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1 INTRODUCTION

In their quest for a quantum consistent unified theory of all fundamental interactions
among elementary particles, theoretical particle physicists in recent years have been
entertaining the idea' that such a theory may be constructed within the framework of
superstring theories!. As opposed to the previous attempts in the past fifteen years, all
formulated within the framework of ordinary quantum field theory, superstring theories
seem Lo possess the very same desirable properties that stimulated previous attempts
as well as the resolution of problems which led to the dismissal of these attempts??4,

) Oqe of the most appealing features, not only from a particle physicist’s point of
view, is that string theories provide a unique unification between gravity and all other
interactions. Indeed, all fundamental matter particles and gauge quanta mediating all
interactions, including the graviton, are nothing but the same fundamental object, a
relativistic string in different states of excitation. This idea resolves the centuries old
dream of ultimate unification: the Universe and all that it contains being made of
only one fundamental object, with dynamics so rich that it leads to this infinitely large
variety ?f physical phenomena that we observe at all energy scales in our Universe.

Obviously, our present understanding of these theories is still far too poor to be able
to make any definite conclusion concerning such fascinating speculations. About four
years ago®, when string theory became the prime candidate for fundamental unification,
uniqueness was regarded as a very compelling argument. Indeed, only a handful of
dlﬂ'erfznt theories were known at the time'. Since then however, countless new string
theories have been constructed in space-time dimensions ranging from ten to four, with
a few of the four dimensional theories leading to a massless particle content resembling
that of the quarks and leptons in the Standard Model.

Furthermore, some four years ago, oplimism was high that realistic particle phe-
nomenology would easily be achieved withing string theory. This optimism was based
on th.e study of the corresponding low-energy effective field theories?4. Recent inves-
tigations however, at the level of string theory itself, show that the problems are much
more subtle, with entirely new mechanisms coming into play*$,

The prevailing attitude nowadays’, is to consider that all these theories are different
vacua of a few underlying fundamental theories still to be formulated - the hope being

that non-perturbative phenomena would determine which among all possilile string
constructions are actually dynamically generated, together with the ensuing particle
content and phenomenology.

Clearly, such a state of affairs makes it even more difficult to make any experinental
contact with string theories. On the other hand , this is not a good enough reason
to dismiss this approach to unification altogether. After all, string theories arc the
best and only (so far) cousistent formulation for such a quantum unification, including
gravity. Morcover, we should not forget that it took many years before the basic ideas
of the Standard Model were widely accepted by the scientific cominunity, and that the
detailed experimental tests of the Standard Model arc only just beginning at the new
big accclerators®.

From a different point of view, the study of string theories is also responsible for a
strong revival of interest in two-dimensional conformal field theories® and related math-
ematical structures.In recent years, this interest has led to fundamental developments®
in the field of two-dimensional statistical systems at and off criticality. New results
point to deep relationships between so far unrelated fields in pure mathematics®, with
completely new insights into different problems'®. These are truely fascinating subjects
in their own right.

All these reasons make the effort involved in getting acquainted with string theory
worthwhile. One could even go as far as to consider that some familiarity with the
field should now be part of common knowledge for any (theoretical) particle physicist,
in the same manner that such familiarity is now assumed for grand unified theories,
supersymmetry, and so on. Herein lies the main motivation for these lectures.

It is of course not possible to discuss in such lectures all the aspects of the subject
which have emerged over the last years. What will not be discussed for example, are
the following points:

e the calculation of string scattering amplitudes, at any order of perturbation the-
ory, either through path-integral methods!!, or through operatorial methods such
as the infinite Grassmannian approach!?,

o string field theory!3, i.e. the second quantization of string theory,

e particle phenomenology from string theory!.

What will be discussed are the “principles of string theory construction”. By first
studying in detail the case of the bosonic string, we shall understand the origin and
the meaning of the structure and of the consistency constraints which appear when
quantizing the system. Having identified the relevant structures, we shall then show how
they easily generalize to the case of spinning strings, and how these general constraints
lead to the formulation of “principles for string theory construction”.

Hopefully , by starting at an introductory level, newcomers to the subject will not
be put off by the jargon which will be introduced in a pedestrian manner as we go
along. Interested readers should find these notes a useful starting point for their own
research.

Basic references may be found in Refs. 1,14,15,16, where some historical comments
concerning the development of the subject from a theory for strong interactions to a
theory of fundamental unification are also given. Here, we shall follow more closely Refs.
17,18,19. We shall also use units in which A = 1 = ¢, and we shall take space-time
to be D-dimensional, with the Minkowski metric n**(p,v = 0, 1,...D — 1)) of signature
mostly “+" signs.



http:ematicalstructures.ln

2 RELATIVISTIC BOSONIC STRINGS

2.1 Classical Lagrangian Description
2.1.1 The action principle

Although we shall discuss right away the relativistic bosonic string, the interested reader
may find it uscful to first consider the case of the relativistic scalar particle, through an
analysis similar Lo the one followed in this chapter. For more details, sec Refs. 17-20.

A bosonic string, being a 1-dimensional object, sweeps out a 2-dimensional surface,
its world-sheet, as it propagates freely through space-time. To represent this space-time
trajectory, one introduces coordinates z#(a,7) giving the space-time position of the
string. These quantities are D functions of two (dimensionless) world-sheet coordinates
o and 1, parametrizing the two-dimensional surface. Both for open and for closed
strings, we shall take 0 < ¢ < x; T is considered as the time-evolution parameter of
the system. Clearly, having both the observer's time coordinate z° and the world-sheet
parameter 7 present in this formulation is a redundant feature. This is the price to pay
for having an explicit space-time covariant description.

In order that the physical properties of the system do not depend neither on the
observer's reference frame in space-time nor on the world-sheet parametrization (o, 1),
it is necessary that the action describing the dynamics of the bosonic string be a space-
time scalar and a world-sheet scalar. The total world-sheet area between some initial
and final string configurations z!'(0) = z*(a,7 = %)(i = 1,2), properly rescaled by a
dimensionful quantity, is the obvious candidate for such an action.

There are two ways of expressing such an action. The first, by measuring the area
using the metric induced on the world-sheet by the space-time Minkowski metric. This
corresponds to the Nambu-Goto action®, leading to non-linear equations of motion.
The second way to express the action is by coupling the 2-dimensional fields z¥(o,1),
which transform as space-time vectors and world-sheet scalars, to an intrinsic world-
sheet metric. This corresponds to the so-called Polyakov action??, originally discussed
in Ref. 23, which leads to linear equations of motion.

