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1 Introduction: Experimental Facts and 
Theoretical Ideas 

In this paper, we describe a classifi.cation 'of (universality classes of) dissipation
free (incompressible) quantum Hall fluids in terms of arithmetical invariants connected 
to integral lattices. The key insight ,will be that the theory' of certain classes of integral 
lattices organizes experimental data in an efficient a~d accurate way. We emphasize 
that th~ appearance of integral lattices in the theory of the quantum Hall (QH) effect 
is not the consequence of queer mathematical fantasizing devoid. of physical insight, 
but is the consequence of some fundamental physical principles and properties, such 
as the absence of dissipation in an incompressible QH fluid, electromagnetic gauge 
invariance, parity and time-reversal breaking of the quantum mechanics of charged 

, ,particles.in an external magnetic. field~ and the Fermi statistics of electrons. It is our 
aim to show that integral lattices are fundamental to the theory of the QH effect. 
It will therefore be impossible to spare the reader a certain amount of mathematical 
reasoning involving lattice theory. 

The integerQH effect has' been discovered by von Kli tzing and collaborators, 
fifteen years ago, the fractional effect by Tsui' and collabo~ators" in 1982; see [1]. Since 
then this remarkable effect of non-relativistic many-body physics has posed numerous 
and diverse challenges to experimentalists and theoreticians. As theorists, we should 
sadly confess that we have anticipated few of the real surprises. 

Experimentally, the QH effect is' observed in two-dimensional systems' of electrons 
and/or holes confined to a planar region n and under the influence of a strong, uniform 
magnetic field Be transversal to n. Such systems can be !ealized as inversio;n layers 
forming at the interface between an insulator and a semiconductor when an electric 
field (gate voltage) perpendicular to the interface is applied. Imagine that the sample 
is rectangular, with n contained in the(x, y)-plane. By tuning the total electric current 
1= (lx;.1y ) to some value and measuring the voltage drops, Vx and Vy, in the x- and 
y-directions of the plane of the system, we may determine the resistances Rxx , Ryy , 

and RH from the equations 

~ - Rxxlx - RH I'll , and 


Vy - RH Ix + Ryy Iy .\ (1.1) 


One finds that, at temperatures T very close to 0 K, 'RH is independent of 1; it 
only depends on a dimensionless quantity 11, called filling factor and defined by 

n 
(1.2)

11 = (eB//hc) , 

1 
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where n is the difference between the density pf electrons' and the density of holes in 
the sampie, B/ is the component of the external ma.gnetic field, Be perpendicular to 
the plane of the sample, a~d 'hc/e is the quantum of magnetic flux. Tteating electrons 
and holes as classical point particles, one .finds by equating electrostatic- and Lorentz' 
force that, in a stationary state, 

(1.3) 


the constant of proportionality, e2/h, being a universal constant of nature. Since, 
experimentally, n can be varied (by varying the gate voltage) and B/ can be varied, . 
the classical prediction (1.3) can be tested. Experiments at very low temperatures, , 
with rather pure san;lples, yield surprising data: The experimental curve for Ri/ a.s a, 
function of v.shows plateaux, i.e., small intervals of values of v, where R;/ is constant. 
Whenever (v,R;/) bel~ngs toa plateau th~n 

(i) Rx:r: ,and 14'11 very nearly vanish; 
(ii) R;/ is a rational niultiple of e2/h. The plateaux, where Ri/ = nH e2/h, for 

some integer nH,=, 1,2,3, ... (not too large), occur with an ~tbunding p'recision of' 
one part in 108 • The plateau-height quantization is insensitive tQ sample preparation 
(e.g., to impurities) and -geometry, for all practical purposes. 

(iii) Only a limited (experimentally, a finite) set of rational numbers appear as 
platea~-heights of R;/h/e2 • The behaviour of Ri/ 'as a function of v between neigh~ 
bouring plateaux appears to exhibit universal features. In such transition regions, R:c:c 
and 14'11 are non-zero. 

These (and other) experimental findings pose fascinating problems to the theorist: 
(1) Appl~ing non-relativistic many~body theory toat.wo-dimeIlsional system of 

interactin~ electrons in' an external magnetic field, can . one predict the values pf v at 
which R:e:r: and By'll vanish? 

(2) If R:r::r: and R'II'II v~ish, can one predict the possible values of RH? Writing
! . 

.' 2 
-1. e (1.4)RH = O'H};, with 

where nH anddH are two integers without common divisor, we would like to un
derstand which set of rational numbers, nH/dH, corresponds to plateau-heights of 
the dimensionless Hall conductivity (or Hall fraction) O'H in real samples. Do only 
special types of integers appear as numerators, nH, or denominators, dR, of O'H; ("odd
denominator rule")? Conversely, can we predict wp.ich rational numbers will "never" . 
appear as plateau-heights of uH?How does·the set of observed plateau-heights depend 
on'propertiesof the sample, e.g., on the number of interacting layers, the width ()f the 
quantum well cortesponding to a layer, the in-plane component, B1', of the applied 
magnetic field, etc.? Given an observed plateau-height of O'H, can we say something 
about the stability of the corresponding state of the system ? . 
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(3) What is the structure of the quantum· mechanical state of the system when 

(II, O"H) lies in between twoplateaux;,e:g., when II' = 1/4 or II = 1/2, in a single·layer 
sample? Experimentally, the transitions between plateaux do not appear to exhibit 
any hysteresis phenomena. Does this mean that these transitions are continuous and, 
pass through a critical point where one should observe critic,al phenomena? If this 
is the case what' kind of theories describe the critical points? Can we predict the 
(relative) widths of plateaux and of transition regions? 

During the past five years, we have been involved in theoretical work on many 
of these questions. While we feel that theorists have gained a lot of fairly convincing 
heuristic insight in the dJrection of answering these questions, it is only the questions 
described under point (2), above, to which we have what we would like to think are 
fairly definitive and' mathematically precise answers. The description and mathemat
ical derivation of some of these answers form the main contents of this paper. (We 
hope to present some of our insights into questions posed in points (1) and (3) in ' 
future communications.) 

The ground work for our approach to the problems described under point (2), 
above, has been carried out in Refs. [2] through [7]. It owes much inspiration to work 
of Halperin [8] and Read [gland overlaps with work by Wen and others [10]; (see also 
the books quoted in [1), and [11,12)). 

Next, we recapitulate the key theoretical facts underlying our analysis. In this 
work, we use units where the electron's charge, -e, and Planck's constant, h, equal

I 

unity. A two-dimensional system of electrons and/or holes in a transversal, external 
magnetic field exhibiting the Hall effect (RH =F 0) is called a QH system. If Rzz and 
Rw vanish it is called an incompressible QH fluid or, for short, a QH fluid. 

Our purpose, in this paper, is to explain or predict universal properties of QH 
fluids at temperatures T ~ 0 K. ,It is therefore' reasonable to look for a; description 
of such systems in the scalinu. limit. Thus we consider a family, parametrized by 
a scale parameter 8, with 1 < 8 < 00, of ever larger samples confined to regions 
0(8):= {ili/8 =: (E O} in the (x,y)·plane. We describe the system in 0(8) in terms 
of rescaled space- and time coordinates (r, (), where ( = i/8, i E 0(8), r = t/8, 
arid t E R. denotes time. The property that Rzz and R"y vanish in QH fluids can be 
interpreted as indicating that the ground state energy of such a quantum fluid confined 
to the region 0(8) is separated from the rest of its spectrum of energies of (extended) 
states by a mobility gap a (8), with 

Ll(9) 2: Ll. > 0, (1.5) 

for all 8. From assumption (1.5) it follows that the universal physics of QH fluids in 
the scaling limit,8 -t 00, is described by a topological field theory. For the purpose 
of predicting the values of O"H, or of other electric transport properties, it is sufficient 
to det~rmine the ,Green functions of conserved current densities, in particular of the 
electric current density, in the scaling limit. Thus,'let jt, ... ,jN be a list of all current 
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densities of a qH fluid which, in. the ~caling limit, are independently conserved. We 

, write 

(1.6) 


where i~ is the charge density and ]k the vector current density associated with jk, 
k = 1,. ~. ,N. Saying that jk is conserved means that it satisfies the continuity 

equation 

1 0'0 ... ~ 
--Jk - 'V. Jk - 0 . (1.7) 
cor , 

The totq,l electric current density, iel, mus,t always be among the conserved current 
densities,of a QH fluid. Thus there are real numbers Q}'"" QN such that 

N 

iel = 2: Qkik . (1.8) 
k=l 

Let < ..• >(9) denote the quantum-mechanical expectation 'in the ground state 
of a QH fluid confined to 0(9). Lete: (eO,ft,e2 ) = (cr,[), [E n, and o~ := a/op ' 

We define the "vacuum polarization tensor", 11, in the scaling limit by 

(1.9) , 

for /1,1/ = 0,1,2, and k, I = 1, ... , N. In (1.9), we are 1:lsing that a conserved current 
density of a two-dimensional system scales like the square of an' inverse length; (con-" 
served current densities cannot have anomalous scaling dimensions). It follows from 
the continuity equations (1. 7) that 

opl1~r = 8j111~t = 0, for all k,l = 1, ... ,N . (1.10) 

From (1.10) andthe fact that the current densities ik have scaling dimension 2, it 
follows that, for { and ij in the interior of 0, 

(1.11 ) 

where the coefficients Ski are' the matrix elements of a. symmetricN x N ma.trix 5' 
and are dimensionless (in out, units, whereh ,-e = 1). The terms (+ ... ) omitted. 
on the r.h.s. of (1.~1) involve seco~d or higher derivatives of 8-functions and' have di.. ' 
mensionful coefficients, (wi~h dimensions of a first or higher l?ower of length). They, 
are of subleading order in the scC!ling limit. Let N+, N_, and No denote the number 
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of positive, negative, and zero eigenvalues of S, respectively. By rescaling the cur
rent densities jk and introducing suitable linear combinations thereof, we can always 
achieve that 

(1.12) 

with Sk = 1, for 1 < k< N+, Sk ~ -1, for N++1 < k $ N++N_, and Sk = 0, 
otherwise. We may henceforth assume that the current densities j k have been chosen 
in such a way that (1.12) holds. In discussing electric transport properties in the scaling 
limit and predicting the possible values of UH, current densities jk corresponding to' 
Sk = °are irrelevant, and we may therefore assume that No = 0, N = N++N_. 

Note that, for S f= 0, the tensorn violates parity and thne-reversal invariance. 
Thus, the ground state of a QH fluid· is not invariant under paritY,and time-reversal, 
unless N+ =N_ = O. This is to be expected of a system· of charged particles in an 

, external magnetic field. 
It follows from (1.11) and (1.8) that 

._ lim (}4 <T[j:,«(}e)j;I«(}7])]>(IJ) 
9":"'00 

- i <Q ,Q> eJJ.JlP 8p S(3)(e - 7]) , (1.13) 

where Q, with components Ql,"" QN, introduced in (1.8), is called "charge vector", 
and . 

N 

<Q,Q>= L QkSklQl (1.14) 
k,l=l 

'where the second equality holds if the "norma,lization conditions" (1.12) are imposed. 
From the basic equations of the electrodynamics of QH fluids (see [2] and [5]) 

we know that the coefficient, < Q, Q >, on the r.h.s. of (1.13) is nothing but the 
dimensionless Hall conductivity UH, i.e., 

UH = <Q,Q> . (1.15) 

Since the theory q,escrioing a QH fluid in the scaling limit is a topological field 
theory (~* > O!), as remarked above, all ex~itations above the ground state of a QH 

fluid ot finite energy and localized in compact regions. contained in the bulk of the 

system ("quasi-particles") can be described, in the scaling limit, as pointlike, static, 

sources of the topological field theory (located at points in the interior of n). One 

can show [2,13] that one can assign N charges, ql, ... , qN, to every such source. The 


. ch~rge qk is an eigenvalue of the conserved total charge operator corresponding to the 
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conserved current density jk; this charge operator is normalizedin such a way that 
the ground state of the system has charge zero. ~By (1.8), th~ totalelectriccharge of 


. 1 N" b
a sourc,e described by a vector q of charges, q , ... , q ,. IS gIven y 

N 
I'qel(q) = E Qk qk . (1.16) 

k=1 

If a source with a vector. ql of ch{J.rges is transported (adiabatically) around a 
source with a vector q2 ·of charges along a counter-clockwise oriepted loop not enclosing 
other sources a corresponding quantum-mechanical state vect'or is multiplied· by an 

. "Aharonov-Bohm phase factor" 

(1.17) 


; where 
N 

<ql , q2> = .E q: (8-1)kl q~ . (1)8) 
k,I=1 

If two identical so,,!-rces labe1led by vectors qf,q2 of charges, with ql =q2 =q, are.' . ,. 

(adiabatically) exchanged along counter-clockwise oriented paths not enclosing other 
sources t\len a corresponding qu~tUni-mechanical state vector is multiplied by the 
phase factor 

exp(1ri <q , q » . (1.19) 

These are properties of physical state vectors of the topological fieldtheory, an abelian 
Chern-Simons theory of N gauge fields, that reproduces the current Green functions 
given in (1.11). They have been derived and discussed in great detail in previous 
papers; see [2,3,5,6]. 

The conventional connection between electric charge and quantum statistiCs in 
a quantum-mechanical gas of non-relativistic electrons says that whenever the total 
~lectric charge, qe/(q), of a localized excitation labelled by a vector q .of charges is 
an even (odd) integer (in units where e= -1), i.e., the excitation is composed of an 
even (odd) number of electrons and/or holes, then the excitation obeys Bose-Einstein 
(Fermi-Dirac) statistics. This charge-stati$tics connection, together with (1.19), im
plies that every vector q corresponding to an~ntegeF electric charge qel(q)\satisfi~s the 
constraint 

qel(q) =.<q,q> mod 2 . .(1.20) 

) 

Moreover, it follows from the charge-statistics connection and (1.17) that if ql and 
q2 both correspond to integer electric charges, qel(ql), qel(q2) EZ, then < qI,q2 > 
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is an integer. Finally, the vectors q for which qel(q) is an integer form an additive 
group; addition corresponding to the composition of two excitations, and the operation 
q -+ -q corresponds to "charge conjugation" (electron-hole exchange). 

A detailed account of the arguments just sketched can be found in [6]. The key 
result that they imply isthat the. vectors q of charges belonging to the set 

(1.21 ) 

form an integral lattice. In other words, r is an additive group (a "free Z-module"), 
and, for any pair, ql, q2, of vectors in r, .< q}, q2 > is an integer. We define the lattice 
dual to r by 

r* .- {n E ]RN I .< n , q> E Z, for all q E r} . (1.22) 

Since the charge vector Q introduced in (1.8) and (1.13) has the property that 

.< Q , q> = qel (q) E Z, for all q E r , (1.23) 

, it follows that 'Q E r*. This implies that .< Q , Q > is a rational number, and hence, 
by (1.15), the Hall fraction UH = nH/dH = ,.< Q ,Q > is rational! 

An electron and a .holeare among the localizable, physical excitations of a QH 
fluid. Thus there must exist some vector q E r with the propert.y that 

qel(q) = .< Q ,q> = 1 . 

Then (1.20) implies that .< q, q > is an odd integer; hence r is what is called an 
odd integral lattice, and, by (1.24), Q is a: so-called primitive (or visible) vector of 
r*. Moreover, by reading the charge-~tatistics connection (1.20) (which holds for all 
q E r) as a constraint on Q, we say that Q is an odd vector of r*. 

It is a basic fact of non-relativistic quantum theory that state vectors are single
valued in the, positions of electrons and holes. Let n be ~ vector of charges of an 
arbitrary, localizable physical excitation of a QH fluid, and let q E r. Then, by (1.17), 
and since state vect~rs are single-valued in the positions of electrons and holes, .< n ,q > 
must be an integer, and hence 

n E r* . (1.25) 

Thus, the vectors of charges of localizable physical excitations form a' lattice rphys 

contained in or equal to r*. 
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The conclusion reached, so far, is· ,that: In the scaling limit, an (incompressible) 
QH fluid with· N conse~ed current· ~ensities, jl,'" ,jN (we shall speak of N "chan-. 
nels"), N= 1,2, ... , can be characterized by the data 

(i) an N-dimensional, odd, integral lattice f,. 
(ii) an odd, primitive vector Q E f*, with < Q, Q > = O'H; and 
(iii) a lattice fphy",with r ~ fphys ~ f*. 

A pair (f, Q) is called a quantum Hall lattice. If the integral quadratic form (or 
m~tric) <, > defined on f is either positive- or negative-definite, we say that (f, Q) is 
a chiral QH lattice (CQHL), for reasons connected to thechirali~y of edge currents; see 
Sect. 2 and alSQ [5,6]. It is a plausible idea about the physics of QH fluids that if< ,> . 
is not positive- or negative-definite then f c~n be decomposed into 'an (orthogonal) 

direct sum,' 

I 


• (1.26) 

, . " 

with the property that fe (fh) is an' odd, integral sublq.ttice of f on which <, > is 
. positive- (negative~) definite. D7composition (1.26) may not hold in ·general, but it 
will serve as a fairly safe "working hypothesis" througho~tmuch'ofour paper. The 
physical :basis of this working hypothesis (decomposition' of QH fluids into electron
and hole-rich subfluids) will be discussed inSect. 2 and Appendix E; see also [6]. (In 
Sect. 2, we summarize the basic physical assurriptionsof our approach and provide'the 
ma.thematical notions connected to (chiral) QH lattices.) 

Our aim in this paper, is' to present a . partial classification of QH lattices. In. 
view of our working hypothesis (1.26), our main effort will concern the classification' 
of chiral QH lattices; (but see Appendix E). We shall carefully compare our results 
with experimental data on QH fluid~, . focussing our attention primarily on, dat~ forI 

single-layer QH fluids with O'H in the interval 0 < O'H < .1. Our job involves a 

characterization of QH lattices (f, Q) in terms of numerical invariants; see Sect. 3. 

Among these invariants, the following ones play a key role: 


(i) The dim~nsion, N, of f; 
(ii) the discriminant of f, i.e~, the order of the abelian group f*jf'- where f*jf 

denotes the family of cosets of f* mod f, (as well as· more sophisticated invariants' 
involving f*/f, e.g., the genus of r); 

(iii) an ,invariant, denoted lma.z, interpreted, physically,: as the sIDrallest relative 
angular momentum of a certain pair of two identica:lexcitations of electric charge 1 
(electrons) -lma.z is an oddinteger (see Sect. 3); and, of course, 

(iv) the dimensionles~ Hall con~uctivity (or Hall fraction), O'H =: < Q, Q >. 

For CQHLs, the invariants lma.z anqO'H are related by 

(1.27) 
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which is ,a consequence of the Cauchy-Schwarz inequality; see Sect. 4. 
In our comparison between theory and experiment, we shall appeal to a heuristic 

(analytically plausible, but mathematically unproven) stability prip,ci:ple which says 
that a QHlluid described by a QH lattice (r, Q) is the more stable, the smaller the 
value of the invariant lma,:;c and, given the value of lma,:;c, the smaller the dimension N 
(and the discriminant) of r; see Sects. 4, 6, and 7. ~A measure for the stability of a QH 
fluid is, for example, the width of the plateau of UH (as a function oLv) corresponding 
to thatQH fluid., 

In view of (1.27), it is useful to decompose the interval (0.,1] of values of UH into 
subintervals ("windows") Ep = Et U· E; , where 

1 1 1 1:E+ p and p = 1,2, .... (1.28).- [2p+1'2p)' .- [2p' 2p - 1 ) , 

The invariant lma,:;c of a' CQHL (r, Q) with UH E Ep is bounded below by 2p+ 1. We 
define 1-£; to be the class of all CQHLs, (f, Q), with UH E E; a~d lma,:;c = 2p+l, (and 
,which are, to be technically precise, "primitiye", as specified in .Sect. 2). We shall see 
that, for all p, all CQHLs in 1-£t can be enumerated explicitly, and that, for p::; 3 
and sufficiently small values of their dimension (stability principle!), they correspond 
to experimentally well v~rified plateaux of U H • 

. There are heuristic analytical and numerical arguments, as well as convincing 
phenomenological evidence, indicating that the most stable state of a QH system with. 
II < 1/7 is one where the electrons form a Wigner lattice. But a Wigner lattice is 
incompatible with a positive mobility gap ~*' i.e., with incompressibility. By (1.27), 
this implies that the invariant lma,:;c of a chiral QH lattice corresponding to an exper~ 
imentally realizable QH

i 
fluid is bounded above by 

'lma,:;c <. 7 . (1.29) 

There is reasonable, ~alytical evidence [14] that single-layer QH systems with fill
ing factors II == 1/2, 1/4, and various other even-denominator fractions are described 
by gapless (possibly ~arginal) Fermi liquids. Thus, e.g., UH = 1/2 and UH = 1/4 
should not correspond to plateaux of single-layer QH fluids. 

The CQHL (r =\Z, Q = 1) has invariants N = 1, Ir*/rl = 1, lma,:;c = 1, and 
t7H = 1. It describes the by far most stable QH fluid with a Hall conductivity UH E 

(0,1]. Thus the plateaux at UH = 1 should have by far the broadest width among .all 
plateaux at values of UH in the interval (0,1]. QH fluids described by QH ~attices of 
dimension N> 1, discriminant' > 1, and with UH close to ~ (e.g., 6/7 ;$ UH < 1) are 
expected to be very unstable against transitions to the QH fluid at UH = 1 described 
by (r, Q) = (Z, 1) and are therefore likely to be invisible experimentally. 

