. The observed value is also 

shown. 
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