In the following, we shall use the notation ¢*(a = 0, 1) for world-sheet coordinates,
with £° = 7 and §' = 0. As usual, partial derivatives with respect to r (resp.a) will be
denoted by a dot (resp. a prime) above quantities.

With these notations, from the invariant space-time line element

ds* = p*dz,dz, = 0" 8,2,0pz,dE°dEP, 2.1)
it is clear that the induced world-sheet metric Tap is given by the components
Yot = 0" 0oz,0pz,. (2.2)

The Nambu-Goto action® then reads

S = g [ dr [ dodetrogt = [ [[aociea), @3

C(,2) = %‘/(éz')’ ey (2.4)

Here, o’ is a dimensionful quantity, of dimension a lenght square, which thus determines
the physical scales in the system, such as the scale of the mass spectrum of the bosonic
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string. The choice of sign in the factor (—dety,5)"/? is due to the fact that the induced
metric Yap has a world-sheet signature (—4). This also guarantees that no point of the
string moves faster than the speed of light.'417

Introducing an intrinsic world-sheet metric g.g, of signature (—+), the Polyakov
action®® is given as:

~1 R " af v P
S[z*, gap] = m/ﬂ dr/o da\/—detgap 9°P 8,2 Bpz¥ ), (2.5)
A priori, one could also add to it the usual Einstein-lilbert action term
o [ee/Tn, (2.6)
4z
or a world-sheet cosmological term
= oy (2.7)
txa / eV

However, the former term is a topological invariant in two dimensions (up to surface
terms), which thus does not contribute to the equations of motion (in 2 dimcnsion?.
the Einstein tensor Gop = Rap — 1gapR™® vanishes identically). The latter term is
consistent with the classical equations of motion only if x? = 0.

At the quantum level, using a path-integral formulation®, it may be seen that the
Einstein-Hilbert action sets the strength of string interactions, whereas the cosmological
term is induced by 1-loop short-distances singularities on the world-sheet*. It then }uas
to be properly renormalized?® so as to maintain the local Weyl symmetry of the classical
Polyakov action (see below).

Let us remark here that the action (2.5) may also be used to represent the propa-
gation of the bosonic atring in a curved space-time background of metric G, (z). This
is easily done by replacing n,, in (2.5) by G,.(z), leading to the usual action ol: a
non-linear sigma model in two dimensions. Such a formulation is the starting po’mt
of a much studied approach to the problem of space-time compactification in string
theory®. .

By construction, both the Nambu-Goto and Polyakov actions are invariant under
space-time Poincaré transformations and world-sheet reparametrizations. From the 2-
dimensional field theoretical point of view, the former symmetry is a global internal
symmetry, whereas the latter is a world-sheet gauge symmetry.

By Noether's theorem, associated to space-time translations and generalized rota-
tions (i.e. rotations in space and Lorentz boosts), there exist locally conserved energy-
and angular-momentum world-sheet currents, whose conserved charges, giving the total
energy- and angular-momentum of the bosonic string, generate Poincaré transforma-
tions of the system. Clearly, the existence of such quantities follows from the fac} tha':
the bosonic string is propagating in a space-time with isometry precisely the Pom.ca.n:
group. For a generic curved space-time, with arbitrary metric G,,, such quantities
would not exist, unless the space-time metric has some special symmetries.

In contradistinction, the world-sheet reparametrization gauge symmetry is always
present for any string theory. Actually, it is precisely this gauge invariance, wl.wn
imposed at the quantum level, which is responsible for all the profound and beautiful
properties of string theory (this should become clear as we proceed with the discussion).
Also, as we shall see in chapter 4, the formulation of “principles for string theory
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construction” immediatcly follows from the requirement of this gauge invariance in the
quantized theory.

Among world-sheet gauge transformations, we have local world-sheet reparametri-
zations in the same connected component of the diffeomorphism group as the identity
transformation. These reparametrizations are generated by repeated applications of in-
finitesimal reparametrizations, thus preserving the orientation of the world-sheet. Cor-
respondingly, there should exist two quantities, associated to the two arbitrary functions
£2(£) specifying such transformations, which generate infinitesimal reparametrizations
and which vanish at all times for physical solutions. In other words, associated to
world-sheet reparametrization invariance, we have two constraints generating the local
gauge symmetry of the system. As we shall see, imposing this local gauge invariance at
the quantum level leads to a constraint on the number of world-shect degrees of freedom
used in the construction of string theories.

There also exist world-sheet gauge transformations which are not connected to the
identity transformation, so called disconnected or global gauge transformations. De-
pending on the world-sheet topology, there may exist orientation preserving global
reparametrizations. These symmetries lead to a new type of constraint at the quantum
level, not existing in ordinary field theory, which goes by the name of modular invari-
ance. One may also impose invariance under orientation reversing global reparametriza-
tions, thus describing unoriented string theories (indeed, both the linear and non-linear
actions above are invariant under such transformations). At the quantum level, this
leads to further constraints on the physical spectrum of the corresponding theories.
Both these constraints and modular invariance will be discussed in chapter 4.

When compared to the Nambu-Goto action, the Polyakov action (2.5) actually pos-
sesses one more local symmetry (when u? = 0) under local Weyl rescalings of the
intrinsic metric g,g:

9a8(€) = e*¥ga4(¢). (2.8)

These transformations lead to local shifts in the conformal mode of the metric b
!)y the arbitrary world-sheet function ¢(¢). Hence, one expects one more constraint,
involving the generator of local Weyl! rescalings. Actually, this constraint combines with
the previous two generators of local reparametrizations into the equation of motion for
the metric g,s which is an auxiliary field:

Top=0. (2.9)

Here, T, is the world-sheet energy-momentum tensor of the scalar fields z#, with:
1
Top = 0a3"0pz, — é—gcpg"‘&,z“agz,,. (2.10)

fI‘he constraint Tos = 0 is thus a consequence of local reparametrization and Weyl
fnvariance. Its solution expresses the intrinsic metric gos as a Wey! rescaling of the
induced metric 7.5. When substituted in the Polyakov action, one then recovers the
Nambu-Goto action, thus showing that at the classical level, these two formulations of
the relativistic bosonic string are indeed entirely equivalent.