In Fig. 1.1, we display experimentally observed plateau-values of UH inthe interval 
o< UH < 1 and indicate the quality of their experimental verification. (For general 
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Figure 1.1. Observed Hall fractions O'H = nHldH in the ,interval 0 < O'H < 1, and 
their experimental status in single-Ia.yer quantum Hall ~ystems. 

Well established Hall fractions are indicated by ".». These are fractions. for which a' Rxx
minimum and a plateau in RH have been clearly observed, and the quantization-accuracy 

, 	of erH = 1/RH is typically better than 0.5%. 'Fractions for which a minimum in Rxx and 
typically an inflection in RH (Le., a mjnimum in'dRH/ dB/-, but no well deVeloped plateau· 
in RH) have been observed are indicated, by "0". H there are only 'very weak. experimental 

indications or controversial data' for a given Hall fraction, the symbol ". " is used. Finally, " 

"B/n-p" is appended to fractions at;which a magnetic field (B) and/or density (n) driven 

phase transition has been observed. 
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experimental reviews of the (fractional) QH effect, see, e.g., [15,16] and references 
therein. Recent data. on QH fluids with Hall fractions belonging to the "two main 
series", l1H = N/(2N ±1), N = 1, ... ;9, can be found in [17,18]. For the status of a 
QH fluid with O'H =10/17, see [19]. We recall that the signals observed at O'H = 4/11 
and O'H = 4/13 appear to be very weak; see [20]. Magnetic field and density driven 
phase transitions have been reported at O'H = 2/3 in [21,22,23]. A magnetic field 
driven phase transition at O'H = 3/5 has been established in [23], and a possible phase 
transition at O'H = 5/7 haS been discussed in [16].) In Fig.I.l, we write O'H = nH /dH 
and display the data in a "dH versus O'H plot". We subdivide the interval (0,1] into 
the windows E: introduced above', for p = 1, 2, and 3. 

It may happen that there are several QH lattices with the same Hall fraction O'H. 

At such values of O'H, we predict phase transitions between "structurally different" QH 
fluids, as, e.g., the in~plane component, B!', of the external magnetic field "(and thus 
the magnitud~ of Zeeman energies associated with the magnetic moment of electrons), 
or the density.of electrons (at fixed filling factor), or the width of the layer to which 
the electrons (or holes) are confined are varied. A theory of such phase transitions is 
developed in Sect. 7 and the results are summarized in Appendix D. The most likely 
Hall fractions O'H at which they may occur are 2/3, 3/5, 4/7, 5/7, 5/9, and 1/2! 

We shall find (see Sect. 5 and Appendix B) a nice, simple CQHL (r, Q) with 
N = 3, ima.:c = 3, and O'H = 1/2. However, in single-layer Q~ systems, there is no 
plateau at ·O'H = 1/2, and we just said that there is analytical evidence for the idea 
that the ground state of aQH system at II = 1/2 is a gapless Fermi liquid. So, is there 
a problem with our· theory? I In order to understand what is g<?ing on at O'H = 1/2 
(and at various other values of O'H E (0,1]), it is useful to consider yet one further 
invariant of integral lattices, the so-called Witt sublattice. Given an integral lattice r, 
its Witt sublattice, rw, is defined to be the sublattice generated by all vectors q E r, 
with < q, q > = 1 or 2. ; It turns out that, for (indecomposable) chiral QH lattices 
(r, Q), the Witt sublattice rw of r is always the root lattice of a semi-simple Lie 
algebra t;i; more precisely, rw is an orthogonal direct sum of A-, D-, and E6•7 -root 
lattices. (These notions are explained in Appendix A.) Further~ore, the Lie group G 
corresponding to the Lie algebra g whose root lattice is given by fw is a symmetry 
group of the topological quantum theory describing the scaling limit pf the QH fluid 
corresponding to (r,.Q), in a sense that. has been made precise in [3,5,6] and is briefly 
reviewed in Sect. 5. Standard physics often permits us to determine at least some of 
the symmetries of QH fluids (in the scaling limit). 

For example, if the effective gyromagnetic factor of an electron in a QH' fluid 
is smati, so that Zeeman energies can b~ essentially neglected, then the scaling limit 
of a QHfluid in .an only moderately large magnetic field is expected to exhibit an 

SU(2)lJpin global symmetry (spin-flip); see [24,51. In this case, the Witt sublattice, 
rw, of the QH lattice describing the QH fluid must contain the root lattice, V2 Z, of 
su(2).Furthermore, if we consider a double-layer QHfiuid which, in the scaling limit, 
exhibits an SU(2)Ia.yer symmetry (coherent superposition of modes in the two layers 

11 

http:density.of


.. 

with 8U(2) symmetry) then fw must contain an su(2)-r6~t lattice. One can easily 
imagine that there are d~uble-layer QH fluids exhibiting (in the scaling limit) both 

symmetries, an SU(2)spin and an SU(2)1a.1Ier symmetry. Theilrwmu~t .contain the 
direct sum of two su(2),-root lattices. It so happens that there is a three-dimensional 

CQHL (f,Q), with ima.x = 3, fw = vl2Z,eV2Z (direct sum of two su(2)-root 
lattices), and UH = 1/2. This matches the recent experimental observation of a 
plateau at O'H= 1/2 in· double-layer (or two-component) QH systems [25,26]. 

Incidentally, "layer" could also stand for "filled Landau level", and this remark 
suggests a theoretical explanation of t,he observed plateau at UH =5/2 [27,28]. 

There is also a two-dimensionalCQHL (f, Q), with ima.x = 3, fw' 0, and 
, UH = 1/2. It might describe an incompressible QH fluid. consisting of two interacting 
layers of spin-polarized electrons with a Z2 layer permutation symmetry. Since Z2 
is a discrete symmetry, it does not contribute to fw,but constrains the structure, of 
(r, Q). 

The moral to be drawn from this discussion' is that we are well advised to search 
for global ,symmetries (discrete and, especially, continuous ones) of the theory that 
describes the scaling limit of a QH fluid. The continuous symmetries appear as root 
lattices contained in the.Witt sublattice of·the QH lattice describing the fluid .. 

, It has been shown in [6] that, for CQHLs' (f,/Q) with' (,H < 2, 

<Q ,q> =0, for all. q E fw, (1.30) 

i.e., Q is orthogonal to fw'. Let f 0 denote the sublatticeof r consi,sting of all vectors 
in f that are orthogonal to Q. Clearly, for UH < 2, fo contai~s fw, and, 'obviously, 
dimfo < dimf - 1. 

These, remarks suggest that an interesting class of QH lattices consists of those 
CQHLs (f, Q) for which 

fo = fw '" and dimfw - dimf -1 . (1.31 ) 

We call such lattices "m'aximally symmetric" CQHLs.' Section 5 of this paper is 
devoted toa classification of all maximally symmetric CQHLs with 0 < O'H < 1. 

Recall that 11.;, p = 1,2, ... , has been defined to be the class of all (primitive) 
CQHLs with UH E E; (see (1.28)) and with ima.x == 2p+ 1 (which, by (1.27), is the 
minimal value the invariant ima.xcan have, for UH E Ep). ,Lattices in 11.; are said 
to be L-minimal.. We shall show that all lattices in·11.t' ,are maximally symm,etric,' 

their Witt sublattice is an AN-1 - (or su(N) -) root lattice, and their Hall fraction is 
O'H == N/(2pN +1), N == (1),2,3, ... ; see Sect. 4. This series of CQHLs is called 
the "basic" A- (or su(N)-) series in the window Ep. We shall find a bijection, Sp, 
call~d shift m~p, mapping the basic A-series in the window Et onto the basic A-series 
in the window Et+l' P = 1,2,... . In fact, the shift map Sp is defined on 1-£; and 
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Figure 1.2. Compilation of L-minimal {lmaz = 3) chiral quantum Hall lattices 
(CQHLs) with odd-denominator Hall fractions O'H in the interval 1/3 < O'H < 1. 

The experiment81 status of the Hall fractions displayed here is indicated, for single-layer 

systems, by ".,0", and «.", as in Fig. 1.1. Superposed on the interval 1/3 ::; tTH ::; 1 of 
that figure is a list of different L-minima] CQHLs: "0" indicates maximally symmetric, L;. 
minjma] CQHLsof dimension N::; 11 (where the corresponding dimensions are given below 

the symbols); «0'" indicates generic, indecomposable,L-minimal CQHLs of low dimension, 

. N ::; 4 (the respective dimensions are given above the symbols). For fractions decorated 
with ''"(x) n, th~e are no low-dimensional (N:5 4), L-minimal CQHLs. However, there are 
maximally symmetric,ones in "high" dimensions (with the lowest such dimension indicated 
below the symbols). At fractions with «x", there are neither low-dimensional, L-minimal 
CQHLs, nor maxima]]y symmetric ones in "higher" dimensions. In addition, "~~~],, stands 
for non-chUal QH lattices that are "charge-conjugated" to the maximally symmetric, L-
minimal CQHLsin Et. ' 
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is a bijection from 'H~ to 'H;+p. On the sets 'H~, the action of the 'map Sp on the) 
invariants O'H and i maz is given by , , , 

1 1 
-+ ,- +2p , and i maz -+ i maz + 2p , p = 1,2, .... (1.32)

O'H O'H \ 

If (r', Q') is the image of 'a CQHL (r, Q) underSp , p '1,2, ... , then, by (1.32), 
and invoking our stability principle, the QH fluid corresponding to (r', Q') is less stable 
then the one corresponding to (r, Q). Hence the number of observed pl~teau... values, 
in a window Ep decreases with p (reaching 0 when p> 3). 

The exist'ence of the shift mapsSp and the observation just described allow us 
to restrict our classification of L-minimal CQHLs to the class 'HI = 'Hi- U 'HI' - This 
is not true if we want to classify all QH lattices, hot just chiralones. HQwever, 
among QH lattices that are not chiral, the "non-euclidean hierarchy lattices" are well 
understood (see Appendix E) and they are, perhaps, the only physically important 
non-chiral QH lattices.-All CQHLs in 'Ht are classified and are mCl-ximally symmetric, 
as remarked above' and proven in Sect. 5. They form the basic A-series in i Et. The 
classification of lattices in 'Hi is much more' difficult and remains incomplete. But 

, besides the maximally symmetric ones (Sect. 5), we have also classified all CQHLs in 
'Hi of dimensionN 5:4: Our results can be found in Sect.6. (With more investment 
in programming and computer time, our results could be extended to N = 5,6.) 

In Fig. 1.2, results of our theoretical 'work concerning QH lattices with odd
denominator Hall fraction are superposed on the experimental data (displayed in 
Fig. L1) in the window El = Et ,U Ei. This figure shows a pretty remarkable agree

,ment between theor~ and experiment. All experimentally observed Hall IractionsO'H 
in the window EI, with the only exception of the, "very weak" fraction O'H = 4/11, 
can be realized by an L-minimal CQHL or aQH lattice which is "charge-conjug~ted" 
to an L-minimal one. Note that the corresponding lattices are all of relatively low 
dimension,namely N < 9. In Sect. 6, we shall see that, interestingly, the "simplest" 
non -L-minimal CQHL is found at O'H =4/11. (It coincides with the proposals of 
the hierarchy schemes at that fraction.) Fig.1.2 also shows where experimentalists 
might wish to look for' signals of new QHfluids" or for new phase transitions' between 
structurally different QH fluids with the same valueof O'H. 

Meditating Fig. 1.2, it may look disturbing that one seems to have. observed a 
phase transition at O'H = 2/5, as the in-plane component, 'B!I, of the external magnetic 
field is varied. There is a un.ique L-minimal CQHL wi'th (jH = 2/5. It is two
dimensional, with rw =v'2'Z (the root lattice of su(2)). So a QH fluid withuH = 2/5 
exhibits a global 8U(2) symmetry (in the scaling limit). For "small" values of the 
external magnetic fieldBc , this symmetry is $U(2)spin, i.e., electron spins may be' 
flipped. But when Bc is large, essentially:all electron spins are oriented in the direction 
anti parallel to B c, and the 5U(2) symmetry is an internal symmetry compatible with 
the hierarchy pictures of Refs. [29, 30]. A rather similar story can be told about the 
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plateau at O'H = 2/3, (besides the possibilities of interesting phase transitions between 
structurally different QH fluids). All this and more is discussed in Sect. 7. 

Two concluding remarks may be clarifying: 
(i) The term "incompressible QH fluid" can be understood literally in that shape 

fluctuations ofa droplet of an (incompressible) QH fluid with free boundaries are area
preserving. The Lie algebra of area preserving maps has a central extension. which is 
connected to the W1+OO algebra. This algebra is related to the abelian Chern-Simons 
theory that descri~es the scaling limit of an (incompressible) QH fluid, in a natural 
way first discussed by Sakita [32]. Its study in connection with the QH effect has 
become a "hot topic" (see, e.g., [33}), but does. not appear to lead to results that go 
beyond those in [5,6], and in this paper. 

(ii) The shift map 8 1 : O';l'~ (1;/ + 2 and the map T : O'H ~ O'H + 1, cor
responding to the addition of a full Landau level, generate a subgroup, rT(2), of the 
modular group PSL(2,Z). For fun, one can study the action of rT(2) on the plateaux 

. values of O'H. More daringly, one can study the action of rT(2) on the complex plane 
ofresisitivites p:= P:c:c +iO'ii\ (where P:c:c:= R:c:clr/l:c, with l:c and lr the length and 
width, respectively, of a rectangular QH system). This has been advocated in [34] as a 
means to understand a "global phase diagram" for the QH effect. However, the reader 
who will make it through Sect. 4 will see that these are rather misleading speculations 
which, in" the absence of real understanding of the physics of QH systems, should not 
be taken too seriously. 

As to the contents of this paper, we have already indicated the contents of 
Sects. 5, 6, and 7. In Sect. 2, we recall the basic (physical and mathe~~tical) no
tions underlying our analysis. In Sect. 3, we introduce and discuss basic invariants 
for CQHLs and explain their physical interpretation. In Sect.4, we present gener(ll 
results on the classification of CQHLs. Sects. 5 and 6 concern the complete classifi
cation of special subclasses of CQHLs. In Sect. 7, we apply our results to understand 
some of the physics of the fractional QH effect. In Appendix A, we review some group 
theory that is important in our analysis. Appendix B summarizes all our results on 
maximally symmetric CQHLs with O'H E (0,1], Appendix C those on low-dimensional 
(N < 4) CQHLs. In Appendix D, we summarize the results of the theory of embed
dings (expounded in Sect. 7) of L-minimal CQHLs into bigger ones, preserving the 
value of -the Hall fraction O'H. This will clarify the classificati?n of the "difficult" 
classes 'H.;. Finally, in Appendix E, we present the QH lattices that reproduce the 
Haldane-Halperin [29] and Jain-Goldman [30] hierarchy fluids. 
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2' 	 Universality Classes of QH Fluids 'and 
QH Latti~es: Basic Notions 

In this section, we recall the basic physical principles and ~sumption~ leading to 
our characterization of (universality classes of) QH fluids by QH lattices. We introduce 
the fundamental mathematical notion ofa chiral Q-H lattice (CQHL). As mentioned in 
Sect. 1, CQHLs are the "basic building blocks" ofQH lattices. Basic notions related to 
CQHLs are summarized. In order to exemplify our langua$e, we describe the (chiral) 
QH latti,ces corresponding to the integerQH fluids of the non-interacting electron 
approximation and the celebrated Laughlin fluids [35]. 

Since the early theoretical work by Laughlin<[35] on the QH effect, the elec
trom,agnetic gauge symmetry of quantum mechanics has been instrumental in ana
lyzing this effect. This gauge symmetry ,also provides the comer-stone of our ap
proach [2,3,4,5,6]. - We remark that a general framework for a systematic discussion 
of phenomena related to electron spin i~ QHftuids has been developed in [4,5]. It is 
based on the presence of a non-abelianS'U(2).pin:-gatige symmetry' i~ non-relativistic 
quantum many-body systems. Although we will not review tha.t general framework 
here, we emphasize that our 'results presented in this paper are fully consistent with 
that general picture, and, as a matter of fact, the present classification results provide 
a basis for a systematic discussioJl of spin effects in QH fluids. For further discussion 
of this point, see the remarks about phase transitions in Sect. 7, arid [5,6]. -Besides, 
gaug~ invariance, our approach requires the followiJlg basic physical assumptions char
acterizingQH fluids (see also Sect. 1): 

(AI) The temperature T of the system is close to OK. 
, 

For an (incompressible) 
QH fluid at' T = 0 K, the total electric charge is a good quantum number, to label 
physical states of the system describing'excitations above the grounrl: state; see [6,13]. 
The charge of the ground state of the system is nprmalized to be zero. 

(A2Y In the -regime of very short wave, vectors and'low frequencies, ~he scaling 
limit, the total electric current density is the sum of N ::: '1, 2, 3, . .. separately con
served u(I}..current densities, describing electron and/or hole ~ransport in N separate, 
"channels" distinguished by conserved quantum numbers. In our analysis, we regard 
N as a free parameter.':':' Physically, N turns out to depend on the filling factor 1) and 
other parameters characterizing the system. 

(A3) 'In our units where h = ~e = 1, the electric charge of an electronfhole is 
+1/ - 1. Any local excitation (quasi-particle) above the ground state of the system 
with integer total electriccha~geqel satisfies Fermi-pirac statistics if qel is odd, and 
Bose-Einstein statistics if qel is even. 

(A4) The quantum-mechanical state vectordesctibing an arbitrary physical state 
of an (incompressible) QH fluid is single-valued in the position coordinates of all those 
(lo~a1) excitations that 'are composed of electrons and/or holes. ' 
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In addition to these four b,asic assumptions, we put forward, as in [4,5,6, 7],. a 
"working hypothesis" expressing a "chiralfactorization" property of QH fluids. 

(AS) The fundamental charge carriers of a QH fluid ar~ electrons and/or poles. 
We assume' that, in the scaling limit, the dynamics of electron-rich subfluids of a 
QH fluid is independent of the dynamics of hole-rich subfluids, and, up to charge 
conjugation, the theoretical analysis of an electron-rich subfluid is identical to that of 
a hole-rich subfluid. 

We make a few remarks on these assumptions. For a finite, but macroscopic 
system, assumption (A2) implies that there are N distinct, approximately conserved 
chiral edge currents circulating along the boundary of the system. - Strict conservation 
of these u(lJ-current densities holds in the scaling limit. - This generalizes to the frac
tional QH effect Halperin'~ edge current picture [8] of the integer QH effect; see [2, 5] 
and also [11, t2]. Assumption (AS) impliesthat, for an electron-richQH fluid, say, 
the chirality of all edge currents is the same. It is fixed by the direction of the external 
magnetic field. The mathematical virtue of the edge current picture is that it allows 
for a natural introduction of the tools of current algebra into the tbeory of the QH 
effect; see [10,2,5] and the references therein. A' systematic mathematical implemen
tation of assumptions (Al-S) in the edge current picture of the QH effect has been 
given in [5,6]. 

Given the close relationship between two-dimensional chiral conformal field the
lory and quantum Chern-Simons theory, as expounded first by Witten [36], 'one can 
. establish a boundary-bulk duality in QH fluids. By this duality, quasi-particles excited 
at the edge of' a QHfluid have their precise counterparts in local bulk sources in a 
quantum Chern-Simons theory that is expressed in terms of the "vector potentials" of 
the N separately conserved u( 1 )-current densities of the syst~m.'- Details of this bulk 
picture and, in particular, the explicit implementation of assumptions (Al-S) in this 
picture have been given in [6,7]. Further considerations elucidating the boundary-bulk 
duality in QH fluids can be found in [5,37]. 

As recapitulated in Sect.I, it follows from assumptions (Al-4) that the prop
erties ofa QH fluid in the scaling limit can be described completely in terms of a 
mathematical object that we have call quantum Hall lattice. A QH lattice (r, Q) con
sists of an odd, integral lattice rand an integer-valued linear functional Q on r; see 
Sect. 1 and the definitions below. The number of positive eigenvalues of the metric on 
r correspopds, physic&lly, to the number of edge currents of one chirality, the number 
of negative eigenvalues to the number of edge currents, of the opposite chirality. In 
the situation envisaged in the working hypothesis (AS), r is an orthogonal direct surp. 
ofa lattice re on which the metric is positive-definite and a lattice r h on which it is 
negative-definite; see (1.26) .. The structure of r can hence be understood if we are 
able to enumerate positive-definite lattices. In the most general situation, however, 
r could ,be an indecomposable, indefinite lattice or contain an indecomposable, indefi
nite sublattice. In this case, there would exist local physical excitations of the system 
of edge currents with the. quantum numbers of the electron (electric charge 1 and 
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Fermi-Dirac st~tistics) that are comp~sed out of left- and right-moving excitations 
which themselves, however, are nqt physical quasi-particles of the system. In other 
words, the left- and right-moving chanti.els of edge currents, are coupled to each other 
in such a,way that physica.l states on the algebra of edge currents can~ot be factorized 

,into a product of a physical state on the algebra,of left-moving edge currents and a 
physical state on the algebta of right-moving edge currents. We believe that those 

\ , 

indecomposable, indefinite lattices do not correspond to stable QH fluids. ' 
While we have not. found a priori reasons to rule, out indecomposable, indefinite 

(sub)lattices r, we shall not ,consi~er this situation in the present, paper. _Rather, 
it is our;strategyto adopt the chirality assumption (AS) as a l working hypothesis, 
and, i.nvestigating i~s strQngly predictive consequences, we intend to lay the ground 
for testing it in different experimental situations; 'for the predictions, see Fig. 1 ~2 in 
Sect. land the discussion in. Sect. 7. 