) This need not be true at the quantum level however, due to the conformal anomaly
in two dimensions. In a quantization approach which explicitly preserves reparametriza-
tion gauge invariance but not Wey! invariance, such as Polyakov's path-integral
approach®, one finds that the conformal mode of the metric gap couples dynamically
unless a specific condition on the number of degrees of freedom is met. In the case of
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the bosonic string discussed here, this condition fixes the nuwmber of scalar fields z# (or
the dimension of space-time) as D = 26.

In a quantization approach which explicitly preserves Weyl invariance but not repa-
rameterization invariance, such as the canonical approach which we shall use in these
lectures®, this latter symmetry is not realized at the quantum level unless the same con-
dition ensuring decoupling of the conformal mode in Polyakov's path-integral is mnet?,
lience, when this condition is satisfied, both the linear and non-linear approaches lead
to equivalent descriptions of the system, also at the quantum level. In these lectures,
we shall only consider the construction of string theories in which the conformal mode
decouples, i.e. reparametrization and Weyl invariant string theories. It is also pos-
sible to construct reparametrization but not Weyl invariant string theories, in which
the conformal mode is dynamical?”. Recently, more progress has been made in that
direction®,

For these reasons, we shall now concentrate on the non-linear Nambu-Goto action,
and use canonical Hamiltonian methods to quantize the system. The same results
actually also follow for the linear action when applying the same methods®™.

Considering the Nambu-Goto action (2.3), the conserved world-sheet currents as-
sociated to space-time translations and generalized rotations are easily found to be
respectively

ac . _
PI:W‘ M‘“’—P:Zv-—P:I“' (2.11)
with

0uPg =0, 0uM;, =0. (2.12)

We have:
P = i ((iz")' - i’z”)-m[(iz')z' -12%:,) (2.13a)

“ 2ra’ “ o )
-1 4. . M. .. .,

P = Trw ((zz’)’ - z’x") (#2')2, — £%7)). (2.13b)

The corresponding conserved charges are
t 3 x
P= /o doP?, M,, = /o doM?,, (2.14)

giving the total energy -and angular-momentum of the string for any physical solution.

The variation of the action under infinitesimal variations §z#(o, ) in the coordi-
nates, leaving the initial and final configurations fixed (i.e. éz*(o,7) = 0,i = 1,2),
leads to the equations of motion for the system and to boundary conditions in 0. The
equations of motion precisely express the local conservation of the energy-momentum
world-sheet current P2. The boundary conditions in o appear since we are dealing with
a two-dimensional field theory on a space with boundary.

For a simply-connected space-time, two choices of boundary conditions are possible,
respectively:

- open strings : Pj(o =0,x,7) =0, (2.15a)
- closed strings : z*(o0 =0,7) = z*(0 = x,T). (2.15b)

Note that the boundary conditions for open strings imply that there is no flow of
encrgy -nor angular-momentum at the end points.




Finally, from the expressions for Pz, it is straightforward to check that the following
equations

Ozy 2 _
(3 gm,l =0, (2.16a)
1 ZTurr
P52l =0, (2.16b)

are identically satisfied. Actually, these are the constraints which we expect as couse-
quences of local reparameterization invariance, Indeed, it may be scen, by performing
an arbitrary infinitesimal reparametrization

e E =0, (2.17)

that these constraints follow from reparametrization invariance of the Nambu-Goto
action, and that the quantities in (2.16) are the corresponding generators.

However, from our previous discussion we would expect to have only two constraints
whereas we seem to obtain four. Actually, the constraints (2.16a) and (2.16b) are
not independent. They are related to one another by orientation preserving global
reparameterizations exchanging the role of o and 7. Later, we shall need to consider
the constraints (2.16a) only.

Let us remark here that in the case of the open string, due to the boundary conditions
(2.15a), the constraints (2.16b) reduce to

(o =0,x,7)=0. (2.18)

This implies that the end points move at the speed of light for any classical physical
solution.

2.1.2 The conformal gauge

The general solution to the non-linear equations of motion of the Nambu-Goto action
does not seem to be obtained easily. Moreover, it would involve two arbitrary functions
of the world-sheet coordinates, due to reparameterization gauge invariance.

There exists however, a choice of world-sheet parametrization, i.e. of gauge-fixing,
in which the equations of motion simply reduce to those of massless two-dimensional
scalar fields. Indeed, locally on the world-sheet it is always possible to choose a param-
eterization such that

=0, To+tm=0 (2.192)
or (+2)? = 0. (2.19b)

Geometrically, these conditions mean that the tangent vectorsin the ¢ and r directions
are orthonormal (with respect to the space-time Minkowski metric) up to a local scale
factor. (Strictly speaking, such a choice of parametrization always exist for a world sheet
metric of Euclidean signature, but otherwise requires some additional technicalities in
the case of a Minkowski signature®®. This point is not essential in these lectures).
These gauge-fixing conditions define the conformal or orthonormal gauge (the meaning
of conformal will become clear shortly).

Using these conditions in the definition for P2, one finds:
e po =%
P= ol Pl = 2—;.%. (2.20)
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so that the cquations of motion reduce to
(9% — 3)z*(o,7) = 0. (2.21)

These are indeed the Klein-Gordon equations for D massless scalar fields in two dimen-
sions. The general solution is of the form

(o, 7) = zy)(7 - o)+ zy(r+0) (2.22)

thus clearly showing the scparation into right- and left-moving modes in the conformal
gange. Imposing the boundary conditions {2.15a) for open strings, one ‘ﬁm!s that the
functions z,, and z{; are essentially equal and 2x-periodic (more preciscly these are
the properties of their derivatives). This is the expression of the fact that modes are
reflected back at the end points of open strings. In the case of closed strings, one
finds that the two functions z{,, and z{,, are completely independent. Thus, for c!oseg
string theories, right- and left-moving modes are entirely decoupled and "tran.spa.reftt
to each other. This is the basic property which allows for the vast richness in string
theory constructions, since one may then use completely different structures in each
moving seclor. :

Although in the conformal gauge the equations of motion have reduced to those of
free massless scalar fields, the system has not really simplified to such a st of fields.
Any solution to the equations of motion has to satisfy the gauge-fixing conditions (2.19),
thus leading to constraints on the integration constants defining the solution. )

In the case of the open string, the general solution to (2.21) and the corresponding
boundary conditions in ¢ may be parametrized as:

z*(o,7) = V2a'(¢" +apT+ iz‘-i-a:e“'"cosna), (2.23a)
where ot =ak,, (2.23b)
aff = V2u'P*. (2.23¢)

(%, means summing over all positive and negative integers, but excluding n = 0).
The gauge-fixing conditions are then equivalent to the constraints

L) =0, (2.24)
where the bosonic Virasoro generators are given by

L) = 3 T atmom.

In particular, the zero-mode constraint LS"’ = 0 leads to the classical mass formula

a'M? = i o’ ,au, = N. (2.25)

In the case of closed strings, we have

i in{r— ~2in{r+o
(oy7) = \/Zd{q"-}-(as+53)r+%iz.;(a:e""‘(' o) 4 gre~nlrioh)},
n

(2.26a)

where
o =ot,,@" =at,, (2.26b)
of = %szvp- =gt (2.26¢)




The gauge-fixing conditions then reduce to

L@=0 , T =y, (2.27a)
where
a l a l — €
Lst )= 5 ;a:-mamu l Z(u ' = §;(~i“n-mﬂmw (237")
The zero-mode constraints L™ = g, If,") = 0 lead to the classical mass formulae:
1 . —
§a'M' = N+N, (2.28a2)
N = N, (2.28D)
with
hed — i
N=3 aan , N=Y @,a,. (2.28c¢)
w=l a=l

Note that except for the bosonic zero-modes ¢,af}, and @ giving the space-time
position of the center-of-mass of the string, we have twice as many non-zero modes a¥
and @} for the closed string as compared to the open string, corresponding to each
moving sector. As said above, such a factorization in characteristic of all closed string
theories and is the essential property which allows for a large variety of constructions
in the conformal gauge.

As the reader has been suspecting since the beginning of this scction, the con-
formal gauge-fixing conditions (2.19) actually do not completely fix the world-sheet
parametrization. This may be seen in many ways.

We made it plausible that the constraints (2.16a) are the generators of the local
reparametrization gauge invariance of the system. In the conformal gauge, these con-
straints precisely reduce to the gauge-fixing conditions, whose Fourier modes in o are
the Virasoro generators. The fact that these latter quantities must vanish for physical
solutions thus points to the existence of a remaining gauge invariance in the conformal
gauge, generated by the Virasoro generators.

As was noted above, the common scale of the tangent vectors 7* and z* is not fixed
by the conformal gauge conditions (2.19). Actually, there exist local reparametriza-
tions £7(£)(i.e. non-singular and orientation preserving transformations) preserving the
conformal gauge-fixing conditions. Such transformations must satisfy the equations

F ol il il we (2.29)

.For a world-sheet metric of Euclidean signature, the second of these relations would
involve a minus sign. These relations would then correspond to the Cauchy conditions
for analytic or conformal transformations on the complex plane. The condition (2.29)
thu.s corresponds to (pseudo)-conformal transformations, the remaining local gauge in-
variance of the system in the conformal gauge (hence the name).

The general solution to (2.29) is of the form

F+a=fi(r+o),F~d=f(r—a) (2.30)

It may be checked that the world-sheet metric Yap(Or gap) is then indeed rescaled by a
local factor.

Depending on the world-sheet topology, the functions f, and f_ above have to
satisly soine boundary conditions in o. ‘These functions are associated to the existence
of conformal Killing vectors on the world-sheet. In the case of free closed and open
strings, such conforinal transformations may be shown to exist. leuce, the solutions
given above in the conforinal gauge are not the most general solutions Lo the two-
dinensional massless Klein-Gordon equation. The general solution is obtained as in
(2.23) and (2.26), with o and 7 given through two functions fy and f_ satisfying the
appropriale boundary conditions, as in (2.30). Of course, all these solutions correspond
to the same physical configuration of the system.

In conclusion, in the conformal gauge, the system has reduced to a set of conformal
invariant “free” massless scalar fields on the world-sheet. The existence of this conformal
symmetry follows from a remaining reparametrization gauge invariance of the system
in the conformal gauge. This is also the reason why physical solutions must satisly the
Virasoro conditions L{) = 0, Zf‘") = 0. Indeed, as will be shown, these quantities are
precisely the generators of conformal transformations in the conformal gauge.

2.1.3 The light-cone gauge

It is possible to completely fix the local reparametrization invariance of the system
in the conformal gauge, by introducing an additional condition fixing the local scale
of the world-sheet metric. However, as this amounts to solving explicitly the Virasoro
constraints, such a complete gauge fixing cannot be achieved in an explicitly space-time
covariant manner.

Since conformal reparametrizations (2.29) also satisfly the massless Klein-Gordon
equation, it may be possible to fix this local scale by relating o or r to some linear
combination of z*(g, ) in the conformal gauge. Due to the boundary conditions in o,
both for the open and for the closed string, this may actually be done only for the time
evolution parameter r. Moreover, to maintain explicit space-time convariance as much
as possible, let us introduce some constant space-time vector n* to define the additional
gauge-fixing condition.

Thus finally, complete gauge-fixing of reparameterization invariance of the bosonic
string is obtained through the three conditions,

(£ 2')* =0, n,z¥(g,7) = 2a'n,p"r, (2.31)

the first two being the conformal gauge conditions, the third fixing the scale of the
world-sheet metric. The proportionality constant in this last condition is determined
by relating it to the total momentum of the string. Let us also remark that use was made
of the invariance under constant shifts in 7 (these are indeed conformal transformations)
to remove any constant which could appear in the last condition.

That the conditions (2.31) completely fix the world-sheet parametrization may best
be secen from their geometrical meaning. A condition of the form n,z* = constant
defines a (D — 1)-hyperplane. Hence, the third gauge fixing condition determines for
each value of 7, a hyperplane intersecting the world-sheet. This then determines the
parametrization in o for constant r, up to a constant shift in o for the closed string. By
the conformal gauge-fixing conditions, the parametrizationin 7 is then also determined.

The additional non-covariant gauge-fixing condition explicitly breaks the space-time
Poincaré group down to the little group of the vector n, (for a résumé, see Ref. 17),
which is still an explicit space-time symmetry of the gauge-fixed system. A priori, any
vector n* may be used®®. The most convenient choice turns out to be a light-like vector®
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n*,n? = 0, in which case the little group is isomorphic to the (D — 2)-dimensional
Euclidean group, having as subgroup the group SO(D—2), of space rotations transverse
to the vector n*. Such a choice corresponds to the light-cone gauge.