In this context, we note that all the Haldane-Halperin [29]and Jain~Goldman [30] 
"hierarchy fluids" satisfy our assumptions (Al-4), and plost of them satisfy assump
tion (AS), too. The exceptions (corresponding to non-euclidean, composite QH lat
tices) can be' shoWn to satisfy a slightly weaker form of (AS). This slightly weaker 
form of (AS) is given in Appendix Ewher~ details about "hierarc~y QH lattices" can 
be found., 

The stronger assumption (A5) helps in reducing the classification problem of,QH 
fluids to a tractable one! Furthermore, it leads, as we wish to show in this paper,to 
interesting results typically complementing and sometimes challenging the commonly 
accepted hierarchy schemes of the QH effect. 

, . 
Defining an (incompressible) QH fluid as.~ ~wo-dimensional electro;nic system with 


vanishing resistances Rz:e and.Rvu (see (1.1» and satisfying assumptions, (Al-S), the 

following contention has been advanced in [5,6, 7]: 


Classification of QH Fluids.. .In the scaling limit, the quantum-mechanical 
description of an (incompressible) QH fluid is universal and completely coded into- a 
pair of chiral quantum Hall lattices (CQHLs),_ one CQHL, (re, Qe), for the el~ctron

_rich 8ubfluids, and one, (rh , Qh), for the hole-rich subfluids. ) 

In our units where e2/ h = 1, the llallcondrictivity of the entire QH fluid is given 

by 


(2.1) 

where < Qe , Qe > and' < Qh , Qh>denote the squared lengths of the charge vectors Qe 
and Qh which' are integer-valued'li:p.ear functiona.lson the euclidean lattices re ,and rh, 
respectively. We remark that, by assumption' (A5), it suffices to focus out attention 
on the analysis of, say, the electron-rich subfluid~ of a QH fluid and: the corresponding 
CQHL. In the following, we drop, the subscript e from our notation. 
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Definition. A chiral quantum Hall lattice (CQHL) is a pair, (r, Q), w~ere r is 
an odd, integral, euclidean lattice and Q is an odd, primitive vector in r*, the dual 
lattice of r. 

We clarify this definition by recalling some technical notions: 

(1) Let V denote a real, N-dimensional vector space with inner product (or 
metric) < , >. We choose an integral basis, {el' ... ,eN}, in V. Integrality means that 
the (regular, symmetric) matrix of scalar products K = (Kij ), the so-called associated 
Gram matrix, is integral, i.e., to 

Kij := < ei, ej > E Z, for all i, j = 1, ... ,N . (2.2) 

Taking' integral linear combinations of these basis vectors, we can form the integral 
lattice 

N 

r := {q E V I q =E qi ei, qi E Z, for all i = 1, ... , N} . (2.3) 
i=1 

A lattice r is said to be eu~lidean if the metric < , > is positive-definite (i.e., its Gram 
matrix K is a positive-definite matrix). 

Introducing the dual basis {e1, •. ~,eN} which is characterized by the property 
j d all' .. 1 N {' j "N (K-l )ji . - 1 N)Ethat < e ,ei > = Vi, lor t, J = , ... , , I.e., e = Loti=l . ei, J - , ... , , 

the dual lattice, r*, of the lattice r is given by 

r* := { n E V I <n , q> E Z, for all q E r} 
, N 

j- {n E V In =E n j e , n j E Z, for all j =1, ... , N} 2 r:. (2.4) 
j=l 

(2) We recall Kramer's rule, 

1 - .. _ -K'J . (2.5) 
~ , 

where k denotes the cofactor (or adjoint) matrix of K, and ~:= det K denotes the 
discriminant of the lattice r. We note that Ll is the order of the abelian group r*/r, 
or, from a geometrical point of view, it specifies the relative size of the lattice r when 
viewed as a sublattice of the dual lattice r*. 

(3) An integral lattice r is said to be odd if it contains a vector q for which 
< q , q> is an odd integer. Thus r is odd, if and only if Kii is odd f<?r at least one i 
in 1, ... , N. (Otherwise, r is said to be even.) 
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(4) A vector Q =2:7=1,Qj e j E' r* is called' primitive (or. visible) if the greatest 
~ common divisor (gcd) of its dual components Qj equals unity, i.e., 

I 

, , 

gcd(Qt, ... , QN) =gcd(< Q ,el >,. .. , < Q ,eN»,= 1 . (2.6) 

Geometrically, Q E r* is primitive means that the line segment from the origin to Q 
does, not contain any point of r* other than 0 and Q. 

(5) The vector .Q E r* is said to be odd if the following congruence holds 

< Q , q> =< q , q> mod 2 , for all q E r . (2.7) 

. (6) A lattice r is called decomposable (or composite) if it can be written as an 
orthogonal direct sum of sublattices, 

.r = 'rt E9 r2E9 ... E9 rk, for, some k > 2 , (2.8) 

i.e., for arbitrary vectors qi E r i and Qj E rj we have < qi, q; > = 0, for all 
i:j: j. Otherwise, r is said to be indecoinposa~le. If (r,Q) is a composite CQHL . 
with decomposition (2.8) then the dual lattice has the associated d~composition r* = 
ri E9 ri E9 ... $ r.k, and the corresponding decomposition of the charge vector, reads 
Q =Ql +Q2 + ... + Qk. The decomposition (2.8) is reflected in the formula 

From a physical point of view, indecomposable CQHLs can be considered as describ
ing "elem~ntary" QH fluids" and, for' this reason, we,mainly focus on indecomposable 
lattices in the present work. We note that, as suggested by (2.1), we can think of QH 
fluids with electron- and hole-rich subfluids as being described by particular compos
ite lattices, namely ones that are orthogonal' direct sums of two CQHLs' of opposite 
chirality (i.e., there are currents of both chiralities circulating at the edge Qf these 
fluids). . 

.(7) We introduce two physically natural restrictions on chiralQH lattices. First, 
let (r, Q) be a decomposable CQHL with decomposition (2;8) and (2.9).' Then (r,Q) 
is said to pe proper if no component Qj, j = 1, ... , k, of the charge vector Q is 
vanishing. Note that if, say, Q; = 0 then ~ ::t 0 in (2.9), and the subfluid cor
responding to (rj, Qj) does not have any interesting electric properties, {see also the ' 
remark after (1.12». For this reason, we neglect-improper CQHLs in the present work, 
and' properness will always be understood to hold in, the sequel. , 

Second, from a physical point of view, it i.s natural to even sharpen the notion of 
properness as follows: Let (r, Q) be a decomposable CQHL as above. Then (r, Q) is 
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said to be primit,ive if every component Qj, j = 1, ... , k, of the charge vector Q is a 
primitive vector in r;; see (2.6). 

Primitive CQHLs are proper, but the contrary is not necessarily true. We will 
show in ThIri.4.6 in Sect. 4 that, for a su~class of proper CQHLs, the contrary can be 
inferred. Moreover, note that indecomposable CQHLs are proper and primitive. The 
classification of primitive CQHLs is the main objective of the present paper, and the 
corresponding results are given in Sects. 4.-6. 

We remark that, as explained in Appendix E, all chiral hierarchy fluids correspond 
to primitive CQHLs. In general, however, there are (non-chiral) hierarchy fluids which 
are associated with non-primitive CQHLs. For some examples, see (b) in Appendix E. 
We do not find these non-primitive proposals very attractive and shall provide, at some 
of the corresponding Hall fractions, primitive CQHLs in Sects. 5 and 6. 

QH Lattice-Q~ Fluid Dictionary. We briefly summarize the basic relationship 
between the language of QH lattices and the description of physical properties of the' 
correspondingQH fluids; see Sect. 1, and, for a detailed discussion, see [5,6, 7]. 

Let (r, Q) denote a CQHL. Then any vector q in the lattice r labels a multi
electron or mult~-hole excitation above the ground state of the,corresponding QH fluid 
which is localized' in some bounded region of the plane of the system. (Here, "hole" 
means a "missing electron" in an electron-rich fluid.) Next, arbitrary localized physical 
excitations of the QH fluid (quasi-particles), are labelled by vectors n that form a 
lattice r phy.9 which clearly has to contain r and which itself is contained in, or is equal 
to r*: 

(2.10) 


In our units wheree = -1, the total electric charge, qel(n), of a physical excitation 
labelled by n E rphy" is given by the inner product of n with the charge vector Q, 

(2.11) 


and the statistical phase, t9(n), of the excitation is determined by the squared length 
(modulo 2) of n, 

19(n) =< n , n> mod 2 . (2.12) 

We note that (2.12) corresponds to a normalization of the statistical phase such that 
bosons have 19 =0 (mod 2) while fermions have 19 =1 (mod 2). As mentioned 
in Sect. 1, moving (adiabatically) one quasi-particle, labelled by a vector nb around 
another one, labelled by' a vector n2, along a co.unter-clockwise oriented loop, the state 
vector describing the system changes by a phase factor exp(21ri <nl,;I12 »; see (1.17). 
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Examples. We conclude this s~ctionby describing the t\yomost basic examples of 
QH fluids in the language, of QH~s, introduced above: 

I 

(a) QH fluids with (7H = N, N = 1,2, .. ", in the non-interacting electron approx
imation. These integer QH fluids correspond to the' (self-dual) uniteuclide.an lattices 
in N dimensions: r :::; rphY8 = r* = ZN = ZED' • • ED Z. Here, N is the number ofsepa
ra~ely conserved edge currents [8] or filled La.n,datllev~ls.. 'Denoting by ei the generator 
of the ith summand, i = I, .. !, N, we have Kif =< ei, ej > = Cij' By the primitivity 
condition on the charge' vector Q(see point (7) above), we have Q = el + ... + fi!N, 

and (7H ....: < Q, Q >,1 + ... + 1 = N. Finally, we note that, by the self..duality of 
ZN,there are no fractionally charged excitations with fractional statistics ("anyons") 
in these fluids. 

(b) The Laughlin fluids [35] at (7H = 11m where/ m --: 2p + 1, p = (0),1,2, .... 
Here, r = rmZ which is the one-dimensional lattice. getteratedhy e with squared 
length < e ,e > = m. . The' dual}attice r* = (1I .y'11i) Z which is generated by 
£ =elm. The charge vector, being primitive in r*, takesthe form Q = £, and thus 

(7H == < Q, Q> = 11m. The quasi-particles are' labelled bye£ E· rphY3 = r*,' eE Z. 
By (2.11), they,havefractional electric charges qel(e) =< Q ,e£ > == elm, and by the ' 
congruence (2.12), they haV'e fractional statistical phases d(e) - < e~, e£ >= e2 /m 
(mod 2).. 	 ' , 

Note that, in this ,case, the knowledge of the electric charges qel of the excitations 
uniquely, determines their statistical' phases' d. Such' a charge-statistics relation is a 
property of many interesting higher-dimensional QH lattices; see Thm. 4.5. However, 
such a relation' does not hold for arbitraryQH lattices. " ' 
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3 
, 	 , 

Basic Invariants of Chiral QH Lattices 
(CQHLs) ~nd their Physical Interpretations 

Invariants of CQHLs, most of which seem to be new, provide physically inter
esting information about the corresponding chiral (i.e., electron- or hole-rich) QH 
(sub )fiuids. Most of the invariants sun;lInarized below have been introduced in [6J 
where more details can be found. From the classification results presented in Sects. 5 
and 6 and from the discussion in Sect. 7, it fol1o~s that a microscopic understanding 
and a' corresponding determination of the values of these invariants pose interesting 
open problems in the theo~y of the QHeffect. 

The 'invariants of a (proper) CQHL, (f, Q), capture intrinsic properties of (f,Q)" 
i.e., properties that do not depend on the explicit choice of a baSis in f and on the 
"reshuffling" of electric charge assignments in the lattice corresponding to a transfor
mation of Q by an orthogonal symmetry of f. Choosing a basis, {el, ... , eN}~' in f, 
the CQHL is specified by the (integral), Gram matrix K'j = < e" ej >, i,j = 1, ... ,N, 
and by the row vector Q = (Ql, .... ,QN) which specifies the components of the charge 

, 	

j 
-

vector Qin the associated dual basis {el, ... , eN} of f*, i.e.; Q_ = r:,f=1 Qj e ; see 
Eqs. (2.2) through (2.4). Choosing a different basis in f, the resulting pair (K', Q') is 
related to the pair (K, Q) by 

1. -+ 

K' = sT K S , and Q' = QS , 	 (3.1) 

where S is an element in G L(N, Z), the group of integral, non-degenerate N x N
matrices. Note that, for 8-1 to be an element of the group, the determinant of any, 
element S has to be ±1. 

Following the proposal in [6], a concise presentation of the numerical invariants 
of a CQHL, (f, Q), is given by the associated symbol 

(3.2) 


, 	 where the invariants summarized in the symbol have the following mathematical defi
nitions and physical interpretations: 

(1) N := dimf = rank f; the lattice dimension N gives (in the scaling limit) the 
number of separately conserved u( 1 )-current· densities in the corresponding QH fluid. 
Although no rigorous results are known, we expect N to depend on the filling factor 
II and on the density or strength of impurities (disorder) in the system. We expect 
that the upper bound N* on the dimension N of physically realizable CQHLs· tends 
to 00, as the density or strength of impurities tends to 0; see [7]. 
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(2) By (2".1) and (3.1), the Hall conductivity (~r Ha~1 fraction) O'H is clearly a 

CQHL invariant: O'H = < Q, Q> =Q. K-IQT. 'By (2.5) and the definition of Q,it is 
a positive rational number: 

(3) Writing O'H = nil/dH, with' gcd(nH' dH) = 1, the important invaria.p.t of the 
lattice given by its discriminant, .6., can be written as 

.6. := de~ K :..- I dH , (3.3) 

where the invariant I is called the level of the CQHL (r, Q); see (2.5). 

(4) The level I satisfies an interesting factorization property, namely, I = g)., 

where 9 is defined by 9 :=gcd(Qt, ... , QN), with Qi := .6. < Q, ei >, j = 1, ... , N, 
and {e1 , ••• , eN} any dual basis of r*. Thus, by (3.3), the discriminant is given by 
.6. = g).dH. The invariant ). is called the charge parameter, and its physical relevance 
derives from the following'fact: one can' prove [6] that, in our units where e = -1, 
the smallest possible (fractional) electric charge of a quasi-particle excited above the 
ground state in the corresponding Q~ fluid .is given by 

e* := min I<Q,n> I = _1_ (3.4)
Der·,<Q,D>¢O' , >"dH 

(5) Finally, we providedefiriitions of the relative..angular..momentum invariants' 
imin and ima.z. Since Q is a primitivevector.in f* (see (2.6)) there is a basisof 
f, {ql,".' ~}, such tha't < Q, qi> = 1, i = 1, ... ,N. The set of all such "symmet
ric" bases is denoted byBQ. Then, for anyCQHL (r, Q), we define t~e invariants 

Lmin := min <q,q> , (3.5) 
qer, <Q.q>=l , 

and 

(3.6) 


In the situation where (r, Q) is a primitive decomposable CQHL with decompo
sition (r, Q) = ej=l (ri, Qi) (see (2.8)) it is natural to refine, the definitions (3.5) 
and (3.6) as follows: 

(3.7) 

(3.8) 

We note that, by the oddness of Q (see (2.7») the relati've-angular-mon;tentum 
invariants (3.5) through (3.8) are positiv~, odd integers which satisfy 
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(3.9) 

Exploiting the Chern-Simons descriptio~ of QH fluids, it has been argued in [6, 7] 
that, physically, for an elementary chiral QHfluid corresponding to the indecomposable 
CQHL (r, Q), lmin = Lmin indicates the smallest possible relative angular moment~um 
of two electrons excited above the ground state of the fluid. The physical relevance of 
the quantity lma.z as well as its role in the classification of CQHLs will be expounded 
in great detail below, in Sects. 4-6. 

If the values of the quantities lmin and lma.z are clear from context they will be 
droped from the symbol (3.2). 

Note that the elementary invariants in points (1-4) are clearly well-defined also 
for (general) QH lattices; see [6]. 

Examples. We illustrate the above invariants by considering some examples. 

(a) The integer QH fluids discussed at the end of Sect. 2 (non-interacting electron 
systems) are characterized by the symbols 

N=1,2, .... (3.10) 


Note that, by the decomposability of the corresponding CQHLs, we can write N(N)~ = 
1(1); ED ... ED 1(1)~ in accordance with the physical picture of N independent, filled 
Landau levels. 

(b) The Laughlin fluids, also discussed at the end of Sect. 2, correspond to CQHLs 
for which the associated symbols read 

(3.11) 

For a discussion of the special status of the Laughlin fluids from a classification point 
of view, see Thms. 4.4 and 4.8 in Sect. 4. 

(c) For each p = 1,2, ... , there is the series of Hall fractions UH = N / (2pN+1), . 
with N = 1,2, .... From the data presented in Fig. I.!, it is clear that many of the 
experimentally most prominent Hall fractions belong to these series . (or to· the charge
conjugated partner series of the one with p = 1; see the discussion in Sect. 7). We note 
that these fractions also figure prominently in Jain's work [31] - the basis of the Jain
Goldman hierarchy scheme [30] -, and we refer to Thm.4.8 in Sect. 4 where, from a 
classification point of view, the uniqueness of the associated CQHLs is discussed. The 
above series of Hall fractions can be obtained by the following series of indecomposable 
CQHLs: the data pairs (1(, Q) which determine these CQHLs are given, in some bases 
that we call "normal», by 
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2p+ 1 

-1 
0K= 

0 

~1 0 0 

2 -1 0 ' . 0 
-1 2 -1 
0 -1 o " 

-1 
0 0 -1 2 

and the associated symbols read 

and Q = (1,0, ... ,0) , (3.12)N"  ~ 
N 

p, N = 1,2,. .. . (3.13) 

Note that the (N -I)-dimensional submatrix in the lower right of K is the Cartan 
matrix of the simple Lie algebra AN-l = su(N),; N =' 2,3,. ~ .; see Appendix A. For 
N = 1, we recognize in (3.12) and (3.13) the expressions corresponding to the Laughlin 
fluids; see example (b). In connection with the QH effect, the matrices in (3.12) first 
appeared in [9]. Combining results of [9] and [3} (see Appendix E) the CQHLs specifi~d 
by (3.12) can be seen to correspond to the "basic Jain states" [31] at (/H = N/(2pN+ 
1). Moreover, it has been shown 'in [3] that the QH fluids corresponding to (3.12) 
exhibit large symmetries, namely su(N)-current algebras at level 1; see .also [5]. In 
Sect.5, we show that the above CQHLs bel~ng to an interesting class of CQHLs with 
"large" symmetries, the so-called "maximally symmetric" CQHLs. The classification 
of "maximally symmetric" CQHLs will be'the main objective of Sect. 5. 

We note that, by extending definitions (3.12) and (3.13) to p =0, the' composite 
integer QH fluids of example (~) can ~eincluded as special cases of (c). 
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4 General Theorems and Classification Results 
for CQHLs 

The purpose of this section is to review general facts and classification res'ults for 
CQHLs, in order to put the more specific classification results given in Sects. 5 and 6 
into a broader perspective. We summarize, in the form of eight theorems, results that 
have been pre~ented in our previous works [6,38, 7] where more details can be found. 
We indicate those proofs that have not, been given previously. Moreover, we discuss 
phenomenological implications of our theorems. 

The first two theorems are based on CQHL inequalities that establish useful 
relations between some of the numerical invariants introduced in Sect. 3. 

Theorem 4.1. The set of (proper) CQHLs (r, Q) with dimensions N ~ N. 
and relative-angular-momentum invariants imaz ~ i., where N. and i. are two given 

. integers, is finite. 

This theorem implies that the set of Hall fractions O"H that can be realized by 
CQHLs which satisfy the above bounds on N and i maz is finite. We remark, however, 
that the number of possible fractions is growing superexponentially fast in N. and 
i.,-e.g., for N. = 2 and i. = 3, there are 10 CQHLs, while for N. = 3 and i. = 5, one' 
finds already more than 250 CQHLs. - fortunately, in the physically relevant situation 
where one also has a natural upper bo~nd, 0"., on the Hall fractions to be considered, 
the number of CQHLs satisfying this bound and the ones in Thm. 4.1 is drastically 
reduced! This fact is. illustrated by the classification results in Sects. 5 and 6. 

The basic tools in proving Thm. 4.1 are Hadamard's inequality for positive-definite 
quadratic forms (see, e.g., [39]), which implies that 

(4.1) 

and thefact that (see [42]) 

(4.2) 


where C(N) is a constant depending on the lattice dimension N, -e.g., for two
dimensional CQHLs, one finds that C(2) = 4.• 

Physically, N is the number of separately conserved u(1)-current densities in a 
QH fluid (in the scaling limit). A larger amount of disorder (an increased density or 
strength of impurities) in the system is expected to reduce the quantity N because of 
"channel-mixing" effects. Hence it is natural to impose an upper bound,N., depending 
on disorder, on the dimension N of physically relevant CQHLs. With respect to an 
upper bound 'on the relative-angular-momentum invariant i maz , we argue, physically, 
that if lmaz were too large then the density of electrons in the ground state of a 
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(pure) system would be so small th~t 1t wouldb~ energetically more favoUfablefor 
the electrons to form a Wigner crystal, thereby destroying the incompressibility of the 
system; see [40] and, f<?r ar~view of recent experiments, [41]. Given this r~mark the 
following basic CQHL inequality is of interest. 