Dy convention, one takes for the light-like vector:

n* = (‘/ii,o.....o.;—;_), (2.32)

and one introduces the corresponding light-cone coordinates for any vectors u®, v*:

ut = —k(u"i W), W i=1,..D-2 (2.33)
with
D-2
uv=—utv” —uvt + Y uivh, (2.34)

i=l
The generators of the connected part of the little group of n* are then M+, M¥, with
Mii being the generators of SO(D — 2).. The remaining generators of the Lorentz
group, M~" and M%P-1), are not explicit symmetries in the light-cone gauge. Their
algebra needs to be checked explicitly, especially at the quantum level where anomalies
may arise.

With the use of light-cone gauge-fixing conditions, it is possible to explicitly solve the
constraints of reparametrization invariance and express the gauge degrees of freedom in
terms of the physical ones™. One then finds that the latter degrees of freedom are the
transverse coordinates z#(g,7) (and their associated conjugated momenta P%(o, 7)),
whereas the gauge degrees of freedom are the light-cone components given by:

z*(0,7) = 2a'P*r, P*t(0,7) = -::P*, (2.35)

and .
P (0,7) = gmrl(P + (V) (236)
2 (o,7) = -}%P“(a,r)z"(a, 7). (2.37)

The solution to (2.37) is
_ _ . 1y X . ozf
27(0,7) = VAdg™ + 2P T+l - o /« do}. [ do' e PH(e', 1) (), (238)
with ¢~ an integration constant, and P~ given by
P = L " doP*(a,7). (239)

Hence, given the physical degrees of freedom z¢, P%, g~ and P, the gauge degrees of
freedom z*, P°% are uniquely determined and so is the trajectory of the bosonic string
in space-time. ,

The relations above may also be expressed through mode expansions as in the con-
formal gauge. For open strings, this gives

*(o,7) = V2o(¢+alr+ ig-::aie"'" cosno), (2.402)
with :
ai = V2P, {2.40b)
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For the light-cone components, one obtains:

¢t =0, at =V2o'P*5,, {2.41a)

T =q, a: = —————',2_‘:’_.’)4.1,,“', (2‘“b)

with the transverse Virasoro generators

L: = Ea';_maf.. (2.42)
)

™| -

This leads to the mass formula:

Ld
oM} =Nt =Y ol a, (2.43)
axl
thus showing that the classical mass spectrum is indeed positive definite, a property

not so obvious in the conformal gauge.
For the closed string, the corresponding results are:

i i .1 §  =2in(r=e) 4 —~i ,~2in{r—o
slo,7) = VERlG + (ah + 37+ 3i T nlohe ) e )],
(2.44a)
with
a) = %\/2&'}" =&, (2.44b)
and
¢t=0 , o= %\/ZQ’P*J.,. =&t (2.45a)
S R S 2.45b
=9 , a.—vmlf.,ﬁi—mm (2.45b)
with
a; = %JM_P‘ =&, (2.45¢)
1 i 1_1 =%
L: = 5 gal-ﬂa‘m’ Iﬂ = Ega‘;—mam' (2‘46)
The mass formulae are then:
-;-a'M’ = N4WY, (247a)
Nt = W, (2.47b)
with -
N = Yo, Nt =Y d & (2.47¢)

n=1 n=l

. L .

As we shall see, the constraints a; = &g, or equivalently Ni=N", is the consequence

of the fact that in the case of closed strings, the light-cone gauge-fixing conditions fix
the parametrization in o only up to a constant.
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2.2 Hamiltonian Quantization

As is well-known, two different but essentially equivalent methods are available for
quantizing a given system. One is the operatorial or canonical quantization approach.
The other is the path-integral approach. In these lectures, we shall only consider the
foriner approach for the quantization of string theories.

For regular system, i.e. systems without constraints, canonical quantization consists
in the following procedure. Given a description of the system through an action princi-
ple, with a Lagrange function depending on coordinates and velocities, the Hamiltonian
formulation is derived through the usual Legendre transform. The system is then de-
scribed by a phase-space, i.e. the space of coordinates and their conjugate momenta,
with time-evolution determined by a Hamiltonian function through its Poisson brack-
ets. These Poisson brackets define a symplectic structure on phase-space. Canonical
quantization of the system then proceeds by the correspondence principle. Phase-space
degrees of freedom now correspond to quantum operators acting on a space of states.
The algebra of these operators is given from the Poisson brackets : the value of the com-
mutator (or anticommutator for Grassmannian quantities) of two operators is obtained
as (ih) times the result of the corresponding Poisson bracket (for example {gq,p} =1
leads to [g, p] = ik, for commuting degrees of freedom ¢ and p). In addition, the space
of states is equipped with an inner product such that the relevant adjointness properties
of the quantum operators are satisfied. Finally, time-evolution on the space of states
is determined by the Schrddinger equation, with the quantum Hamiltonian operator
given by the classical Hamiltonian function, through a specifically chosen ordering of
quantum operators.

It is then also possible to obtain a phase-space path-integral representation for any
quantum matrix element, which is unambiguously defined in so far that the quantum
system itself is uniquely determined.

If the integral over conjugate momenta may be completed, one then obtains the
configuration space path-integral quantization approach for the same quantum system.

This is the approach which we shall adopt here. The presence of constraints however,
renders the analysis more involved. The general Hamiltonian formulation of constrained
systems has been given by Dirac® (for a résumé see Refs. 17,32) but we shall not need
to consider this discussion in full generality here, Within that formalism, there are two
possible ways of quantizing a constrained system.

The first, where the constraints are not solved for but are imposed on quantum
physical states, typically leads to an explicitly covariant quantization of the system with
states of negative norm. In the case of QED, this corresponds to the Gupta-Bleuler
quantization procedure.