Theorem 4.2. ,For a' CQHL (r, Q), the Hall fraction UH and the relative

angular-momentum invariants Lmin., lmin and lmo.z satisfy 

(4.3) 

This theorem is a direct consequence of the Cauchy~Schwarz inequality (in the 
'real vector space V:::> r), <Q,q>2~ <q,q><Q,Q>, and the fact that, for any 
vector q er, with qel(q)= <Q,q>=F 0, we have <Q,q>2~ 1. • 

If we suppose that, physically, chiral QH fluids satisfy a universal bound' lmaz ~ i. 
then (4.3) tells us that CQHLs with UH < !/l~ are physically irrelevant. Note that 
the data in Fig. I.! are consistent with a choice of l* = 7. 

, Given these observationsonthe'quantities N and lmaz, one is led to the following 
heuristic principle: 

Stability Principle. The smaller the values of the CQHL invariants Nand 
lmaz, the more stable the corresponding chiral QH fluid. ' 

This heu~istic stability principle will recive further s~ppor~when comparing our 
classification results of Sects. 5a.I!d 6 with theexperimental data of Fig.I.l;see Fig.I~2' 
and the discussion in Sect. 7, where an even sharper version is proposed. 

Theorem 4.3. Let (r, Q) be a CQHL with even Hall denominator dH.Then 
the charge parameter ..\ has to be even, too. 

For a proof of this theorem, we first define the vector v := ..\dHQ e r*. Then, 
for all dual vectors n = L:f=l nj ei e f*, we find that' ,< v, n > = AdH <Q, n > == 
L:f=l(~ <Q,ei >/g)nj = L:f=l(Qj/g)ni e Z, by using ~ = g..\dH and the definition 
of g; see points (3) and (4) in Sect. 3. Thus v is actually an element of (r*)* ~ r and 
hence, by the oddness of Q (see (2.7)), t~e congruence <Q, v> =<v, v~> (mod 2) 
holds. Now, by the definitions of UH and v, it follows that the l.h.s. of the congruence 
equals AnHand the r.h.s. equals A2 dHnH, i.e.,..\nH =A2 diInH ,(mod 2). Finally, 
since for dH even, nH is odd (see point(3) in Sect. 3), the latter congruence would be 
false if ..\ were odd. • 

The phenomenologically interesting impl~cation of Thm.4.3 is that, in QH flu
ids WIth an even Hall denominator dH, one 'predicts the existence of quasi-pa.rticle ' 
excitations above the ground, state with "fractional"' fraction~, charges, i.e .. , since 
..\ = 2,4, ... , 

e* (4.4) 
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It would be interesting to test this model-independent prediction experimentally for 
even-denominator QH fluids at O'H = 1/2 and 5/2 mentioned in Sect. 1: We predict 
that e* < 1/4 (in units where e =-I)! 

Theorem 4.4. At every Hall fractio,n O'H = 11m, m odd, there is a unique 
indecomposable CQHL with the property that its level I = Ag = 1. This CQHL is 

one-dimensional and corresponds to the Laughlin fluid at O'H = 11m. Moreover, any 
CQHL with O'H = 11m, m odd, and N > 2 has a charge parameter A ~ 2. 

A proof of this theorem has been given in [6, Subsect. 7.5]. 
The CQHLs corresponding to the Laughlin fluids have been described explicitly 

in example (b) at the end of Sect. 2. We emphasize that, by an argument similart6 
the one in (4.4), the last statement in Thm. 4.4 has implications that are, in principal, 
observable! In Sect. 7, an example illustrating this point is discussed when analyzing 
possible: phase f'ransitions at O'H = 1. 

An interesting subclass of CQHLs is formed by CQHLs with level I = 1, i.e'., their 
lattice discriminant ~ equals the Hall denominator dH. Indecomposable CQHLs with 
level I = 1, and thus A =~ 9 = 1, have been classified for dH < 25 and N below 
relatively high "critical" dimensions Nc(O'H), typically around 10; see [38,6]. 

This subclassification has been achieved by combining the recent lattice-classifica
tion results of Conway and Sloane [43] with a systematic investigation of the possible 
charge vectors Q in the duals of all the classified (odd~ integral, euclidean) lattices. 
For the latter search, one makes'use of the following fact: from the Cauchy-Schwarz 
inequality·and the defining relation O'H = < Q ,Q >, one infers that, for a CQHL 
(r, Q) the dual components Qj of the charge vector Q = Ef=1 Qj e j are constrained 
by 

Q~ < O'N £m,,:,; , for all Vj = 1, ... ,N . (4.5) 

Thus, restricting ones focus to CQHLs with £"':":,; ~ £* and O'H < 0'*, Eq. (4.5) implies 
that the search for all possible charge vectors Q in the dual of a given lattice r is a 
finite problem. • 

In the next theorem, we recall a few general properties of CQHLs with level I = 1; 
for proofs, see [6]. 

Theorem 4.5. Let (r; Q) be a (proper) CQHL with level I = Ag = 1. Then 
(i) dH is odd, and r*Ir ~ ZdH ; 

(ii) in order to realize a Hall fraction O'H with nJi even (odd), N has to be even =(odd, and N nH (mod 4)); 
(iii) for quasi-particles labelled by n E r*, a charge-statistics relation holds: 

if qel(n) =eldH then t?(n) =(nH)-1 e2/dH (mod 2). 

We note that, in the last statement of this theorem, the number (nH )-1 is defined 
. as follows: if nH is odd, then nH(nH)-1 = 1 (mod 2dH), and if nH is even, then 
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nH:= 2(2nH)-1 +dH, with 2nH(2nH)-1 =1 (mod dH). A'proof of this theorem can 
be found in [6, Sect. 5]. 

Shift Maps and their Implications. In ,the remaining. part ,of this section, we 
study "structurally similar" chiral QH fluids. At the 'level ofCQHLs, "structural" \ 
relationships are realized by particular maps, called, shift maps. 'From a classification 
point of view, shift maps allow - under suitable conditions - to immediately carryover 
classification results for CQHLs with Hall fractions in a given interval to corresponding 
results for other intervals. Phenomenologically in~eresting implications of structural 
relationships, are outlined at the end of this section and in Sect. 7. 

First, we :divide the interval (0,00) of possible Hall fractions O'H into a sequence 
, of suitable subintervals, "'windows", E; ge~ned by 

1 1 \ 
E: := {O'H I 2p +1 < O'H < 2p l , p=1,2, ... , 

and 

1 " 1
E; := {O'H I - :$ O'H < }, ,P == 1,2,. .. . (4.6) 

, 2p 2p--1 
, -, 

The "+" superscripts in the window symbols E; are chos~n because, these subintervals 
contain the '"first mainseries~ of Hall fractions, O'H = N/(2pN +1), N = 1,2, .... 
Similarly, ,the "-" superscripts for the '''complementary" windows remind us that these 
windows contain the "second main series" ofHall fractions, O'H\ = N/(2pN -1), N = 
2, 3, . .. . Moreover, we denote byEt the int~rval [1, 00), and by Ep the union of the 
two complementary subiptervals E; and E;, i.e., Ep : , E; U ~;, p= 1,2, .... 
, Second, we define a'class of'OQHLs that will figure prominently in the sequel. ' 

Definition. A primitive CQHL (r, Q) (see point (7) in Sect. 2) with Hall frac~ion 
O'H E Ep is ,called L-minim8l if imaztakes thesmallestp08sible' value consistent 
with ,(/'.9), namely im~z= 2p + 1, p;:: 1,2, .... 

By (3.7)-(3.9), L-minimal CQHLs s~ti~fy Lmin =- imin == Lmaz , i maz = 2p + l. 
General, powerful implications that follow frem L-minimality are' summarized below 
in Thms.4.6-4.8; for proofs, see [7]. ' 

Theorem ~.6.For p = i, 2, ... , let (r, Q) be a (proper) CQHL with O'H E Ep 
, and Lmaz = 2p + 1. Then (r, Q) .is primitive and L-minimal, i.e., we also have 

Lmin = i maz = 2p+ 1. Moreover, (r,Q) ~is indecomposable if,O'H < 2/3. 

We note that the bound O'H < 2/3' 'forindecomposability is sharp. As a matter 
of fact, at O'H = 2/3, there is an L.,minimal (imaz = 3) composite CQHL. It is given 
by the direct sum of two Laughlin fluids at O'H = 1/3; see example (b) in Sect. 2. 

Next, we give a precise definition' of "shift maps". 

Definition. Shift maps, denoted by Sp,p ~ 1,2, ... , are maps between (p'roper) 
CQHLs of equal dimensions, Sp : (r, Q) t-+(r', Q'}. Starting from an arbitrary basis 
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{et, ... ,eN} of (f, Q), the image (f', Q') is uniquely specified b'y constructing a basis 

{e~, ... ,e~} and a -charge vector Q' that satisfy the conditions 

and 

Q~ = <Q',e~> = <Q,ei> = Qi, for all i,j = 1, ... ,N . (4.7) 

Note that, although the conditions in (4.7) are formulated w.r.t. given bases, they 
specify the image (f', Q') uniquely, since different choices of bases and charge vectors 
in (4.7) simply lea<;l to data pairs (I(',Q') for (f',Q') which are all related by the 
equivalence transformations (3.1). 

Denoting by fo C f the neutral sublattice of a CQHL (f, Q), i.e., 

fo := {qE f I < Q, q> = qel(q) = O} , (4.8) 

it is straightforward to show that shift maps leave neutral sublattices invariant, 

f~= f o . , (4.9) 

As, will be explained in more detail in Sect. 5, Eq. (4.9) implies that (in the scaling 
limit) the corresponding chiral QH fluids exhibit the same symmetries. This equation 
is the mathematical, basis for calling two chiral QH fluids structurally similar. 

What is the action of the shift map Sp : (r,Q) ~ (f', Q'), for p = 1,2, ... , on 
the space of invariants introduced in Sect. 3? 

(i) The discriminant fl.' of the (odd, integral,euclidean) lattice f' is given by 

(4.10) 


(ii) The Hall conductivity changes according to 

1 1 
- - +2p, (4.11) 

UH UH 

which corresporids to the"D-operation" in the Jain-Goldman hierarchy scheme [30); 
see also [31] and [3]. Note that Eq. (4.11) implies that any CQHL which is the image 
under a shift map Sp, p = 1,2, ... , necessarily has a Hall fraction strictly below 
1J{2p) . 

(iii) The level I, g, and the charge parameter A are all invariant under the action 
of a shift map Sp. 
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.. 

We summarize (i)-(iii) by giving a succinct representation of the action of t~e 

shift map Sp at the level of. the CQHL sYInbol, 

: (4.12) 

(iv) The name "shift map" for Sp is motivated by the fact that the relative
angular-momentum invariants Lmin and LmQ,1: are simply shifted by 2p, 

( 4.13) 

Unfortunately, for the physically relevant invariants lmin and lmQ,1: of generi~ primi
tive CQHLs, there do~s not, in general, hold a transformation rule similarly simple 
to (4.13)! - Note, however, that for indecomposable CQHLs the identities lmin= Lmin 
and lmQ,1: = Lm41: hold. ; •4 

From the definitions above, one sees that the shift maps Sp are invertible on the 
set of (proper) CQHLs with Hall fractions t7H < 1/(2p), p= 1,2, .... - From (4.7) 
it simply follows that S;1 = S_p' - The preimages of these CQHLs are readily seen 
to be (proper) CQHLs. The set of (proper). CQHLs is closed under the action of the 
maps Sp'and their inverses. 

However, the maps'Sp and their inverses do not necessarily preserve the de com
posabil~ty properties of CQaLs. - E.g., composite CQHLs can be mapped into inde
composable ones, as illustrated in Thm. 4.8 below. - Moreover, the maps Sp and their 
inverses do not, in general, preserve the primitivity property we· have imposed on 
physically relevant composite CQHLs; see point (7) in Sect. 2. - For an example ~f a 

· 'primitive CQHL with a preimage that is non-primitive, see Sect. 4 in [7J. - From these 
remarks and the definitions (3.7) and' (3~8) of the invariants lmin and lmQ,1:' it is clear 
that the transformation properties of these invariants under shift maps ..are nota.s 
straightforward as the ones in (4.13). 

We recall that the main objective of the present work is the classification of 
primitive CQHLs. Although this set is not closed under the action of shift maps and 
their inverses, it is remarkable that a subset Qf the primitive CQHLs, the class of 
L -minimal CQHLs (defined after (4.'6)) is closed under the action of shift maps a.nd 
t~eir inverses. This is the key to powerful classification !esults that we state presently., 

It is convenient to partition the class of L-minimal CQHLs into the following 
subsets: ~ , 

1f.: .- {(r, Q) I, t7H E :E;, L-minimal, i.e., primitive and lmin = lmQ,1: ' 2p + I} , 
(4.14) 

where p = .(O), 1,2,. ~. , in accordance with the definition of the windows~; given 
in (4.6). 
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The next two theorems· show that, on the one hand, the sets 'H." := 'H.; U 'H.; 
are structurally similar for different p's, whi~e, on the other hand, there is an essential 
structural asymmetry between the sets 'H.; and 'H.;,for a given p. 

Theorem 4.7. The sets 'Hp of L ~minimal CQHLs with (J'H E Ep , for p = 
2,3, ... , are in one-to-one correspondence with the set 'H.I.The corresponding bijec

tions are realized by the shift maps 8p-l : 'H.I .-. 'H.". 

The proof of this theorem rests on Thm.4.6 given above, and it should be em
phasized that chirality and L-minimality are crucial for the theorem to hold; see [7]. 
Thm. 4.7 implies that, for the classification 'of L-minimal CQHLs, we can restrict 
our analysis to the lattices with Hall fractions (J'Hin the "fundamental domain" 
EI = [1/3, 1) ! 

In reference [7], the set 'H.t of L-minimal CQHLs with (J'H E [1, (0) has been 
constructed. Applying the shift map 8 1 to it, we obtain the set 'H.t of L-minimal 
CQHLs in the window Et = [1/3,1/2) eEl. Hence, by Thm.4.7, all the sets 
'H.;, p > 1, are known. In fact, we have the following result. 

Theorem 4.8. For each p = 0,1,2, ... , the set 'H.; of L-minimal CQHLs 
with (J'H EE; ·is· uniqueJy given by the (infinite) series, N =,1,2, ... , of maximally 
symmetric CQHLs with SU(N)-symmetry of N'-ality 1, meaning that the one-electron 
states described by these CQHLs trans from under the fundamental representations of 
SU(N). For a given p, the corresponding symbols read 

N(p"H = 2P:+~): [imin = i",.", =2p +1], N =1,2, .... (4.15) 

The maximally symmetric· CQHLs of this theorem are N-dimensional and have 
been described explicitly in example (c) at-the end of Sect. 3. In the notation of the 
nextsection, (see (5.4) below) the ~ts 'H.; are written as 

(4.16) 


In Thm. 4.6, it has been stated that ali CQHLs in (4.16) with p > 0 are in
decomposable. Furthermore, since their level I equals unity, Thm. 4.5 states that a 
charge-statistics relation holds for the quasi-particle excitations of the corresponding 
QH fluids. 

We conclude this section by discussing Table 4.1 which summarizes the Hall frac
tions (J'H (with d!l :$ 21) in the windows E; that can or cannot be realized by elements 
in 'H.;, with p . 0,1,2, and 3. 

A first inspection of Table 4.1 reveals an. impressive agreement between the Hall 
fractions predicted by L-minimal CQHLs and the experimentally observed values in 
the windows E;, p = 1,2, and 3. Note that CQHLs with higer dimensions and/or 
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Table 4.1. Hall fractions O"H E Et, for p = 0,1,2, and 3, that are uniquely 
, realizable or that cannot be realized by an v-minimal CQHL. The symbols ".", 

" 0", and "." specify the experimental status of the fractions as explained in 

Fig. 1.1. Fractionswith dH > 21 are omitted. 

Et = [1,00), lmin= lma.:r:= 1 : 

realizable: .1 .2 .3 .4 .5 .6 .7 .8 .9 .10 ... 
not realizable: aU proper fractions 

E+ - [1 1)
1 - 3' 2" ' lmin = tma.:r: = 3 " i 

realizable: .1 .a .~ .1· .5 6 7 
3 5 7 9 ·IT • 13 °u 

8 
o 17 

9 
" 19 

10 
21 

not realizable: &. 4 7 8 5 7 8 
17 "IT 19 21 13 17 19 

and aU even-denominator fractions 

E+  [1 1)
2 - 5'::& , 

realizable: 

not realizable: 

lmin = lma.:r: =5 : 

1 .a 3 4 5 
..·5 9 013 17 21 

4 and aU even:.denominator fractions 19 

E+ ['1 1)
3 =7' 6 , 

realizable: 

not realizable: 

'lmin = lma.:r: = 7 \ 

I 

0 1 2 3 
7 13 19 

all even-denominator fractions 

higher values of lma.% are associa.ted with less stable QH fluids which is in accordance 
with our stability principle advocated at th~ beginning of this section. In the windows, 
Et, p = 1,2, and 3, there is only one-Hall fraction, 4/11, for which,there are some 
experimental indications (however, only very weak (ones!) that cannot be realized by 
an L-minimal CQHL. . 

Concer~ing the results for the window E6 we make three remarks. First, it is 
satisfying to see that the "standard" integer QH fluids of the non-interacting electrori 
approximation (see example (a) at the end of Sect. 2) are naturally included in our 
scheme and that they have a. unique status. They correspond to the L -minimal CQHLs 
in the window Et. We note that, contrary to the other CQHLs appearing in Table 4.1, 
these integer CQ,HLs are composite. 

Second, the result that, in'Et, no proper Hall frac~ion can be- realized by an 
L-minimal (lma.:r: = 1)\ CQHL leaves essentially only two ways open for realizing (in 
the scaling limit) a fractionalQH fluid with O"H > 1: (i) as a composite system of 
independent, L-miIiimal elect on- and/or hole-ri~subfluids with partial Hall fractions 
O"H < 1; see (2.1) and (2.9). Physically, e.g., the natQral idea of adding fully filled 
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Landau levels to a fractional fluid with O'n. < 1 belongs to this situation; (ii) as an 
indecomposable system described by a non-L-minimal CQHL (or a direct sum' of such 
ones); see Sect. 6. 

Third, since the inverse shift maps 8;1 are relating the CQHLs in the windows 
Et, p > 1, to the ones in Et, the results in Table 4.1 are r~miniscent of Jain's con
struction [31] where interacting electron systems with O'H E Et ¥e related to· non
interacting electron systems at the integers N = O'H / (1-2p O'H). 

Given the disc~ssion above, two questions emerge. First, what can we say about 
the CQHL-class 'HI, and thus, by Thm.4.7, about all sets 'H; with p > 1? Second, 
given some experimental evidence for the Hall fraction 4/11, which cannot be realized 
by an L-minimal CQHL, we wish to get a fuller perspective on the assumption of L
minimality. 'Hence the question: how can we go beyond the classification of L-minimal 
CQHLs? 

It turns out that already the first question, not to mention the second one, ad
dresses a truly formidable task of great complexity! Sect. 5 provides a partial answer to 
the first 'question by classifying all "maximally symmetric", L-minimal CQHLs, which 
represent the most natural generaliza.tions. of the CQHLs appearing in Thm.4.8. For 
low dimensions (N < 4), Sect.6 gives the complete answer to the. first question and 
makes· the first manageable step in the direction of answering the second question. 
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,'I 

> C lasslftcation of Maximally 'Sy.ri1'metric CQHLs 

Maximally'symmetric CQHLs correspond to the most natural generalizations of 
the "elementary'" A - (or su(N)~) fluids that appeared in Thm. 4.8,of, the last section, 
and which have been shown to encompas,s ,the Laughlin fluids as 'well as the "basic" 
Jain fluids. Before we can 'give a precise definition of the class of maximally symmetric 
CQHLs, we need to investigate a general geometrical feature of CQHLs, namely their 
"Witt sublattic~s" .We use technical language, ,and then translate ,our definitions into 
explicit statements at the level of the data pairs(K, Q)' associated with CQ-HLs; for 

- -+ ' 

the definition of these pairs, see the beginning of Sect. 3,. 
Let (t"Q) be a CQHL. Then the Witt stiblattice, fw, C f, is defined to be the 

sublattice of f generated by all vectors of length squared 1 ,and 2. The general t}leory 
of integral euclidean' lattices·[43, 44] tells us that fw is of the form, 

(5.1) 


where I, denotes the (self~dual) unit euclidean lattice in I dimensio~s, and r A, fD, and 
fE are direct sums of root lattices of the simple Lie algebras Am- 1 ~ su(m), Dm+2 = 
so(2m +-4), m = 2,3, ... , arid Em, m = 6, 7, 8, respectively.' The subscripts in the 
symbols- An, Dn, ,and En jndicat~ the ranks of these algebras. We note that all the 
root lattices of these Lie algebras are,generated by vectors of only one length, namely 
of length squared 2. (In the mathematical literature, the A-, D-, and,E-Lie algebras 
are called simply,.laced.) , 

Denoting by 0 the orthogonal complement of fw in f, whose dimension satisfies 
dimO = N - dimfw > 1, the sublattice fw E9 0 is then called the Kneser shape of 
f, and one has the following embeddings of lattices: ' 

(5.2) 

where " ... " denotes the dual of a lattice, as 'explained in Sect. 2. 
It can be shown [6] that, for indecomposable CQHLs (f;'Q), fw does not contain 

any I, and fEs sublattices. In the following we will, concentrate on indecomposable 
CQHLs, or, c()rresponding~y, on "elementary" chiral QH flu.ids. 

Theorem 5.1. Let (f,Q) be an indecomposable CQHL with (jH < 2. Then Q 
is orthogonal to fw, i.e~, Q EO"', and fw ~ fo where fo is the neutral sublattice of 
(f, Q). Moreover, if fw -:f 0, all the inclusions in (s.e) are proper. 

For a proof of this theorem andimore details on the constructions above-which 
constitute the basis of the complete classific~tion program of (general) CQHLs-, 
see [6, Sect. 6]. 
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Thm. 5.1 has an interesting corollary concernjng the symmetry properties of the 
chiral QH fluid corresponding to (r, Q). Note that to every point in r there corre
sponds a vertex operator 'of the algebra of edge currents. Let g denote the Lie algebra
it direct sum of si~ple algebras An, Dn, and E6•7 -whose root lattice is given by the 
Witt sublattice rw of (r, Q). It is not hard to show [3,6] that the algebra generated 
by the vertex operators corresponding to the Witt sublattice, rw, of r and the neutral 
u(l)-currents is the enveloping algebra of the Kac-Moody current algebra g at level 1 
(denoted 01). 

The (~nfinite dimensional) symmetry algebra 01 canonically contains the (finite 
dimensional) Lie algebra g that can be associated with global symmetry generators. 
Thus, the Lie group G corresponding to g is the group of global symmetries of the 
QH fluid. This implies that, given m electrons - fermionic quasi-particles with charge 
1 and labelled by, say, q1,"" qm Ere r* -, they transform under particular unitary 
irreducible representations (irreps.) of G. These unitary irreps. are specified as follows. 
Let 

qi = qi,W + q~, with qi,W E r~, and q~ E 0* , (5.3) 

be the decomposition, according to (5.2), of the ith electron's label, i - 1, ... , m. 
Then we may write qi,W = Wi +ri, with ri E rw a root vector, and with Wi E rw 
an elementary weight, i.e., a smallest length representative of the cosets (or "con
gruence classes" in Lie group terminology) in the quotient rw/rw (see, e.g., [45]). 
Furthermore, by the general representation theory of Lie and Kac-Moody algebras 
(see, e.g., [46]), the eleJIlentary weight Wi determines uniquely a unitary irrep., 'TrW., of 
G according to which the one-electron state labelled by qi transforms, i = 1, ... , m. 

From the gene~al results about lattices given in [43] (see also [6]), it follows that 
all the elementary weights Wi E rw which can appear in (5.3) are such that the 
corresponding irreps. of g can be extended, to unitary highest-weight representations 
of 0 at level 1.' For a discussion of the latter point, see, e.g., [46, Subsect. 3.4]. We 
will call these elementary ~eights "admissible" weights, and the ones that can occur 
for the simple algebras An, Dn, and E6r7 are given explicitly in Appendix A. 

One can show' [6] that if dim 0 = 1 and r 0 = rw then all one-electron states 
transform under the same unitary irrep. 'TrW of G, I.e., q1,W == ••• =qm,w =W mod 
rw. 

The preceding general remarks motivate the following definition of maximally 
symmetric CQHLs. 

Definition. A (proper) CQHL (r, Q) is called maximally symmetric if it satisfies 
dimO = 1 and fo = rw , i.e., the neutral sublattice 'of (r, Q) and its Witt sublattice 
coincide. Furthermore, denoting by g the Lie algebra associated with the root lattice 
rw, the one-electron states described by (r, Q) are required to transform under a 
unitary irrep. of g which can be extended to a unitary highest-weight representation 
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of QI' 

Ma~imally symmetric CQHLs (r, Q)are specified by the following data 


(L IWrw) , (5.4) 

where L is an odd, positive integer, rw = r AE9rD~E9, rE;e8 is the Witt sublattice of 
(r,Q), and W E rw /rw is an admissible weight labelling an irrep. 'of the Lie algebra 
g associated with rw. The possible weights ware further t~stricted bY.the value of 
L, namely <w, W> < L (see 5.6 below). 

We note that if the Witt sublattice is a direct sum of ~imple r-oot lattices, 
rw = fWl E9 .'.. E9 rw", k ~ 2, then the associated Lie algebra g is semi-simple 
with decomposition. g = g I E9 · .. E9 g1;, 'and correspondingly the admissible weight 
reads W = W1'+··· +WI;, where Wi E'fwi/rw" i = 1, ... , k. In order to get an inde
composable lattice, every projection Wi must represent a 'non-trivial cos~t in rW./rWi' 
This can also be shown to be sufficient; see [42J. In the sequel,. we always assume that 
admissible weights W fulfill this requirement. Hence, all the maximally symmetric 
CQHLs given in this paper are indeco1n:posable. 

Equivalently to (5.4), we can also specify maximally symmetric CQHLs (r, Q) 
by their corresponding data pair (K, Q),once a basis has been chosen in r; see the 
beginning of Sect. 3. Relative to a s~itable "normal" basis {q, et, ... ,eN-I} of r, 
(r, Q) is specified by 

and Q,'= (1,0, ... ,0), (5.5)
K - (-:-T+--C-(~-w-)) - ~} N , 

N 

where L = <q, q> is the same odd integer as in (5.4), C(rw) is the Gram matrix of 
the basis {et, ... , eN-I} of rw -in the normal basis chosen here,-it equalsthe Carlan 
matrix of the Lie algebra g associated with rw -, and; finally, W = (WI,"" WN-I) 

, , ! . -+ 

js the vector of the dual components of w which are given by Wj = <W, ej >, j = 
1, ... , N -1. According to the decompositi6n (5~2), the basis vector q can"he written 
asq=O'H-1Q+W. " 

If rw is a direct sum of simple root lattices then C(Fw) = C(rw1 )e·· ·eC(rw".) 
is a block-diagonal matrix, and w = Wl+ . · · + Wk' An example of data pairs (5.4) 

, - -' and (5.5) has been given by (4.16)'and(3.12), respectively. The explicit forms of the 
Cartan matrices for the simpl~algebras An, Dr" and ESt7, and of the dual vectors w 

. -
. for the admissible weights W are given in Appendix A. 

We denote by a(rw) the discriminant of the Witt sublattice, r w , of r, i.e., 
a(rw) := det C(Tw) = Irw/rw I. From (5.5), it immediately follows that for max~
mally symmetric CQHLs 
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~ - detI( - ~(rw) [L - w· c(rw)-lwT ],- 
- ~(rw) [L - < W ,W > ] (> 0) , (5.6) 

and 

(5.7) 

These two equations are basic for proving the. following theorem. 

Theo!em 5.2. The· symbol of a maximally symmetric CQHL (r, Q) specified 
by (5.4) or, equivalently, by (5.5), takes the form 

1)g=tJ.(rw)/"'",(.UH= . (5.8) 
l+rankrw=N L - < w, W > "\="'",/nH 

where hw is the order of the elementary weight W in rwJrw. Furthermore, for the 
relative-angular-momentum invariants i mCJz and imin., the equalities imin = i mCJz = L 
hold. 

If rw is a direct sum of simple root lattices, rw = rW1 e··· E9 r w", k > 2, and 
W = WI + · . · + WI:, as above, then the following identities hold: 

Ie 

rank rw - E rank rw. , 
i=l 

<W,W> - E
J: 

<Wi,Wi> , 
i=1 
I: 

~(rw) - det C(rw) - IT det C(rWi). , 
i=l 

and 

hw - lcm( hw1 , ... , hw,,) , (5.9) 

where the least common multiple (lern) of two integers a and b is defined by lern(a, b):= 

abJ gcd(a, b), and similarly for more than two integers. 
For the simple Lie algebras Am- 1 = su(m), ,Dm+2 == so(2m + 4), m = 2,3, ... , 

and E6,7, all the ranks and determinants of their Cartan matrices, as well as all the 
lengths squared and orders of their admissible weights are collected in Appendix A. 

Classification., Exploiting' the results of Thm.5.2 and the identities in (5.9), it is 
possible to list all maximally symmetric CQHLs which have a fixed value of Land 
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Table 5.1. Symbols of all L-minimal (ima" = 3), maximally symmetric CQHLs 
with O'H E [1/2,2/3) eEl' Notations are as in Fig. 1.1, with the addition that 
(,(, (I). " indicates a Hall fraction that has been observed in two-layer/component 

systems. 

In [!, i) :4 

ft-, (I) • 3
t
4,:J !)~ ( 10)1 

• 6 17 1 

In [ ~ ~) . b 
, 5' 3 • 

and n+l(3!~2)~ with n =9,10, ... 

( 15)1 
7 23 1 

a see (B2), (Ba), (B4), and (BT) of Appendix B 


b see (Ba), (B4), and (BS) of Appendix, B 


whose Hall fractions O'H~> 1/L; see (5.7)) belong to a given interval. In Appendix B, 
all maximally symmetrjc CQHLs with i min , = imaz = L = 3 and'O'H < 1 are listed. 
They are organized in four infinite one-parameter, one infinite two-parameter, and six 
finite series of CQHLs. For a physically relevant subset of Hall fractions (dH < 21 and 
odd), the resulting CQHLs are indicated in Fig. 1.2, and a detailed discussion is given 
presently. 

Before entering this discussion, however, we state the, most powerful implication 
of these results. Recalling the ,discussion about the shift maps in the second part of 
Sect. 4, we obtain the following classification result: 

AllL-minimal, maximally symmetric CQHLs are classified by combining the se
ries (B1)-(B11) given in Appendix B with Thm. 4.7 olSect. 4. 

Here is a summary of the results given in Appendix B-the classification ofL
minimal, maximally symmetric CQHLs with l/lma" =1/3 < UH < 1: 

In the window Et = ['1/3,1/2), we find the infinite series (B1) of CQHLs with 
Hall fractions O'H = N/(2N+l), N = 1,2,. ~,., converging towards 1/2. This "basic" 
A- (or su(N)-) series needs no further explanation since it coincides with the set 1-tt 
of Thm. 4.8 which has been discussed in detail at the end of the previous section. 

In the "complementary" window El = [1/2,1), the classification leads to new, 
physically interesting perspectives~ 

First, in Table 5.1, we collect the symbols,' as defined I:q (3.2) of all L-minimal, 
maximally symmetric CQHLs with Hall fractions O'H in the subinterval [1/2,2/3). 
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There are i~:finitely many such lattices with Hall fractions accumulating at 2/3. 
From the first row in Table5.1;we conclude that, in the subinterval [1/2, 3/5), no 

other fractions than 1/2, 6/11, 5/9, 4/7, and 10/17 are realized by L-minimal, maxi
mally symmetric CQHLs! This result leads to the following significant observation: 

Taking also into account the classification of generic (not necessarily maximally 
symmetric), low-dimensional CQHLs given in the next section (see Table C.2 in Ap
pendix C where a three-dimensional, generic, L-minimal CQHL with O'H = 7/13 i$ 
given), we conclude that, for single-layer/component QHfiuids with O'H = N/(2N-1), 
where N = 8,9, ... , the "charge-conjugation (or particle-hole symmetry) picture'" 
prQvides the only "natural" theoretical description. This picture corresponds to the 
non-chiraldecomposition El :3 O'H = 1 - O'H' ~ith O'H < 1/2; see [29,30] and Ap
pendix E. 

In general, for the "second main series" of Hall fractions, O'H ,=' N /(2N -1), N = 
2,3, ... , the charge-conjugation picture amounts to a description in terms of the fol
lowing charge-conjugated A- (or su(N)-) QH lattices. These QH lattices are com
posites of two CQHLs of opposite chirality meaning that they describe QH fluids 
which consist of electron- and hole-rich subfluids; see (2.1). More specifically, writing 
O'H = 1 - O'H' the charge-conjugated A-QH lattices are composites of the standard 
CQHL for the integer QH effect at O'H = 1 (see example (a) at the end of Sect. 2), 
and an L-minimal (lmo.:& = 3) CQHL corresponding to an elementary A-fluid with 
O'H = N/(2N+1) < 1/2. Note that, given the uniqueness result (Thm.4.8 of the pre
vious ~ection) for the elementary A- (or su(N)-) fluids in Et, the "charge-conjugated 
A-fluids" with O'H = 1-N/(2N+1) = (N+1)/(2N+1) acquire a correspondingly unique 
status among all the QH fluids in El that are proposed by the charge-conjugation pic
ture. Furthermore, it is shown in point (a) of Appendix E that the charge-conjugated 
A-fluids at O'H . N/(2N -1) coincide with the "hierarchy fluids" [29,30] at these 
fractions. 

Contrary to the situation for the higher-denominator (dH 2: 15) fractions of the 
second ~ain series, we emphasize that, for the fractions O'H = N/(2N -1), with 
N= 2,3, ... , 7, Tables 5.1, 5.2, and C.2 show that there are strictly ch~ral alter
natives to the charge-conjugated A-fluids; (see also the discussion of the "E-series" 
in [6, Subsect. 7.4]). Correspondingly, it is one of our basic contentions in this pa
per that, in Ej", the charge-conjugation picture should not be applied without further 

'thought. For many fractions, there are chiral alternatives; see Fig. J.2! Actually, as 
will be discussed in Sect. 7, the QH physics at m~y of the, fractions O'H E El turns 
out to be very complex! 

It should be emphasized that non-chiral, composite QH fluids are expected to 
exhibit a clear experimental signal distinguishing them from J>urely chiral fluids. In 
non-chiral .fluids it should be possible to observe excitations of both chiralities at the 
edge of the samples, while this is, in· principle, impossible in chiral fluids. Hence, the 
experiments reported in [47], which do not find edge excitations of both chiralities at 
O'H = 2/3 in the samples considered, are most interesting, and'further experimentation 
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Table 5.2: Symbols o/all L-minimal (imaz =3), maximally symmetric CQHLs 
with UH E [2/3,1) c E1, and low dimensions, N < 6. Notations are as in 
Tables4.1 and 5.1.a 

( 10)1 
6 13 1 

a see (B5), (B6), (B9), and (Bll) in Appendix B 

in this direction would dearly help to deepen the understanding of the .QH effect! 
Next, we remark that discussions and tables analogous to those for the subinterval 

[1/2,2/3), can be repeated for all subintervals [(n-1)/n, n/(n+1).) c E1, n =3,4, .... 
In each of these subintervals there is an'infinite number of L-minimal, maximally 
symmetric CQHLs with Hall fractions accumulating at ri/(n+1). 

Rather, than repeating the discussions, we summarize in Table 5.2 the most r~l
evant results for the remaining interval [2/3, i). For/this interval, we present all L
minimal, maximally symmet;ric CQHLs of low diIri~nsion, say,N < 7. This restriction 
is motivated by our heuristic stability principle ("the smaller N and lmaz, the more 
stable the corresponding QH fluid"). " 

Fr0In Tables 5.1 and 5.2, and from our heuristic stability principle, weare led to 
predict the existence of chiral QH fluids at Han fractions 10/17, 10/13, and 1,2/19. 
Taking the 'symmetry ~tructures of the corresponding maximally symmetric CQHLs 
into account, the fraCtion 10/17 is clearly predicted to be the most likely, next can

, didate to be observed in single-layer systems! By (B4), the one-electron states of 
the corresponding .QH fluid are transforming under the fundamental representations 
of SU(2) x SU(5). Note also that, in the charge~conjugation picture, 10/17 would 
be "conjugated" to 7/17 at which fractiop. the~e is, however, neither an L-minimal, 
maximally symmetric nor' a generic, low-dimensional (see next section) CQHL! This 
conclusion is interesting, since there are some tentative experimental results suggesting 
the formation of a QH fluid at the fraction 10/17 (see [19]), and there is ~o indication 

. of a QH fluid at the, "conjugated" fraction UH = 7/17. 
Furthermore, comparing thedata of Table 4.1 to those of Tables 5.1 and 5.2, one 

immedia,tely notices a striking qualitative difference between the "complementary" 
windows Et and E;, p = 1, 2, . .. . By Thm. 4.8, we' have' that if a Hall fraction in 
the windows Et is realized by an L-minimal, maximally symmetric CQHL then it is 
unique. On the other hand, in the windows E;, one of~~n finds several structurally 
different lattices realizing a given fraction .. Th~CQHLs having the same Hall fractions 
are typically embedded into one another. This will be explained in more' detail in 
Sect. 7 when we discuss the possibility of "structural phase transitions" in QH fluids. 

The status of even-denominator Hall fractions will be discussed in Sect. 7 when 
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the classification of generic, low-dimensional CQHLs that we present in the next section 
is available. 

In conclusion, we note that, e~cept for the single fraction 4/11, all experimen
tally' observed Hall fractions given in Fig. 1.1 can be realized by either an L-minimal, 
maximally symmetric CQHL or a charge-conjugated A-QH lattice. -All these CQHLs 
are ofreasonably low dimension N; as a matter_of fact, we have N ~ 9, except for 8/11 
where the lowest-dimensional L-minimal, maximally symmetric CQHL has N =11. 

However, before jumping'to conclusions about the role of maximal symmetry in 
the classification of physically relevant CQHLs, we need to find a way of going at 
least one step beyond the classification' of maximally symmetric CQHLs, and see how 
the resulting data compare with experimental results. Such a step will be carried out 
in the .following section ,by addressing the classification problem of generic CQHLs in 
low dimensions (N <.4). Just to mention two results: we shall find, e.g., at lTH = 
8/11, a D:on-maximally symmetric CQHL in four dimensions which is L-minimal and 
exhibits an SU(2)-symmetry; see Table C.4 in Appendix C. Clearly, in describing the 
QH fluid forming at 8/11, this CQHL competes with the II-dimensional, maximally 
symmetric one mentioned above. Furthermore, the "simplest" non-L-minimal CQHL 
forms in dimension N = 2 just at the "missing" fraction lTH =4/11; see Table C.I 
in,Appendix C., It coincides with the proposal in the "hierarchy schemes" [29,30]; see 
Appendix E. 
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6 Classification of Low-Dimensional CQHLs 

In this section, w~ venture a step beyond the classification of maximally symmetric 
PQHLs presented in the last section. We provide systematic classification results for 
low-dimensional CQHLs that are neither necessarily L-minimal nor necessarily max
imallY,symmetric. This allows us to g~t a better understanding of the role played by 
these two properties in the classification of physically ,relevant CQHLs. In the'second 
part of this section, ~e use our results and the phenomenological·data summarized in 
Fig.1.~ to argue that the assumption of L-minimality for physically relevant CQHLs 
is experimentally corroborated. The maximally symmetric CQHLs turn out to be 
most relevant in the windows E; where they ate unique in the sense of Thm. 4.8. In 
the "complementary" windows' £;, they are typically competing with generic, low
dimensional, L-minimal CQHLs. The latter ones, however, often exhibit a form of 
"partial" symmetry, and are in mo~tcases contained as QH sublattices (see Sect. 7) 
in maximally symmetric CQ'HLs\of higher dimensions . 

. Classification. We start by stating the precise classification results and then sketch 
their derivation. We, have nconstructed' the following sets of indecomposable, low

, 	 , 

dimensional CQHLs - a.n.d" correspondingly, of possible "elementary" chiral QH fluids: 
, 	 " 

(Nl) 	 all one-dimensional CQHLs, (they correspond to the. Laughlin fluids as 
described at the end of Sect. 2); 

(N2) 	 all indecomposable CQHLs in dimension N = 2, (e.g., for 3 < lmin < 
lm4z < 7, there are 42 such lattices); 

(N3.. l) 	 all indecomposable CQHLs in dimensionN = 3, w~th lmin == lm4z =3, , 
(19 CQHLs); 

(N3.2) , all indecomposable CQHLs in dimension N = 3, with 3 < lmi~ < lm4z = 
~, and UH < 3, (191 CQHLs); 

(N4) 	 all indecomposable CQHLs in dimension N ='4, with 'lmin = lm4z - 3, 
and UH < 1, (26 CQHLs). 

The e?,plicitdata characterizfng the CQHLs of the sets (Nl)-(N4) are Summa
rized in Tables C~l-C.4 of Appendix C. 

We recall that, by definition, lmin = Lmin and lm4z = Lm4z for indecomposable 
CQHLs; see point (5) in Sect.3. Moreover, given the sets (Nl)-(N4), it is straight
for:ward combinatorics to constru~t all primitive (see point (7) in Sect. 2) ,CQHLs with 
bounds on N and lm4z as above. We note that this construction has to be 'carried out 
in order to obtain the classification of alllow-dimensional.(N <4), L,..minimal CQHLs 
in the windows E", with p> 2, by application of the shift maps S" of Sect. 4. 

44 



Next, we turn to a brief sketch of the construction of the above sets of CQHLs. 
For each of the sets (N2)-(N3.2), the construction is carried out in three steps: 

(i) One classifies all indecomposable, integral, euclidean l~ttices r with discriminants 
~ bounded by l~a.z; see (4.1). (ii) In the dual,r-, of each lattice one carries out an 
exhaustive search for odd, primitive vectors (Q-vectors). All Q-vectors which belong 
to the same orbit under the action of the corresponding lattice automorphism group 
are identified-since they give rise to equivalent CQHLs; see (3.1). (iii) One has to 
calculate, for each resulting CQHL (r, Q), the value of lma.z and retains only tho~e 
CQHLs satisfying the resp.ective bounds on lma.z. 

We remark that since the first step presents a highly non-trivial, unsolved math
ematical problem when ~ and N are getting large, the program above is bound to 
work only in low dimensions. Actually, we have only been able to carry it out in two 
and three dimensions! Specifically, the indecomposable, integral, euclidean lattices 
with N = 2 have been classified by Gauss; see, e.g., [44, especially Chapter 15]. In 
three dimensions, the very detailed discussion of "reduced forms" for the corresponding 
lattices by Dickson [48, especially the tables in Chapter 11] make a computer imple
mentation for classifying all such lattices with, say, ~ < 53 = 125, straightforward. 
Further interesting mathematical considerations related to this fist. step can be found 
in [39]. 