In the second procedure, one first solves for the constraints by introducing gauge-
fixing conditions. The ensuing reduced phase-space® then leads to the gauge-fixed
quantized system, in the manner explained above. Typically, the corresponding space of
states has a positive-definite inner product, but explicit covariance is lost. For example,
this is the case of QED quantized in the Coulomb gauge.
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2.2.1 The Hamiltonian formalism'"~%,

In the case of the bosonic string in the Nambu-Goto description, associated to the
coordinates z#{o,7) , we have the conjugate momenta defined by

or

dz(o, 1)

PY(a,7). (2.48)

x(o,7) =

The corresponding phasc-space is then equipped with a symplectic structure defined
through the Poisson brackets (we always only give the non-vanishing ones):

{z*(a,7),x 0", 7)} = 846{c — o). (2.49)

All these phase-space degrees of freedom are not independent however. They must
satisfy the primary® constraints:

# =0, ¢ =0, (2.50a)
where
8= Sxdtin, | = 2T (2.50b)
They satisfy the following relations:
{z*(a,7), 680", 7)) = wa'Pi(o’',7)8(0 — o) (2.51a)
(z%(0,7), 6N\ )} = i«;—é’;(a’,r)ﬁ,&(a - (2.51b)

{880, 7), (0", 1)} = nbaw[#(0,7) + 8520, T)08(0 = '), 00 = +,— (2.52)

Time-evolution of the system in phase-space is generated by an Hamiltonian, through
its Poisson brackets. The canonical Hamiltonian density

Ho=2"x, —L=0 (2.53)

vanishes identically, as a consequence of reparametrization invariance. However, one
may also add to it an arbitrary linear combination of the primary constraints®, and
thus generate time-evolution (or translations in ) with the Hamiltonian

H= L“ dalA* 6 + A= ¢, (2.54)

where A*, A~ are functions of the world-sheet coordinates. These functions should be
such that the constraints ¢{*) = 0 are consistently preserved through time-cvolution®,
namely

$8) = (o) H} =0 for ¢ =0 (2:55)
From (2.52), one sees that this is always the case. Hence, the functions A+ and A~
may be chasen arbitrari]{, and the full set of constraints consists of the primary and
first-class” constraints ¢} ) and ¢'), whose algebra is given in (2.52).

The corresponding equations of motion are:

* = {z*,H}=xa[A*¢} + 21742, (2.56a)
o= (xn H) = 000 - A4 (2.56b)
14
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Together with the constraint, they also follow from the first-order action on phase-
space:

S[s*, x,; A, 7] = / " dr /o " dofi*s, — AL — A= g1, (2.57)
n .

Hence, At, A~ are the Lagrange multipliers for the constraints.
Solving for x* from (2.56a), the action (2.57) reduces to the lincar action (2.5) ,
with g,.p give by

A0 ] ) (2.58)

Yap =e‘--—-—---M 2 e [ L+ = 27) 1
+ 2

Here, ¢ is an arbitrary function of £, which docs not appear in the linear action due
to its Weyl invariance.

From the transformations generated by the first-class constraints to be discussed
below, one may actually show? that this matrix indeed transforms as a world-shect
metric tensor under world-sheet reparametrizations. Hence, the Lagrange multipliets
At and A~ are also components of an intrinsic world-sheet metric, with ¢ being the
conformal mode. We thus recover our previous result, that the equations of motion
of the world-sheet metric field are the constraints ¢5:" = 0 of local reparametrization
invariance. This should convince the reader that the same Hamiltonian analysis applied
to the linear action reduces exactly® to the one considered here, which follows from
the non-linear action.

The first-order action (2.57) is invariant under infinitesimal transformations gener-
ated by the first-class constraints. Let us define the quantity

#0) = [ dofer ¢ + 4, (2.59)

where et, ¢~ are two arbitrary (infinitesimal) functions of (7, 7), salisflying appropriate
boundary conditions for open and for closed strings (for details, see Ref.20). Then, the
following variations leave the action (2.57) invariant (up to surface terms which vanish
for the appropriate boundary conditions):

bzt = (2%} =xale*d] + e ¢), (2.60a)
frr = e g} = 200 - ) (2.600)
and
At = B¢t = At8,et 48,0 e, (2.61a)
5 = B + X e -8, 1€, (2.61b)
Defining ° by
= A0 g gt (2.62)

and solving for x*, it may easily be seen that the variation §,z* precisely reduces to
the variation §,2* = n°8,z* induced in the Lagrangian formalism by the infinitesimal
reparametrization (2.17). The matrix (2.58) may then also be seen Lo transform as a
world-sheet metric tensor.

Thus, the constraints ¢ and ¢®) are the generators of local connected gauge
transformations, in the Hamiltonian formalism. Their Poisson brackets (2.52) define
the algebra of two-dimensional diffeomorphisms.
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The previons discussion shows that the arbitrariness in the choice of Lagrange inul-
tipliers A*, A~ preciscly corresponds to the arbitrariness in the choice of world-sheet
parametrization in the Lagrangian formalism. Solutions to the llawmillonian cquations
of inotion depend on the two arbitrary functions A* and A~. llence, gauge-fixing of the
system requires at least some choice for A* and A-.

The conformal gauge corresponds to the choice

At=1, A7 =1L (2.63)
Indeed, the equations of motion then reduce to:
i# = dra'e?, 4= (2.64)
* = 2xa'x*, % =2—;.-', 2.

and the constraints ¢{°) = 0 then become equivalent to (+2’)? = 0. The same solutions
as in the Lagrangian approach are thus recovered. The Hamiltonian in the conformal

gauge is .
H= [ dolgs) + 4.

The conformal gauge is not a complete gauge-fixing of the system however. There
are transformations generated by 44 which leave the conformal gauge conditions (2.62)
invariant but induce a transformation in phase-space. Such transformations correspond
to zero-modes of the equation

(8 ¥ 8,)e*(a,7) = 0. (2.65)

With the use of (2.62) in the conformal gauge, we precisely recognize the infinitesi-
mal (pseudo)conformal reparametrizations discussed previously, corresponding to the
remaining gauge invariance of the system in the conformal gauge. The associated quan-
tities ¢, are thus the generators of conformal transformations in this gauge.