The second step is easily realized for two-dimensional lattices. Again in three 
dimensions, the work in [48]. is most helpful, since it provides precise algorithms for 
determining the .automorphism group of a given lattice. Given these algorithms and 
the bounds in (4.5), it is straightforward to find a computer implementation of a search 
routine for orbits of Q~vectors. 

The third step.is tedious but computationally straightforward. The main work is 
·to find all charge-l vectors in r which then have to be combined to form all possible 
symmetric bases needed in order to calculate lma.z; see (3.6). 

For a better organization of the CQHLs in (N3.2), it is convenient to introduce 
another relative-angular-momentum invariant: Similarly to (3.6), we denote by oBq 
the set of all ordered, symmetric· bases of r, {qt, q2, Q3}, i.e., < Q, qi > = 1, for 
i = 1,2,3, and < qt, ql > < < q2, q2 > < < q3, q3 >. Then one can show that, for all 
lattices considered in (N3.2), the following invariant is well-defined: 

12 := min < q2, q2 > , (6.1) 
, {Ql,<b,q3}EOBq 

<Ql,Ql>=lmin, <Q3,Q3>=lmos 

and its possible values· are 3 and 5. The set (N3.2) can be split into three subsets 

characterized by . [lmin,l2,lma.z] == [3,3,5], [3,5,5], and [5,5,5]' respectively. The 


. corresponding compilations of CQHLs are summarized in Table C.3 of Appendix C. 

Clearly, the subset with invariants [5,5,5] contains all the (indecomposable) images 

under the shift map Sl-of the CQHLs listed in set (N3.1); the corresponding inverse 

images are indicated in Table C.3. 

45 



In order t~ obtain the set (N4) we have applied 'the following procedure. Making 
use of the special form the data pairs (K, Q) characterizing theseCQHLs take in suit
able symmetric bases (see (C.3) in Appendix C), the positivity of 1< impliesthat all six 
coefficients, at, a2"' • • , c, necessarily have an absolute value which is strictly less than 
three. Based on this observation a simple computer routine can be used to generate 
the data pairs (K,Q) (relative to symmetric bases) of all CQHLs which belong to the 
set (N4). Identify~gall the da,ta pairs which are" related by a mere change of basis 
in an underlying CQHL (see (3.1)) and checking· for indetomposability, one obtains 
the result summarized in Table C.4. Actually, the indecomposability of lattices with 
discriminant ~;< 25 could be checked by' comparison with the classification results 
given. in [43]. The lattices with discriminants ~ exceeding 25 had to be considered 
case by case. , , 

This completes the description ,of our procedures for obtaining the sets (Nl)
(N4). Next,we shall see what these results imply with respect to the role played 
by L-minimalityand maximal sy~etry in the classification of physically relev:a.nt 
CQHLs. 

L... Minimality and 'Maximal Symmetry vs.Experiment. We first recall that 
an L-minimal CQHL withuH E Ep = [1/(2p+1),1/(2p-1» is characterized byits 
primitivity (see point (r) in Sect. 2) and the equalities Lmi'n = lmin. = LmQ.:& = lma.:e = 
2p+ 1, p = 1,2,... . Given the explicit data in Appendices B and C, we can ask 
the question: Which Hall fractions UH, e.g, in the window Et ' are "strongly non-L
minimal"? Here, strongly non-L-minimal means' that these fractions can be realized 
by a non-L-minimal (indecomposable or composite) CQH~ with N < 3, but neither 
by a low-dimensional (N < 4), L-minimal CQHL, nor by a Dlaximally symmetric 
one of arbitrary dimension. Besides this, "strong" form of non-L-minimality we may 
also define a "weaker" form. Let us call a Hall fra.ction weakly non-L-minim«l if 
it can be realized by a non-L-minimal' CQHL with N< 3, and if there is also a 
maximally symmetric, L-minimal rea.lization"however, only in higher dimensions, say, 
with N > 10. - Recall the phenomenological discussion at the end of the last section, 
where. N ~ 10 has been argued to provide an approximate,. heuristic upper bound on 
the dimension of maximally symmetric CQHLs which are physically relevant .. 

A compilation of strongly and weakly non-L-minimal Hall fractions is given in 
Table 6.1. The non-L-minimal (indecomposable or composite) CQHLs realizing these 
fractions are indicated by the values of their invariants lmin., 12' and lmQ.:&' respectively, 
and the corresponding explicit data pairs(K, Q) can be found in Tables C.1 and C.3 of -Appendix C. In Table'6.1, the dimensions in which maximally symmetric lattices exist 
for the weakly non-L-minimal fractions are irfdicated in brackets. All other notations 
are as in Table 4.1 .. 

Upon closer inspection, Table 6.1 is most revealing., The "simp~est" strongly non-' 
L-minimal situations are encountered at UH = 4/11 and 8/15. For both fractions, 
there is a two-dimensiona.l [3, 5]-CQHL with'invariants ..\ =9 = 1. It is indecomposable 
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Table 6.1. Strongly and weakly non-L-minimal Hall fractions t7H in the window 
El = [1/3,1). Notations are explained in the text. 

4.
'rr 

7 
19 

3 
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5 
13 

7 
17 

8 1 1
°15=3+5 

'11 
19 

[3,5] [3,5,5] [3,5,5] [3,5,5] [3,3,5] [3] e [5] [5,5,5] 

[5,5,5] [5,5,5] [5,5,5] [5,5] e [5] 
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2T-3+7 

[3] ED [5,5] 

9 
rr ~-l+l+!

15 - 3 3 5 
17 
19 

[3,5,5] [3] e [3] e [5] [3,5,5] 

(N > 17) (N ~ 25) (N > 33) 

in the first, and composite in the second case. As a matter of fact, we note that 
the latter situation provides one of the "simplest" examples of a composite chiral QH 
fluid, namely a composite of two basic Laughlin fluids. Clearly, at CfH = 8/15, the 
description in the charge-conjugation picture, 8/15 = 1- 7/15 (where the 7/15 hole
subfluid is described by the unique L-minimal CQHL (311A6) in dimension N =7; see 
the discussion inSect. 5), competes with the above non-L-minimal solution. Applying 
the results of Appendix E, the above [3,5]-CQH~ at CfH = 4/11 ca~ be seen to 
correspond to the QH fluids predicted by the Haldane-Halperin (HH) [29] and Jain
Goldman (JG) [30] hierarchy schemes at "level"twoand three, respectively. 

Experimentally, there seems to be only very weak support for a QH fluid at 
(jH = 4/11 (see [20, and Ref. 12 therein]), and some first indications of the Hall effect 
at 8/15 have only been found recently in very high quality samples [17, 18]. Apparently, 
the formation of QH fluids at these two fractions is a very delicate matter! 

More surprisingly, there is a persistent absence. of experimental indications of 
the QH effect at the J?on-L-minimal fractions 7/19, 5/13(1), 7/17 (1), 11/19, 13/21, 
9/110), 13/15(1), and 17/19. The fractions marked with "(!)" are well separated 
from experimentally strong fractions nearby and thus, a priori, they are expected to 
be experimentally observable! This .should be further confronted with the fact that 
none of the fractions in El which are realizable by L-minimal CQHLs with N < 3 is 
lacking experimental o'bservation! - We note that, in the two hierarchy schemes, fluids 
at low{!) "levels" are predicted at all these fractions. In the HH picture, there are, at 
all fractions above, fluids at "level" 3, with the exception of 11/19 and 13/21 where 
fluids form at "level" 5. In the JG scheme, the corresponding fluids are found at 
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"level" 2, except for the last three fractions where they form. at "level?' 3, 4, and 5, 
respectively. From the point of view of QH lattices, all "~ierarchy fluids" predicted at 
the fractions above are non-euclidean with the exception of those at ·7/17 and 7/19; 
see Appendix E. In these two cases, they coincide with our non-L-minimal proposals < 

with tmin = 3 and tm~:&·= 5, respectively, listed in Table 6.1. 
Recalling the heuristic stability principle of Sect.. 4, the observations ~bove lead 

to the following 

Strong Stability Principle. The most stable chi~al QH fluids are described by 
L -minimal CQHLs, and the smaller the lattice dimension N, the greater the ,stability 

of the corresponding fluid~ 

This heuristic stability principle, with the prominence of L-minimal CQHLs im
plied by it, is rather pleasing in the light of Thm. 4.7 which states that all sets, 'lip, 
of L-minimal, primitive CQHLs in the windows lJp , p =2,.3, ... , stand in one-to-one 
correspondence with 'iiI in ~I' . 

Furthermore, given the stability prinCiple above and the· result ~f Thm.4.8, it 
would appear to be justified to claim that there is now a firm understanding of the 
"structural organization" of QH flJlids in the windows ~t, p = 0,1,2, .... - We note 
that, in particular.., at the Hall fractions O'H= N/(2pN +1), N = 1,2, ... , which 
belong to the windows ~t, the HH-hierarchy picture [29], the JG-picture [30] and our 
"L-rp.inimal CQHL ~picture" are equivalent! For details, see Appendix E. ' 

Combining the two preceding remarks, we conclude that the challenging ground 
for deepening the pnderstanding of the QHeffect lies in the "complementa.ry" windows 
~;, p(= 1,2, ... , and, in particular, in the "fundamental domain" ~1 = [1/2, I)! "In 
this window, room is found for an interesting competition. between three classes of 
L-minimal CQHLs; namely, (i) the generic, low-dimensional (N <,4) CQHLs with no 
symmetry restrictions on their structure, (ii) the class of maximally symmetric CQHLs 
of fairly low dimensions (typically N ~ 9), and, (iii) the (~on-chiral) charge-conjugated 
A-QH lattices discussed in ~ect. 5.· This competition and its consequences, such· as . 
the predicti~n of possible "structural phase transitions", appears to be missed in the 
hierarchy schemes. It is one of the main issues we address in our final section. 
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7 Summary and Physical Implications of the 
Classification Results 

In this final section, the key insights and conclusions of the previous sections 
are summarized and completed. In particular, the status' of the two main restrictions 
assumed in our classification, chirality and L ..minimality, is discussed in detail. Several 
new experiments that could help to further deepen the understanding of the QH effect, 
in particular, ~f the "structural organization" of QH fluids, are proposed. 

Stability Principles. Based on the physical meaning of tqe CQHL invariants N (the 
number of channels in the corresponding QH fluid; see (A2) in Sect. 2) and i maz (the 
smallest relative angular momentum of a pair of a certain type of electrons that are 
excited above the QH fluid's ground state; see (3.8)), we have motivated, in Sect. 4, 
the heuristic stability principle that the smaller the invariants Nand i maz , the more 
stable the correspon.ding QH fluid. 

For a sharpening of this stability principle, the introduction of· the notion of 
L-minimality has proven to be effective. - L ..minimality says that all the minimal rel
ative angular momenta between any two identical types of electrons excited above a 
QH fluid's ground state' are the same ("homogeneity"'), and that, furthermore, i maz 

assumes the smallest possible/value ("minimality") consistent with the value of the 
Hall fraction tTH; see below (4.6). - A detailed confrontation of our classification re
sults (summarized in Appendices B and C and discussed in Sects. 5 and 6) with the 
experimental data summarized in Fig. 1.1 then lea4s to the following strong stability 
principle: The most stable chiral QH fluids are described by L ..minimal CQHLs, and 
the smaller the lattice dimension N, the greater the corresponding fluid's stability. 

Furthermore, . the· presently availa.ble experimental data on single-layer systems 
suggest the respective values 10 and 7 as heuristic upper bounds for the invariants N 
and i maz of physically relevant CQHLs; (see also the disctission preceding Thm.4.2).' 
This observation is most powerful in combination with Thm.4.1 which states that the 
set of CQHLs satisfying such bounds is 'finite. 

We continue this subsection with tw~ compilations of Hall fractions where exper
imental indications for a QH fluid would, in the first case, strengthen the conclusions 
above, and, in the se~ond case, w.ould pose new interesting questions about the physics 
underlying the QH effect. For a partial summary of the subsequent results, see Fig. 1.2 
in Sect. 1. 

(a) New fractions at which QH fluids can be expected to form. Given the above 
stability principles, there are basically two ways to predict new Hall fractions at which, 
one could expect the formation of QH fluids in single-layer systems from the data given 
in Appendices B and C. 

First, we shall argue for new fractions in the window El = [1/3, 1). There, 
candidates are fractions that can be realized by "simple" maximally symmetric CQHLs 
where "simple" means L-minimal, low-dimensional, and the Witt sublattice (which 
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encodes the syinmetryproperties of the fluid; see (5.1»is either simple or semi-simple 
I, ".' 

but with at most two summands. The most obvious· such candidates are the three 
fra.ctions .10/13, 10/17, and 12/19 of Table 5.1, and the next "member" in the basi'c 
A- (or 8u(N)-) series (see (Bl»,namely, 10/21! The first three fractions are realized 
byCQHLs in'six dimensions, the latter by one in ten dimensions. All fonr lattices are 
indecomposable and have le~el 1= Ag =1 which means that, by Thm.4.5, a charge
statistics relation holds for them. In addition' to these fractions, further candidates 
'in the window El can be inferred form Table C.4 containing all indecomposable,: L
minimal CQHLs in four dimensions. Here, two fluids with a partial SU(2)-. and one 

'with a partial SU(2) xSU(2)-symmetry are predicted to form at O'H = 6/7, 13/17,' 
and 14/19, respectively! Moreover, a generic fluid exhibiting no continuous symmetries 
might form at O'H ~ 11/13. 

Second, In the windows E,,= [1/(2p+1), 1/(2p-1», p = 2,3, ... , new QH fluids 
are predi~ted by acting with the shift maps 8,,-1 on the 'CQHLs corresponding to 
well-established fluids with O'H E .El; see' Sect. 4, in particular transformation prop
erty (4.12). The.~ost immediate fluids whose s~ft map images Jllight be considered 
are the ones. belonging to' the A-series with Hall fractions O'H = N/(2N +1). This,' 
leads to predictions of QH fluids at, e.g., 2/13, 4/17, and 5/21! We . note that, from. 
a QH lattice point ofview, our results at the fractions O'H = N/(2N+1) and at their 
shifted images coincide with the proposals given in both'the Haldane-Halperin [29] 
and the Jain-Goldman [30] hierarchy schemes; see Appendix E. However, at most of 
the other fractions, the pictures can differ significantly, as we explain in detail in. the 
remaining part of this section. 

(b) "Missing" Hall fractions. Our considerations, here, are not only based on the 
two sets of classification results summarized in Appendices B (L-minimal~maximally 
symmetric CQHLs) and C (all indecomposable CQHLs with N < 3 (4) and lmGz ~ 
5 (3», but also on the investigation of the composite qQHLs that can be built from the 
ones listed there, provided their invariants N 'and lmaz satisfy the respective bounds. 
For brevity, we restrict attention to odd-denominator fractions in the window El . - A 
g~neral discussion of the status of even-denominator fractions will be given below. 

The strongest statement we can make about "missing" fractions. in El is the fol
lowing: The data mentioned above provide no CQHLs . at the fractions 6/17, 0 9/17, 
8/19, 10/19, .13/19, 8/21, 11/21, .... ' and hence, no chiral QH fluids are expected 
to form at these fractions! - When listing fractions in this section, the dots "..." are 

always indicating further fractions with dH > '21, and the experimental status of the 
fractioris in single-layer systems is indicated as in Fig.I.1. - In other words, finding ,an 

. experimental signal a.t one of these fractions forces us either to go beyond our classi.,. 
fication results or to reconsider some of our basic ass,umptions. E.g., the implications 
for the status of the chirality assumption which follow form the.experimental data 
at O'H = 9/17 - and, for that matter, \ -would also result from signals at 10/19 and 
11/21- are discussE?d in the next subsection. 

By reversing the line of arguments that lead to the strong stability principle in 

50 



Sect. 6, we can make further non-trivial predictions of "missing" fractions. Namely, 
assuming (i) L-minimality to be a necessary property of stable QH fluids, and (ii) that 
our data'is exhaustive (which means, in particular, that generic L-minimal CQHLs 
with IV ~ 5 are physically irrelevant), then no stable chiral QH fluid can form a~ the 
fractions · 4/11, 5/13, 08/15, 7/17, 7/19, 11/19, 13/21, ... ! These fractions have 
been called strongly non-L-minimal in Sect. 6; see Table 6.1. ,We note that a detailed 
analysis of the impllcations resulting from the experimental indications at 4/11 and 
8/15 can also be found there. (The fraction 8/15 finds a natural explanation in the 
charge-conjugation picture, as' discussed presently, and the weak experimental data 
at 4/11 might indeed indicate the only QH fluid corresponding to anon-L-minimal 
CQHL which, in this case, would be two-dimensional.) Assuming, in addition, a 
heuristic upper bound on the dimension N of CQHLs that can be realized physically, 
say N< 10, as mentioned above, then further "missing" fractions are predicted to 
be 9/11 (17), 13/15 (25), 17/19 (33), as well as 11/17 (23), 14/17 (20), 16/17 (18), 
15/19 (15), 16/19 (19), 18/19 (20), 16/2.1 (19), 17/21 (17), 19/21 (37), ... ! The first 
three fractions in this list have been ,called weakly non-L-minimal and appeared in 
Table 6.1. All fractions are lis~ed together with the dimension in which the lowest
dimensional maximally symmetric, L-minimal CQHL can be found realizing that Hall 
fraction. 

Given these predi~tions, it would certainly be most interesting', to carry out fur
ther expetimental investigations in the regions around the indicated "missing" Hall 
fractions! The status of some of these fractions in the hierarchy schemes has been 
discussed towards the end of Sect. 6. 

Composite CQHLs and Charge-Conjugation. What can we infer from experi
ment about the necessity to consider composite chiral QH lattices in the description 

, of single-layer QH fluids? The answer is, there is no experimental data in Fig. 1.1 
conveying need for composite CQHLs, except possibly at O'H = 2N / (2 N +1) where 
direct sums of two identical (indecomposable) CQHLs from the basic A -series should 
not be ruled out, a priori; see the discussion below, in the subsection about "structural 
phase transitions". To substantiate this claim, let us list, ~.g., all Hall fractions exhib
ited by low-dimensional (N $ 4), L-minimal, composite CQHLs in ~1 = [1/2,1): 
.2/3 = 1/3 + 1/3, .4/5 = 2/5 + 2/5, 5/6 = 1/3 + 1/2, 9/10 = 1/2 + 2/5, 
11/15 = 1/3 + 2/5, 14/15 = 1/3 + 3/5, 16/21 = 1/3 + 3/7,... . We note that 
all such composite lattices necessarily have O'H ~ 2/3. The claim can be further cor
roborated by also inspecting higher-dimensional, as well as non-L-minimal, composite 
CQHLs. 

In multi-layer/component systems with nearly independent components-e.g., 
with a strong suppression of tunneling between the different layers -, the picture will, 
of course, be different, and fractions listed above might possibly arise. 

The second question is whether the experimental data in Fig. 1.1 are suggestive 
of QH fluids that ~e composites of subfluids with opposite ~hiralities? For single
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layer systems, the commonly accepted charge-conjugation (or particle-hole symmetry) 
picture [29,30] assumes this to be so~ Actually, in this picture, the Hall physics at 
the fractions UH E Et ' [1/2,1) is assumed to be the "charge-,conjugated" mirror 
image, UH = 1-uH' of the one at the correSponding fractions UH E (0,1/2]. In 
particular, at two "conjugated fractions" (UH' UH)' the likelihoods of formation and the 
~tability properties of the corresponding QH fluids are expected to be approximately' 
the same [30]. Although this picture is contarned in our g~neral,fr8.mework presented 
in Sect. 2 (see (2.1) and AppendixE),weargue that it is not, in general, in accordance 
with the experimental data availa.ble so faJ;'. 

Let us see, more precisely, what the experimental evidence for or aga.inst the 
c~arge~conjugationpicture is in single-layer systems. A ~rst look at Fig.I.l' shows 
that there are 11 pairs of conjugated fractions (UH,uH) where, at both fractions, QH 
fluids of similar stability have been established, and which thus are consistent with the 
charge-conjugation picture. These 11 pairs, however, have to be 'confronted with 10 (!) 
pairs of conjugatediractions (UH, UH) where either only one member is observed or the 
stability status of the two members is' markedly different. Taking a closer look at the 
experimental data, one realizes that 8 of the 11 pairs supporting charg~-conjugation 
are of the form (N/ (2N +1), (N+1)/ (2N +1)), Le.1 they are relating fractions of the 
basic A -series with ones belonging to the "second main experimental series" . 

As we have discussed at the end of -Sect. 5, it isn~tural and, in some cases, 
necessary to take the charge-conjugation picture into account when discussing the QH 
physics at the fractIons of the second main series, UH = N/(2N-l), N = 2,3, ..... 

'I 

The particular non-chiral, composite QH lattices associated with these fractions in the 
charge-conjugation picture have been called charge-conjugated A-QH lattices. They 
have a unique status among all charge~conjugated QH lattices, in Et ; see Sect. 5. 

We note, however, that for the first six members (2/3 through 7/13) of the second 
maill series, there are also strictly chiral,' L -,minimal alternatives; a fact that is rather 
interesting, in thelight of the results reportediri [47]. In the experiments reported 
there, one has been looking for the signature of it. charge-conjugation QH fluid, at 
UH = 2/3 (= 1-1/3); namely, the existence of edge excitations of both "chiralities; \ 
see' Sect. 2. But no evidence was found for this signature, a result that woul~d be 
consistent with the proposal of a strictly chiral fluid at that fraction .. Further physically 
interesting implications of chiral QH lattices are discu~sed below, in the subsection 
about "structural phase transitions". 

There is another important observation to be made: In the realm of CQHLs; there 
are only non-L-minimal CQHLs at the fractions .4/11, 5/13, and 7/17, while at the 
"conjugated" values 07/11, .8/13, and .10/17 there are L-minimal (maximally 
symmetric) CQHLs of dimension 7, 9, and 6, respectively! Given the fact that the 

, first three fractions are experimentally only very weakly indicated or unobserve,d; while 
the latter three are clearly observed or' indicated, we favour the chiral explanations for 
the latter three fractions over the ones of the charge-co~juga.tion picture. 

In conclusion, we are tempted to claim that, for single-layer syste,ms, the presently 
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available experimental data do not support the charge-conjugation ,picture In general. 

Since this claim may appear to remain doubtful, further experiments of the type 
reported in [47] would be most welcome! 

Status of Even-Denominator Hall Fluids., First, we emphasize that in the frame
work adopted in the present work, the description of QH fluids at fractions with 
even denominators dH is not an impossibility. This is satisfying since, experimen
tally, even-denominator QH fluids are well-established at UH = 1/2 [25,261 in two

layer/component systems, and there are celebrated data at UH = 5/2 [27,28] observed 
in single-layer systems. 

Second'~ theoretically, the most interesting fact about even-denominator CQHLs is 

that their charge parameters ~ are necessarily even; see'Thm. 4.3. Phenomenologically, 
this translates into the prediction that, in such fluids, quasi-particles may be excited 

above the ground state which have (fractional) charges e* = l/(~dH) < 1/(2dH) (!); 
see (3.4). The even-~ observation acquires further meaning when we note that all odd
denominator QH lattices whic~ are consistent with the above strong stability principle 
and the respective phenomenological bounds' on N and lma.:z:, are characterized by 
~ =I! 'Thus, the charge parameter ~ appears to play a dichotomizing role between 
odd- and even-denominato~' QH fluids. 

Third, we must ask the crucial question: Which even-denominator fractions are 
predicted in our framework? To be more precise, taking over (i). the strong stability 
principle, (ii) the experimentally supported upper bounds' on the invariants N and 
lma.:z:, and (iii) that, phenomenologically, there is little need for composite CQ,HLs, we 
ask: Which even-denominator Hall fractions in El can be realized by L-minimal, inde
composable CQHLs that are either maximally symmetric with N < 10, or generic with 
N <4? The. answer is§urprisingly short! We give the resulting fractions and indicate 
in round and square brackets the dimensions of the corresponding maxim~ly symmet
ric and generic 'CQHLs, respectively: 1/2[2],(3,4, ...),3/4 (4],[4]::>su(3),(5,6, ... ), 
5/6 (7,8, ...), 5/8 [4]::> su(~), (9, 10, ...), 7/8 (9,10, ...). The generic lattices at 1/2, 
3/4, and 5/8 are given explicitly in Tables C.1 and C.4 in Appendix C, while all the 
maximally symmetric ones with Hall fractions (2n -1)/(2n) are structurally simi
lar. Their 'Witt sublattices are given by lA2(n-l) lAl lAt., lA2(n-t) 2A3 , ••• ; see (B2) 
and (B5) in Appendix B, and' the discussion in the next subsection. Since, for 
n = 2,3, ... , the Witt sublattices of the lowest-dimensional realizations are semi
simple with three summands, we do not expect these lattices to present phenomeno
logically plausible proposals. This, in turn, leaves us, for the window E1 , with the 
prediction of even-denominator QH fluids at UH = 1/2, 3/4, and 5/B! 

We recall that, as mentioned in Sect. 1, there are convincing arguments [14] that, 
in a single-layer QH system, there are no plateau at UH = 1/2, 1/4, 3/4, (and other 
even-denontnator fractions). The ground state of a QH system at .the corresponding 
filling factors is argued to be a gapless Fermi liquid. 

For double-layer (or wide-single-quantum-well) QH systems, however, the propos~ 
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als m~de above are very natural,. For example, at UH = 1/2;,we have a m~mally sym
metric CQHL with symbol (see (3.2»and data (see (5.4» given by 3(1/2)~ (3I I11 

IA1). 

This three-dimensional example has been discussed in Sect. L The two Al = su(2) 

summands formin~ its Witt sublattice rw make it a natural candidate for -describing 
a QH fluid with anSU(2)rpin and anSU(2)1a.1Ier symmetry. Similar discussions Can be 
repeated for the other even-denominator QH lattices mendioned above. 

Embeddings ,of CQHLs and Structural Phase Transitions. A rather remarkable 
consequence of our study of QH lattices is that, staying in the context of chiral and 
L-minimal QH lat~ices~ as motivated above,-the interval of Hall fractions 0 < UH, <-I 
can naturally be organized into "windows"in a two-fold way.

/ 

First, defining the windows Ep = [1/(2p+1),1/(2p-1», p = 1,2, ... , the charac
terizing propertyofL-minimal CQHL with UH E Ep is that they saturate the bound 
1/uH < lm,a.z given in Thm.4.2, he., they have lm,a.z = 2p+1. We recall that, by 
Thm.4.7, all the sets of L-minimal CQHLs with UH E Ep are in ,one-to-onecorre
spondence~ with one another. These correspondences are realized by the shift maps 

discussed in Sect. 4, and lead'to the result '~hat, when discussing L-minimal-CQHLs, 
we can restrict attention' to the "fundamental window" EI . We· will make use of this 
fact in the remaining part of this subsection. 

Second, each window Ep can be qivided into two subwindows, Et and E;, by the 
mid value of 1/(2p). The interesting fact behind this division is that the two resulting 
subwindows exhibit very different ·"structural organization". While, in the windows 
Et = [1/(2p+1), 1/(2p», there are unique L-minimal CQHLs at the fractions UH= 

NI(2pN+1), N = 1,2, ... , (see Thm.4.8), one infers 'from the data in Appendices B 
and C that, in the "complementary" 'window~ E; = [11 (2p), 11(2p"':"l) ), typically 

I several ineq~ivalent CQHLs can be found at a given Hall fraction UH. ~n interesting 
question then is: What is the relationship between CQHLs which have the same 
Hall fraction? Furthermore, what does this relationship imply at the level of QH 
fluids? In order to answer these two questions, we introduce the concept of QH-Iattice 
embeddings. 

Definition. _ A QHlattice (r', Q' E r'*) is em~edded into another QH lattice, 

(r,Q E r*) if (i) both QH lattices exhibit ,the same Hallfrat;tion, i~e., uk =<Q',Q'> 
= < Q , Q > = UH, (ii) r' is a sub lattice of r, 'and ,(iii) the two charge vectors Q' 
and Q are compatible in the sense that all multi-electronfhole states described by 

(r', Q') remain physical states ,when viewed (via the lattice embedding r' c r) as 
states described by (r, Q). In particular, all the electric charges stay the same, i.e., 

< Q', q' > =< Q , q' > , for all q' E r' cr. 
At the level of symbols (~ee (3.2», we denote such embeddings by 

(nH)9' , (nH)9 " ,
-d' " [l:nin,l:na.z] c:.. -d' [lm,in,lma.z] . .. (7.1) 

N' H~' ,N H ~ 
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Note that, as an immediate consequence of definition (3.7); l:nin > lmin. 

Physically, a QH fluid described by the QH lattice (f', Q') which is embedded· 
into another lattice (f, Q) is characterized by a restri~ted set of possible multi
electron/hole excitations. above the ground state, as compared to the corresponding 
set of the fluid associated with the lattice (f, Q). Furthermore, since the neutral sub
lattice (see (4.8)) of (r', Q') is a sublattice of the neutral sublattice of (f, Q), the 
embedded fluid exhibits a (global) symmetry gro~p G' (see (5.3» which is a subgroup 
of G, the symmetry group exhibited by the fluid associated with (f, Q). Thus, in 
this precise sense, the embedded fluid exhibits a more restr~cted symmetry than the 
one it embeds into. Put differently, going from a QH fluid to an embedded subfluid 
corresponds to a "reduction or' breaking of symmetries". (As a mathematical aside, 

.we remark that the study of embeddings of maximally symmetric CQHLs into one 
another is equivalent to the study of regular conformal embeddings of level-1 Kac
Moody algebras and the .respective branching rules. For recent results on the latter 
subject, see, e.g., the references in [49].) Experimentally, symmetry breaking might 
be realized in phase transitions that are driven, at a given Hall fraction, by varying 
external control parameters. Hence, it is most interesting to see at which fractions in 
E; such "structural" phase transitions can be expected within our framework. 

Motivated by the observations in the first two subsections above, we answer this 
question by taking into account the following physically relevant sets of CQHLs: (i) 
all generic, L-minimal CQHLs in low dimensions, N < 4 (see Appendix C), (ii) all 
maximally symmetric, L-minimal CQHLs in dimensions N < 10 (see Appendix B),and 
(iii) all composites of two identical lattices belonging to the basic A-series given in (Bl) 
of Appendix B. The Hall fractions in E; at which aCQHL embedding, or "chains" of 
CQHL embeddings, c~be found are listed, together with the corresponding lattices, 
in Table D.I of Appendix D. The resulting fractions are B,,,·, e 2/3, B·, e 3/5, e 4/5, 
e4/7, (B.,)e5/7, (~)o6/7, e5/9, and the even-denominator fractions (I)e1/2 and 
(2n-I)/(2n)" with n = 2,3, and 4. 

This result can actually be sharpened by taking the structure of the involved 
CQHLs into account (especially, their symmetry groups). Given that, at the fractions 
n/(n+l),with n = 3,4,5,6, and 7, already the lowest-dimensional pairs of embed
ded CQHLs involve structurally complex Witt sublattices (with three summands and 
dimensions N > 5), we do not expect the proposals at these fractions to be phenomeno
logically very relevant. To summarize, in E;, the Hall fractions at which structural 
phase transitions are likely to occur are predicted to be B,,,., e 2/3, B-p e 3/5, e 4/7, 
(B.'P)e5/7, e5/9, and (,-)e1/21 Confronted with the experimental data, we find it 
most remarkable that precisely at the three fractions 2/3, 3/5, and 5/7 at which there 
are low-dimensional CQHL embeddings (N < 4), phase transitions have been observed 
or are ~xperimentally plausible. Observations of ph~e transitions at O'H = 4/7.and 
5/9 would, of course, further s~pport the proposed picture of structural phase transi
tions. Thus, experiments are encouraged at these fractions! 

One question that remains is whether other types of phase transitions can occur 
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in the window~ Et where we have the A-series of u~iqJl.e 'L-minjmal CQHLs? The 
answer'is yes! We briefly explain why. So far, we have basically ignored the spin 
degrees of freedom in our discussion. However, a systematic incorporation of .s~in 
phenomena into our framework is straightforward and haS been discussed in p,etail 
in [5]; see ~so [6]. ~asically, such an extended frameworkforQ~' fluids with ~y
namical spin degrees of freedom incorporates (i) all the 'data formIng a QH lattIce 
(r, Q), and (ii) it additionally requires a polarization vector, 6 E· r*. The polarization 
vector 6 specifies the spin-polarization of the excitations in the system (relative, to , 
some given direction) similarly to the way the charge vect?r q .specifies their electric 

, charges; see '(2.11). Given, e.g., a CQHL with a (neutral) Al =su(2) sublattice, it 
has been shown in [5, Sect. 61' that such' a la.ttice can naturally b~ used to. describe 
either a QH fluid with a spin-singlet. ground state (from which SU(2).pin-degrees of 
freedom can be excited), or a QH fluid with a fully polarized ground'state (from 
which only polarized quasi-particles can be excited) exhibiting, however, q.n internal 
SU(2)-symmetry. Datawise, 'the two QH fluids . are only distinct by the for~ of ' their 
associated polarlzati?n vectors! In [5, Sect. 7], the most simple examples of such fluids 
have been discussed. They form at the fractions O"H = ~/(4p+I), P = 1,2, ... , and 
are based on the maximally symmetric, L-minimal CQHLs with 'data (2p+ IIIAl ); 

see (5.4). Experimentally, we recall that the two QH fluids-one having a spin-singlet 
, , 

-ground state and the other a polarized ground state with aninternal symmetry-can 
be distinguished, in principle, by their magnetic susceptibilities and by their quantum 
Hall effects for the spin currents; see [5, Sect. 7]! In conclusion, at fractions in ~t, we 
do not expect structural phase transitions; however, spin-induced phase transitions are 
clearly possible! More details on this will be given elsewhere, [42). 

Finally, we ask whether one should expect to ;observe phase ~ransitions at O"H =1. 
The unique L-minimal (lma% =1) CQHL is the one-dimensio~al Laughlin lattice with 
m = 1; see example (b) in Sect. 2. Thus,- any other CQHL realizing this fraction 
necessarily has to be non-L-minimal (lma% ~ 3), a fact that suggests a.. markedly reduced' 
stability for the corresponding fiuids, as compared to the (L-minimal) Laughlin fluid! 
Moreover, by Thm. 4.4, we kpow that any other indecomposable CQHLat this fraction 
exhibits a charge parameter A strictly larger than 1. By an argument similar to the 
one in (4.4), this leads to the prediction of fractional charges in these fiuids!Fot the 
purpose of )Hlustration, we give the lowest~dimensional examples of such lattices from 
Tables C.1 and C.2 in Appendix C. Using the same notations as in Appendix D, one 
finds the following embeddingsfor these non-L-minimal CQHLs at O"H = l' 

(7.2) 

We note that this chain of embeddings, with the corresponding possibilities of struc
tural phase transitions, is particularly interesting in the light of the recent experimental 
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data given in [50]. There, evidence for a phase transition between different QH fluids 
at O"H = 1 has been reported. The phase transition seems to be driven by an in-plane 
magnetic field, B!', and is observed in double-lay,er QH systems. Note that, in (7.2), 
e.g., the first two CQHLs, (the lattice with symbol il)~ and the one with symbol 
il)~), both are natural candidates for describing double-layer QH fluids. The first 
one can be interpreted as showing a discrete Z2 layer symmetry, while the second 
one can be thought to exhibit a continuous At = su(2) layer symmetry; see also the 
discussion in Sect. 1. Furthermore, since, for all lattices in (7.2), the charge parameter 
.A equals 2, we would expect~ as m,entioned above, that quasi-particles with fractional 
charge 1/2 can be excited above the ground state of the corresponding QH fluids. 
An experimental investigation of this prediction would seem to be revealing and is 
encouraged! 
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Appendix A: Simple Lie Algebras 

The purpose of this appendix i~ to collect those facts· about the simple Lie algebras 
An = 8u(n -1), n = 1,2, ... , Dn = 8o(2n), n =4,5, ... , E6 , and E7 which. are' 
basic for the classification of maxImally symmetric'CQHLs, as discussed in Sect. 5. 
For our explicit notations we adopt the conventions of Ref. [45] -they are followed, in 
par~icular, for the numbering of the simple roots of th~ algebras above, and we note , 
that this numbering differs from the one chosen in [46]. Furthermore, for notational 
simplicity, we often only write the symbol (j denoting a simple Lie algebra . when we 
are actually referring to the associa.ted root lattice ra. 

As stated in the text, the ranks of the Lie algebras An, Dn, and En, and corre
spondingly of their associated root lattices are given by the index n in their symbols. 

Further data about these ; algebras , which we generally denoted by(j, are given as. 
follows: First, we specify the Carlan matrices, C«(j), which characterize the associated 
'root lattices, ra, and we give the corresponding discriminants, ~«(j) = det C(~). 
Second, we provide the admis~ible weights, w, in the dual lattices, ro, by st~ting 

t explicitly their dual-component vectors, w, the so-called Dynkin labels. Moreover, the 
-+ . . 

lengths squared, <W,W >, and the orders, hw, of these weights in ro/ra' are listed. 

• For Am - l = su(m), m = 2,3, ... , we have relative to a basis of simple roots 
{et, ... , em-I}: 

2 -1 0 0 0 
O·-1 2 ~I 0 0 

0 -1 2 -1 0 0 0 
m-I, with 

0 o· 0 0 -1 2 -1 
0 O. 0 0 -1 2 

det C(Am - t ) - m. (A.I) 

C(Am - l ) 

The admissible weights, w"~ t = 1, ... , m-I,corr~spond to the unitary irreducible 
rep;resentations (irreps.)of 8U(m) with "m-alities" t and dimensions m.(m-~~;:.:.:~;'-t+l):. 
They are given by the dual-component vectors Wt == « WI, el >, . ~ . , <; w" e~-l » 
which read explicitly 

-+ ' 

~t - (~, ••• ,0, ~,O, ... ,0), with 1 in the tth position. (A.2) 
m-l 

Moreover, their lengths squared arid orders are given by 

t (m - t) m 
< W"Wt> = and hWt - (A.3) 

m gcd(m, t) . 
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We note that, from the point of view of characterizing CQHLs, the elementary weights 
"'t and Wm-t are equivalent; see the equivalence relation (3.1). 

• For Dn = so(2n), n = 4,5, ... " we have: 

2 -1 0 0 0 0 
-1 2 -1 0 0 0 0 
0 -1 2 -1 0 0 0 0 

n, with 
0 0 0 0 -1 2 -1 -1 
0 0 0 0 -1 2 0 
0 0 0 0 -1 0 2 

det C(Dn) - 4. 	 (A.4) 

C(Dn) 

There' are three admissible weights, wv , W&, and "'i, corresponding to the 2n
dimensional vector, the 2n - 1-dimensional spinor, and the conjugate spinor irrep. of 
so(2n), respectively. The corresponding n-dimensional dual-component vectors read 

~v 	 - (1,0, ... ,0), 

- (0, ... , 0, 1) , and
~" 

-	 (0, ... ,0,1,0) . (A.5)~. 

Furthermore, 

(A.6) 

, and 

n
\< WI", WI" > = 4 = < W., W. > , and - hWi _ {' 42 if n is {Odd . 

even 
(A.7) 

For the la.belling of CQHLs, "'IJ and Wi are equivalent by (3.1). Moreover, for D4 , all 
three admissible weights in (A.5) are equivalent (the so-called "triality" of 80(8)). 

• For E6 , we have: 

2 -1 0 0 0 0 
-1 2 -1 0 0 0 
0 -1 2 -1 0 -1 withC(E6)  0 0 -1 2 -1 0 
0 0 0 -1 2 0 
0 0 -1 0 0 2 

det C(E6) - 3 . 	 (A.8) 
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There are two admissible weights, wI and 'wI, corresponding t9 the 27-dimensional 
fundamental, and to its contragreqient irrep. of E6 , respectively. The corresponding 
dual-component vectors read 

'::1.1 - (I,O,O,O,O,O) , 


~l - (0,0,0,0,1,0), (A.9) 


Furthermore, 

(A.IO) 

For the labelling of CQHLs, these ,two elementary weights are equivalent . 

• Finally, for E7 , we have: 

2 -1 0, 
-1 2 ~I ° ° ° ° 
° -1 2 -1 ° ° -1 ° ° ° ° 
0' ° -1 2 -1O(E7)  with 

° ° ° -1 2 -1 ° ° 
° -1 2 °0 

-1 0° ° 0 0 
0 

° 2° 
det O(E7) - 2 . (A.II) 

There is one admissible weight, WI, corresponding to the 56-dimensional funda
mental irrep. of Ei, with 

'::!.J - (0,0,0,0,0,1,0), 


and 

and hw, - 2 . (A.I3) 
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Appendix,B: Maximally Symmetric CQHLs 


In this appendix, all maximally symmetric CQHLs with lmin = lmaz = L = 3, and 
(jH < 1 are listed. The compilation has been obtained by systematically exploiting 
Thm. 5.2 in Sect. 5 and the identities (5.9). The data is organized in 11 series (Bl)
(B11), and for each series the following format is chosen: 

First, the symbols of the CQHLs, N( ~;)~ , are given; see (3.2). They are followed 
by the characterizing data of maximally symmetric CQHLs, (L I Wrw); see (5.4). 
'Actually, since we are considering exclusively CQHLs with L = 3 in this appendix, the 
quantityL is omitted from the notation and only the data wrw is stated explicitly. If 
the Witt lattice is composite, rw ~ r Wl e-· -erw", k > 2, and the elementary weight 
reads ~orrespondingly W = WI + _.. + Wk, then we write wrw = WlrWl ... Wkrw". 
As in Appendix A, the root lattices r Wi are.denoted by the symbols of the associated 
(simple) Lie algebras An, Dn, and En, respectively. Furthermore, the notation for the 
elementary weights Wt, Wl1 , W., and wJ which are all given explicitly in Appendix A 
is simplified by only writing the indexing letters t, v, s, and j, respectively. Finally, 
we adopt the convention of writing a Ib and 'a 1b if a divides, respectively, does not 
divide b. 

,Second, for each. series, explicit examples of Hall fractions which can be realized 
by a CQRL of that series are given together with indications of their experimental 
status, typically in single-layer systems. For the corresponding not~tions, see Fig. 1.1 
in Sect.! and Table 5.! in Sect. 5. 

Table B.l. All maximally symmetricCQHLs with L = 3 and (jH < 1. 

(nB)9 wrw, Parameters and Examples 
N dB ~ 

(Bl) IAN_I, N = 1,2, ... :)2:+J: 
5 6 7 8 9 10.1 .a .~ .! 

3 5 7 9 ·11 o 15 o 17 • 19 21• 13 

(B2) l1DN_l, N =3,4, ... :(!)2
N 2 2 
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Table B.l: (Continued). 