In the case of open strings, we have the boundary condition'’~%:

(¢t — Yo =0,x,7)=0, (2.66)
so that the solutions to (2.65) are
et(o,7) = e(r+0)e(o,7)=¢(r~0), (2.67a)

with e{r+2x) = ¢r). (2.67b)
Using the mode expansion )
r) =) eae™, (2.68)
we then have
¢ = Y ene™, (2.69a)
where . ‘
L(‘o) = /o do[e‘l"('”wg’) + eln(f'a)¢(_a)]‘ (2.69b)

These quantitics are precisely the Virasoro generators introduce above. They satisly

the conformal algebra
(L&), L) = ~i(n — m)L{D. (270)
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Note that the generator of translations in 7, namely the llamiltonian, is the Virasoro
zero-mode LY.
In the case of closed strings, we have the boundary conditions'?-%¢
tlo=71,1)=e(0=0,7), (2.711)

so0 that the solutions to (2.65) are

&o,1) = exrto), (2.72a)
with ex(r+x) = 7). (2.72b)

Using the mode expansion '
ex(r) =) ket (2.73)

n

we then have
$) = 2T [T + L)) (2.74a)
»

Flo) 1y~ n(r- 1 n{r— a
where Y = 5 /o doe¥™ralg(@) [fe) - 3 /o doe¥™r=)gle) (3 74p)

jI‘hese Virasoro generators, precisely the quantities introduced above, satisfy the two-
dimensional conformal algebra

(LD, L&) = —i(n—m)LE).., (2.75a)
(IO = —in-m)I?,,, (2.75b)
(LI} = o. (2.75¢)

Note that the generator of translations in 7 is now given by 2(Lg") + I{;"). The

generator of translations in o is easily seen to be 2(L$") - .I:f,")). Hence, the constraint
L =T o equivalently N = N, is consequence of the fact that the origin in o has
no physical meaning for physical states of closed strings.

These results show, as was claimed previously, that the Virasoro generators L{°), Zf,"’
are indeed the generators of conformal invariance, the remaining gauge invariance of
t.he system in the conformal gauge. Thus, they must vanish for any physical solution,
since otherwise the solution would depend on which conformal parametrization is used
to describe it. Requiring that this local conformal invariance is realized at the quantum
level leads to restrictions on the system, as we shall discuss.

'To obta?n the Hamiltonian formalism in reduced phase-space, two additional gauge-
fixing conditions must be introduced, in order to completely fix the remaining gauge

invariance of the conformal gauge. Corresponding to the light-cone gauge, these two
conditions are™ :

Q(o,7) = z¥(o,7)-2a'Ptr =0, (2.76a)
Wo,1) = x*(o,7)- 1P* =0, (2.76b)

with P* being some integration constant.
The full fet of constraints éff), (_").ﬂl,ﬂg then becomes second-class®, so that by
the use of Dirac brackets®!, one may explicitly solve for these constraints. The gauge
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degrees of freedom z¥(o, 1), x*(0, 7) are then determined in terms of the physical de-
grees of freedom z¥(0, 7), ¢~ and their conjugate momenta =*(o, 7), P't,as was explained
previously. The symplectic structure defined on this reduced phase-space , which is con-
sistent with the solutions to the constraints, is given by the Dirac brackets:

{V2dq™, Pt}p = -1, (2.77a)
{z(o,7), %", 7)) = 696(c —0'). (2.77b)

Time-evolution is then gencrated through these brackets by the light-cone gauge
[amiltonian:

I, = xa /o " dof(x')? + (%)’] =2a'P*P~. (2.78)

2.2.2 Old covariant quantization

The so-called “old covariant quantization” corresponds to canonical quantization in the
conformal gauge. By the correspondence principle, the phase-space degrees of freedom
become quantum operators, whose commutation relations are given from their Poisson
brackets by

[z%(a,7),x.,{0", 7)) = ikE26(0 - o). (2.79)
In terms of the mode expansions in the conformal gauge, we have equivalently (k = 1):

¢ open string:

[V2o'g*, P*) = in™, [al, al) = 00" bnsmo, (280)
* closed string:
[V2o'¢*, P*] = in**, [ak,an] = nn*buimo = [@1, &), (2.81)

with the adjointness properties:
(qu)+ =q", (P")* = P“v(a:)+ =ak,, (@) =a-,. (2.82)
These algebras are very familiar. They are tensor product algebras of:

s position-momentum algebras for ¢* and P*, for each value of g,

¢ harmonic oscillator algebras with creation operator a%, or @, and annihilation
operator a¥,G¥ (and the wrong sign of the commutator for time components), for
each valueof pandn 2> 1.

Note that for the closed string, the algebra of non-zero modes is the tensor product of
that of the open string with itself. This tensor product structure extends to the space
of states, and is characteristic of closed string theories.

The corresponding spaces of states are abstract linear representation spaces of these
algebras, equipped with an inner product consistent with the properties (2.82). Hence,
the space of states is obtained by acting with the creation operators a*, (for open
strings) or o, and @*, (for closed strings) on Fock vacua or ground states. These
ground states are, say, eigenstates of the momentum operator P*, and are annihilated
by the operators a*,&(n 2 1), namely:

PYIQp> = p*lQ;p >, (2.83a)
alp> = 0,@0hp>=0n21. (2.83b)

They are normalized by
<Oplp' > = §O(p—p'). (2.83¢)
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Due to the opposite sign for the time componcuts of the oscillator algebra, many
states actually are of negative norm. For cxample, the states a%,|02;p > (n 2 1) are all
of negative norm for s = 0. The presence of such states is the price to pay for having
explicit space-time covariance in the quantized theory. To aveid any problens with
unitarity and causality, none of these negative-norin states should be a physical state.

To define physical states, we have to consider Virasoro generators, which are com-
posite operators. lence, we first need Lo specify a normal ordering for the fundamental
operators. In the conforinal gauge this is casy, since we are only dealing with free fields.
As usual, the ordering chosen is defined by bringing all the position and creation opera-
tors to the left of all momentum and annihilation operators, which is denoted by double
dots. From now on, all quantum operators are understood to be normal-ordered, so
that for example:

TN |
L) = EE PO Oyt (2.84)
L]

Note that among Virasoro generators, normal ordering may only affect the zero-mode
operators L™, T{),

Since only matrix elements of the Virasoro generators need to vanish between phys-
ical states, it is enough to define quantum physical states by the following Virasoro
constraints:

® open strings:

(8 - allp >=0, LNy >=0,n 21, (2.85)

o closed string:
(L8 + T~ 2afp =0, (LE) - T >=0, (2.86a)
LNy >=0, TN$>=0,n>1 (2.86b)

Here, “a” is a subtraction constant, so far not specified, following from normal ordering.
From the constraint involving the zero-modes, we obtain the quantum mass formulae:

¢ open string:

aM¥=N-~aqa, N= i a’ Oy, (2.87)

¢ closed string: "
%a'M’ =N+N-2, N=N, (2.88a)
N= i‘af..a.,. N= iﬁf,b‘,.. (2.88b)

Note that Fock vacua are always physical states of positive norm; but that they arc
tachyonic, both for open and closed strings, when a > 0.
Generally, normal ordering would also affect the conformal algebra, as follows

(L8, L)) = (1 = m) L + 5ln)busmas (289)
(L, T8 = (n = TS + elm)bnsoms, (2.89b)
(L&, TN = 0. (2.89¢)
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llere, e{n) is a central extension due to nornal ordering, or short distance singularitics
in the two dimensional field theory describing the string theory in the conformal gauge.
This central extension corresponds to a conformal anomaly®?? , or a Schwinger tenm, in
the algebra of the world-sheet energy-momentsim tensor of the system in the conformal
gange. By the Jacobi identity, the central extension is always of the form™

e(n) =en® 4+ fn (2.90)

where “¢ is the central charge of the Virasoro algehra® (2.89a) and # may be modified
by constant shifts in L§.