(B3) ( N )9 '2AN 1 with 9 == 1 (2) ~dA = 1 (1'or 2) if N is odd 
N N + 4 A . -.J" 

(eveIJ, and- 41N or ,4IN); N =5,6, ... :. 

11o Jl. .2
13 7 '15 

. nl n2/gA .' )9
(B4) (n1+ n2-1 (nln2 +'nl +n2)/gAA 

with 9 =gcd(nl' n2), and A =gcd(rl + r2, g); 

N =nl +n2 ~ 1 :::: 4,5, ... , and 2,~ nl < n2 : 

'6 10 3' 14 8 18nl"": 2: .1 .• 13 ....·rr 7 • 17 5 23 29 

3 12 l! .1 21nl =3: ·s 19 23 3 31 
/' 

(B5) lAn-l tJDN_n, with 9 =2 (4) and A=2 (1) if N. is(_n_)9
N n+1 A 

odd (even); N =4,5, ... , and 2 <n < N ~ 2 : 

7i (!)O,~ 8 

(B6) 3
~N-l, 

' 
with 'g =gcd(N, 3); N =6, 7, and 8: 

.1 7 8 
3 '9 '9 

(B7) ( 4 )9 IIDN 1 'with 9 =2 (1) if N i~ odd (even);
N 13 - N l' -, 

N =6, 7, and 8 : 
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Table B.I. (Continued). 

(BS) lEe\G): 
IE1\(D: 

N
(B9) C -

2Y 1A1 2AN_2, with 9 =2 (1) if N is odd (even); 
I
N N+7 1 


N = 6, 7, and 8 : 

10 14

(1)0 ~ 13 15 


(BIO) ./~): 
(t)O s(D: 
c5r1 17 1 


C2 )1

8 13 1 


COr
8 21· 1 


(6N -ISY(BII) 
N 5N -9 1 


t.A1 IJDs , [Remark: 3D "V "IE" ]s - s· 

1A1'Ee 

1A22~, [Remark: 2A4 ~ "IE4".] 

1A2 IJDs 

t.A3 2~ 

t.A1 1A21AN_4 , with 9 = 3, 2, 1, for N = 6, 7, and 8 : 

12 30

(1)0 ~ 13 31 
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• 
Appendix C :Low-Dim~nsional, Indecomposable 
CQHLs 

f \ 

The purpose, of this appendix is to summarize the classification of all indecompos
able CQHLs in two and three dimensions with relative-angular-momentum invariant 
lma.z =:;,5, and of all ~uch lattices in four dimensions with lma.z = 3. We recall that, 
by definition (see (3.8)), we have lma.z = Lma.z for indecomposableCQHLs. 

In Tables C.l, C.2, and CA, the CQHLs are organized according to increasing 
values of their Hall fractions UH, and for each CQHL, the symb.ol N(~=)~ is given 
together with indications of the experimental status of the corresponding Hall fraction. 
For the latter indications, not~tions are as in Appendix B. The symbols are followed by 
the explicit data (K, Q) which characterize the CQHLs completely; see the beginning-of Sect. 3. For a succinct presentation of the data (K, Q), we choose symmettic bases 
in the corresponding CQHLs (see (3~5)), and adoptth;following notations: 

K=(l:;
I 

..,N=2 :. [lmin.a lma.z] , for . andl:.~ ) 
.. Q = (1,1) ; (C.l),-

N=3 (at a2 '; b) , for 'K 3 and=(:1 
at 

T)a2 b 

Q - (1,1,1); (C.2)-
at a2 
3 b,.

N=4 (at a2 a3 ; hi b2; C ) " 'for K and=(! ~)a2 bl 3 
a3 b2 c 

,~Q - (1,1,1,1). (C.3)-
Furthermore, in Tables C.1-4, we indic.a:te as remarks the corresponding Witt sub
lattices and/or' preimages under the shift maps when they exist. We note that, in 
Tables C.1 and C.2, the Witt sublattices of the CQHLs with UH > 2 are not fully 
included in their neutral ~ublattices, i.e., some of the associated symmetry generators 
have a non-vanishing electric charge. 
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.. 

In Table C.3, the symbols of a. physically relevant subset of all three-dimensional, 

indecomposable CQHLs with ima:c = 5 are provided. They are organized according 
to the values of their relative-angular-momentum invariants [imin,i2,ima:c]; see (6.1). 
The symbols are followed by triples (at a2 ; b) which have the same meaning as in (C.2) 
above with the only change that the diagonal elements of K are not 333 but given, 
from left to right~ by imini2ima:c, as specified at the beginning of each sublist. Morover, 
in the sub list with invariants [5,5,5], all those inverse i~ages under the shift map St 
are indicated which belong to Table C.2 with invariants [3,3,3]; see (4.12). Since the 
invariants N, g, and .,\ do not change under the shift maps,. they are suppressed in 
the labelling of the inverse images. Finally, only CQHLs with .,\ dH :5 22 are listed. 
For the physical interpretation of .,\ dH as the smallest possible (fractional) charge of 
quasi-particle excitations in the corresponding QH fluids, see (3.4). 
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Table C.l. All indecomposable CQHLs with .Jv= 2 and 3 ~ lmin ~ lma.:& < 5. 

(nB)9 [lmina lma.:& ] Rema.rks
N dB,.,A 

none, by (4.3) 

( 2.)1
-2 9 1 [545] =. (511A1) = S2(1 (1)~ E9 1(1)!). 

~- 1 < 1 
Ll2' 4 - O'H < 3' 2(~)~ [535] = S1(2(t)~) 

• 2(~)~ [525] = Sl ( 1 ( l }~E9 1 ( l ) ~ ) . 
~+Ll1 , 1 < 13. _ O'H < 2' ·2(1)~ 

. (4 /·2 IT 1 

• 2(i)~ 
·i¥): 

(f). 2{~)~ 

(I). 2(!)~ 

B,n-,. 2(~); 

(B.').~/~): 

[515} 

[325] 

[323]. 

[315J 

[313]' 

[5-15] 

[5-25] 

[3-15] 

= Sl( 2(1)~) . 

. Sl( 1(1)~ E9 1(1):) 

= (3j1A1) = Sl{1(lj~E91(1)~) 

• 2(1)~ 
.·2(1)~ 

(12)1
2.11 1 

• 2(2): 

.. 2(2)~ 

[3-1 3] 

[5-35J 

[3~25] 

[3-23] 

[5-45] 
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, Table C.2. Ail indecomposable CQHLs with N = 3 and lmin = i maz = 3. 

(nB)9 (ala2; b) Remarks·'N dB A 

0< O'H < l none, by (4.3) 

:E+ 1 < . 11, 3 - O'H < 2 ·3(~)~ (22; 2) = (3~IA2) = SI(I(I)!el(I)!el(I)~) 

:E1,!< O'H < 1 (!). 3(!)~ (21; 2) = (311AIIAI) 

·3( 1~)~ (21 ; 1) :> Al 

. (3)4
B-,. 3 5 1 (11;1) 

B,n-, • 3(~): (20; 1) :> Al 

(B-,). 3(~)~ (10; 1) 

:Et, 1 ::; O'H < 2 • 3(1)~ (2-1; 0) :> Al 

• 3(1)~ 
( 23)1

3 21 1 

(15)1
3 13 l' 

• 3(I): 

(12)3371 

(1-1;1) 

(1-1;0) 

(2-1;~1) 

(1-1;-1) 

(0-1;-1) 

:> Al 

2 <O'H < 3 • 3(2)~ 
• S<2)!2 

(31 )1
3 13 1 

(19)1
°3 T 1 

(2-2;-1) 

(1-2; 0) 

(1-2;-1) 

(2 -2; -2) 

:> 

:> 

::::> 

:> 

Al Al 

Al 

Al 

A2 

3 =5 O'H < 00 • 3(3)~6 

(11 )2
332 

3(~)~ 

(-1-1;-1) 

(0-2;-1) :> 

(1-2; -2) :> 

Al 

Al Al 

67 




.. 

.. 
Table C.3. Symbols of indecomposQ.ble CQHLs with N = 3, 3 < imin < imo.:c =5, 
and O'H < 1. The dots "... " indicate omitted fractions with AdH > 22. 

[imin' i 2 , imo.:c]' = [3,~, 5] : 


6'2
3(177)~ (22;2) 3(~)~ (21; 2) 3(l)~ (12; 2) 3( 11)1 (20; 1) 

(9 )3., 	 3(~); (11; 1) 3(~); (I 0; 2) 3(~)~0 (01; 2) '3 13 1 (01; 1) 

3(1~): (20; -1) 3{~)~ (11;-1) 3(~)~ (02; -1) 

(in total 17 CQHLs) 

3(179)~ '(32;3) a<~)~-{22; 3) 3( 153)~ (22; 2) 3(~)~ (22; 1) 

3(~):, (21;3) 3(:1)~ (11;3) .3( :9)~ (11; 2) . (1)8
324 (11; 1) 

3{ 1~): (II; 0) 3(~)~2 (11;-1) 3{ 1
8
3); (20; -1) 3(~); (II; ",2) 

3{!~)~ (1-1; 1) 3{!~)~ (2"71; -1) 3( il); (-I-I; 3) 3(~)~ (1"-1;-1) 

3{!~)~ (-1 ~1;2) 

(in total 34 CQHLs), 

3{1~)~ ;:: 81(~) 

3( 157)~ = 81(~) 

3( li)~ (22;1) 

3{ t7)~ (20; 2) 

(1/
8 (22; -1)322 

{1/2 (4-2; -1)331 

3(~)~ (l-l;-lY 

(in total 48 CQHLs) 

3(~)~ = 81{ t) 
3(1): ,= 81(1) 

3( ;9); =SI( t) 
16'

3(~)1 =, 81(3) 

(2.)12 (11;-1)391 

(1)20 (30; -2)331 

i:l)~ = $1( ~) 

a<l)~ = SI( 1) 

3(~)~ = $1(2) 

(1)10 (40; -1)322 

, (11)4
' 3 19 1 (3-1;-1) 

(1)2~ (21; ~2)331 

3{~); = 81( ~ ) 
. (1)9 (22;2).33'3 

3(~)~2 = 81(2) 

(1 )16 (31;~1)322 


'{ 7 )9
1 (2~1; -1)
3 11 

3{ :3)~ (II; -2) 
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Table C.4. All' indecomposable CQHLs with N = 4, imin = ima.z = 3, and (J'H < 1. 

(nH)9 (al a2 a3 ; b1b2 ; C ) Remarks
N d.H A 

o< (J'H < 1 none, by (4.3) 

L+ 1 < 11 , 3 - (J'H < 2 ' (4/ (222; 22; 2) = (31 1A3)• 4 9' 1 

L 1 < 21 , ,2 - 0'H < 3 (I). 4( l)~ (221; 22; 2) = (31 2A3) 

• i tl)~ (221 ;21 ;2) = (311Al lA2) 

• 4(~)~ (221 ;21; 1) ::) A2 

•i*)~ (211 ; 11 ; 2) ::) Al Al 

B-p. 4(~): (211;21;1) ::) Al Al 

ii)~ (211;11;1) ::) Al 

i < O'H < 1 B,,,,.p. 4(i): (210;21;2) = (311AIIAIIAI) 

! '2 5 
B,,,,·p. 4( 3)1 (220;21; 1) ::) A2 

B,,,,.p. 4(i): (111;11;1) 

(B.p) .4(~): (210;11;1) ::) Al 

• 4(1~)~ (211 ; 11 ; 0) , ::) Al 

(14)1
4 19 1 (210;20;1) ::) AlAI 

, 4(~)~ (220;20;1) :J A2 

4(~)~ (110;11;1) 

(13)2
4 i7 1 (210; 10; 1) ::) Al 

•i~)~ (110; 01; 1) 

(26)1
4 311 (200; 10; 1) ::) Al 

(11 )44 13 1 (110;10;1) 

(,!)Oi~): (200 ;11; 1) ::) Al 

(10)5
4 IT 1 (100;10;1) 
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• 

-Appendix D : Embeddings of. L-Minimal CQHLs 

\ 

In this appendix, embeddings (see (7.1)) ofL-minimal CQHLs with Hall fractions in 
the window UH E El = [1/2,1) are listed. More precisely, in ~ccordance with the 
results presented in Sect. 7, we are taking the following sets of CQHLs into account:, 
(i) all generic, L-minimal CQHLs in low dimensions, N < 4 (see Appendix C), (ii) all 
maximally ,symmetric, L-minimal CQHLs in dimensions N < 10 (see Appendix B), 
and (iii) all composites of two identical lattices belonging to the prominent A-series 

given by (Bl) in Appendix B. In Table D.1, CQHLs are specified by their symbols, 
N( ~;)~, and the explicit data characterizing their structure. These data are given in' 
the, conventions chosen in Appendices B and C, respectively. 

In order to simplify-notation in the subsequent table, we note that, at the fraction~ 
UH = n/(n+1), n = 1,2, ... , there are infinite "chains" of em~eddings, 

n+2( n~l)~ lAn_l lAl lAl <=---. n+3( n~l)~ lAn_l 2A3 <=---. 

~ n+4(n~l)~ lAn_l "D4'~ ... ~ N(n~l)~ lAn_ltlDN_n ~' 
(D.1) 

In the following table, the respective next members of these chains of embeddings are 
understood when we write the dots J"•••" • 

Table D.l. All embeddings of L~minimal CQHLs that have UH E El _and belong to 
the heuristic classes mentioned above. 
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Table D.I. (Continued). 

7( ~): lAl tlDs <=---+ s( ~): lAl tID6<=---+ 6(~): lAltlD4 
) 

6(~)~ 3AS <=---+ 7(~)~ "D6 


i~)~ lA3 1A3 
 s(~)~ 2A7 

s( ~)! lA2 lAs 

S
(B-p). '7 

3 
4 

s 
6 

4(~); (200 j 11 j 1) ~ A1 c......... 6m~ 1,411A2 1,42 } c...-... 

(f) 0 ~ 

3(~)~ lA2 e 3(~)~ 1A2 

<=---+ 7( ~): lAl 2As 

<=---+ s( ~)~ lAl fE6 

g( ~)~ lAs 2A3 c...-... 

! ( 7)2 lA lA 1A (7)2 lA 2A . 
s 9 8 2 :1'16:1'11:1'11 <=---+ 10 8 2 :1'16:1'13 <=---+ ... 

7I . 




.. 

Appendix E: Hierarchy QH,Lattices 

I~ this appendix, we collect some basic facts ~bout the description. of the Haldane
Halperin [29]. arid the Jain-Goldm~ [30] hierarchy fluids in terms of QH lattices, ' 

. (r, Q). First, we follow the ideas presented by Read in. [9]. 
The Gram matrix K (see (2.2)) which characterizes the integral lattice r, associ

ated with a hieraJ;chy fluid with Hall conductivity UH = nH / dH, where dH is odd, can 
be read off from the "continued fraction expansion" of UH. Let 

\ 

(E.l) 

where m is an odd, positive integer, and abo'" aN-l are even integers of either sign. 
Then the associated G,ram matrix, K, is given by 

(: 
--I 0 
al -1 o o 

(Kjj ) - -1 a2 -1 0 . oo OJ} N, (E.2) . 
. . 0 -1 aN-l 

which we abbreviate by the symbol 

(E.3) 

We note that the signs of the 1's in (E.2) can be changed by suitable equivalence 
transformations (3.1). The choice of all the negative signs in (E.2) is our convention. 
Moreover, we remark that, from a QH lattice point 'of view, the two hierarchy schemes 
of Haldane-Halperin {29} and Jain-Goldman {90} are equivalent; see (3.1) and also the I 

examples below. For this reason, we shnply talk about "hierarchy 'QH lattices". 
In ,the dual basis associated 'with (E.2); the integer-valued 'linear functional (or 

charge ~ector) Q is given by 

Q = (1', 0, ... , 0) ; (EA)- ~ 
N 

, seethe beginning of Sect. 3. 
With the help of Kramer's rule (2.5), one easily verifies that 

'(E.5) 
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From Eqs. (E.2) .and (E.4), it is clear that the charge vector Q is primitive and 
odd, as defiried in (2.6) and (2.7), respectively. 

We note that, in general, the integral lattice r specified by (E.2) is not euclidean. 
In order for it to be euclidean, the Gram .matrix K in (E.2) has to be positive
definite. One can show that K is positive-definite if and only if all the coefficients 
ai, i = 1, ... , N -1, are positive. In this situation, the hierarchy QH lattice (r, Q) is 
a CQHL, as defined in Sect. 2. In particular, it satisfies assumption (AS) there. 

In the remaining part of this appendix, we comment on the status of assump
tion (AS) for the non-euclidean hierarchy fluids. - We recall that all (euclidean and 

non-euclidean) hierarchy QH lattices satisfy assumptions (A1-4) of Sect. 2. 
We exemplify the situation of non-euclidean hierarchy QH lattices by discussing 

in some detail the two physically important series of hierarchy fluids with (TH = 
N/(2N-I), and N/(4N-I), N ~ 2. 

(a) O'H = N/(2N -1): By (E.2) and (E.3), the Gram matrices K of these 
hierarchy fluids are given by 

K = [1;  2, ... , - 2 ] , (E.6) 
, T ' 

N';'l 

and the charge vectors Q are given by (E.4).' In order to make the lattice structures 
behind (E.6) more explicit, we apply equivalence transformations (3.1), with S given 
by 

1 -1 0 0 
-1 2 -1 0 
0 0 1 0 

0 -1 0 .S - N. (E.7) .0 1 0 

0 . . 0 ±I 

We find 

K' - [l]e (-1)· [3 ; 2, ... ,2 ] , 
"-...---'" 

N-2 
and 

Q' - 1 + (-1, 0, ... , 0) . (E.8) 
~ - N-l 

The interpretation of (E.8) is that, from a QH lattice point of view, the hierarchy fluids 
at (TH = N/(2N -1) = 1 - (N ~I)/[2(N -1) + 1] are indeed the "charge conjugates" 
of the "elementary" (N-I)I[2(N-I) + I]-fluids exhibiting su(N-I)-current algebras 
at level 1; see example (c) at the end of ~ect. 3. 
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We note that from (E.8) it is clear, that these non-euclidean hierarchy QH lattices 
satisfy assumption (~S) of Sect. 2. 

(b) O'H = Nr(4N .i.,;.1): By (E.2) and (E.3), the Graril matrices K of these 
hierarchy fluids read 

K = [3; -2, ... , -2 ] , 
~ 

N-l 

and the charge vectors Qare given by (E.4). Again, in orderto make the composite 
, / 

nature of the lattices described by (E.6) exPlicit, we apply equivalence transforma
tions (3.1 ),with S given by 

( 

2N-l -1 . · · · -1 
2N-2 -1 . . . · -1 

-(2N-4) 0 1 • • • 1" 
2N-6 0 0 -1 . . · -1S  N. (E:10) 

-(2N-8) 0 0 1 1 

±2 0 • • 0 =Fl 

This results in 

K' == [4N-1] ED (-1) . (J1] ED ... ED [1],) , 
N:l 


and 


Q' = (2N~l) + (-1) + ... + (-1) .' (E.11)
........ , -;;
... 

N-l 

At the level of Hall conductiv.ities" the decompositions (E.11) can be expressed as 
O'H = N/(4N-1) = (2N-1)2/(4N-1) ~ ~ - ... -1, with N-1 summands 'of -1. 

Hence, similarly to (a), the lattices r of this series' are composed out ofpositive
and negative-definite sublattices, re and rh, respectively. Contrary to (a), however, 
it follows form (E.11)r that the restrictions of the charge vector Q to the positive
and negative-definite components of 1:- Qe and Qh, respectively (see (2.8) and (2.9)

. are not separately primitive. Rather, it is only the full integer-valued linear form 
Q = Qe + Qh E r* = r; ED rh which is primitive; see (2.6). 

In physical terms, this means that, similarly to assumption (AS) in Sect. 2, the 
dynamics of the positively and of the negatively charged (quasi-)particle rich' subflu
ids~corresponding to re andrh, respectively-are independent in the s~aling limit. 
Contrary to (A5), however, the physics of these two subfluids are not identical up to 
charge conjugation. (The pair (re"Qe) is not a CQHL, as defined in Sect. 2, since Qe is 
not primitive.) We note that the fundamental chargeca:rriers of these QH fluids, elec
trons and holes, are described as composites of the "basic" positively and negatively 
charged (quasi- )particles described by re and rh, respectively. 
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In conclusion, a slightly weaker assumption than (AS), accounting for the situa
tion above, would be as follows: 

(AS') The "basic" charge carriers of a QHfluid are positively and/or nega
tively charged (quasi- )pardcles. We assume that, in the scaling limit, the dynamics 
of positive-( quasi-) particle-rich subfluids of a QH fluid is independent of the dynamics 
of negative-( quasi-)particle-rich subfiuids. The physically fundamental charge carriers 
of a QH fluid, electrons and/or holes, are composites of positive and/or negative "ba
sic" (quasi .. ) particles , respectively, or electrons and/or holes are composites of both, 
positive and negative "basic" (quasi-)particles. 

Adopting assumption (AS') instea~ of (AS), the classification problem of QH flu
ids (see Sect. 2) would be generalized according to: In the scaling limit, the quantum
mechanical description of an (incompressible) QH fluid is universal. It is coded into a 
pair of odd, integral, euclidean lattices - re positive- and rh negative-definite, respec
tively- and an odd, primitive vector Q E rill = r: E9 rho 

For the reasons stated in Sect.2, we do not study the resulting,' slightly more 
general classification problem. We remark, however, that all hierarchy fluids, . which 
are of physical relevance in the region 0 < (1H < 1, have been checked to belong to 
this more general classification program if they are not already contained in the one 
treated in this paper. 
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