Normal ordering however, does not affect explicit space-time covariance. Indeced, it
may be checked that the Poincaré algebra is satisfied by the quantum operator P* and
M*, This implies that the space of states transforms as an infinite set of irreducible
representations of the Poincaré group. Moreover, since the Virasoro generators and the
excitation level operators N and N commute with P* and M#*, all physical states at
each excitation level fall into such irreducible representations.

Hence, physical states may be classified according to their mass and to their “spin™.
By “spin” , we mean here the representation of the rotation subgroup of their little
group!”. For massless states, “spin” is thus given by a representation of SO(D ~2),
and for massive states (with m? > 0) by a representation of SO(D — 1). For example
in four dimensions, we then have representations of SO(2) (helicity) and SO(3)(spin)
respectively.

This discussion completes the characterization of the quantum system and its phys-
ical states. We have to make certain however, that none of the physical states is of
negative norm, as otherwise unitarity would be spoiled in amplitudes where such states
contribute as intermediate states. The analysis of this question requires first of all an
analysis of the Virasoro algebra (2.89), which is most efficiently done by using techniques
of conformal field theory in two dimensions (see for example Refs. 9,15,16,17,19).

The result of such an analysis is that the Virasoro algebra for the bosonic string is
given by:

(L, L) = (n — m) L + 35 D(0" = Dirsuma, (291)
or
¢(n) = Dn® — Dn. (2.92)

Hence, each scalar field £#(o, ) in two dimensions contributes a unit (+1) to the central
charge of the Virasoro algebra.

Considering then the problem of negative norm physical states, the no-ghost theorem***
asserts that:
the necessary and sufficient conditions such that none of the physical states is of negative
norm are:

eaxl
eifa=1:D <26,
sifa<l:D<2ie D<L25.

The intercsted reader may check (but not prove) these statement by solving the problem
for the first few cxcitation levels (sce Ref.17).

Although these conditions are necessary for quantum consistency, they may not be
sufficient. Indeed, when studying 1-loop amplitudes, one finds®" (see for example Refs.
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15,48) that the correct pole and cut singularities due to intermediate states can only be
obtained for U = 26. Thus, the necessary conditions for the absence of negative-norm
physical states and 1-loop unitarity require that

D=26 a=1 (2.93)

(as we shall comment upon later on, these are still not sufficient conditions for quantum
consistency).

Under the conditions (2.93), the statement of the no-ghost theorem is actually more
detailed'*. For the open string for example, we then have that any physical state
¢ > is necessarily of the form

¥ >= 1o > +Lalxs > +(Los + gm_l):x, >, (2.94)

where |0 > is a positive-norm transverse state (in 1-to-1 correspondence with a state
in the light-cone gauge, to be discussed below), and L_,|x; >,(L-; + 1L )Ixa > are
zero-norm physical states, such that

Lolxy >=0,(Lo + 1)|x2 >= 0, Lalx12>=0,n 2 1. (2.95)

Unphysical and zero-norm states are necessary for explicit space-time covariance. Al-
though zero-norm states are physical by the definitions above, they actually (must)
decouple in physical amplitudes (this point will be discussed further in chapter 4). The
situation is analogous to the one of QED in the Lorentz gauge, where the longitudinal
photon is precisely such a zero-norm physical state which decouples from amplitudes.

With the critical values (2.93) , let us describe the first few excitation levels of
bosonic strings, beginning with the open string.

The physical ground states are states |2;p >, with N = 0, such that om? = —1.
These are space-time scalar tachyonic states, thus spelling disaster for the quantum
theory which is then not unitary.

At the next excitation level, we have states ¢,a*,|0;p > with N = 1, hence
a'm? = 0. These massless states must satisfy the transversality condition ¢,p* = 0,
which has two types of solutions. One, consisting of the 24 linearly independent vectors
€, such that € = 1,ep = 0, corresponds to a positive-norm massless transverse state
transforming as the vector representation Dso(24)- The other, with ¢* = p*, corresponds
to a zero-norm massless scalar state, transforming as a singlet under S0(24), namely
the longitudinal component of the massless vector. Note that this state is given as
L.,|Qp > (see (2.94)).

At the second excitation level N = 2, one finds three states; a positive-norm 2-index
symmetric traceless transverse massive state, transforming as O 35y and having 324
components, a zero-norm transverse massive vector state transforming as Oso(2s), and a
zero-norm massive scalar state transforming as a singlet under SO(25). These states are
respectively given by Jed. 00”0 p >, Loie,a¥,|%p > and (L., + 13,)19p >,
where the polarization tensors satisfy ), A% = Ly =X, =2 =p*A,, =0 and
€ = 1,¢p = 0 (compare with (2.94)).

From the mass formula (2.87), it is clear that all states fall on “Regge trajectories”
of slope o’. Indeed, if space-time were four dimensional, spin would be characterized
by a single number J, and the mass formula would then lead to the linear dependence
J = o'm?+ constant.

Similar results easily follow for closed strings as well. From the mass formulae (2.88),
the slope of “Regge trajectories ” is now 1o’. The physical ground states |;p >, with
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La'm? = ~2, are space-time scalar tachyons in this sector of the theory as well. At
the first excitation level N = N = I, we have massless states, which for those of
positive norm combine into a 2-index symmetric transverse traceless tensor of SO(24)
with 299 components, a 2-index antisymmetric transverse tensor of SO(24) with 276
components, and a scalar state of SO(24) with 1 component. These states correspond
respectively to a massless “spin 2" state or graviton, a massless antisynunetric teusor,
and a massless scalar or dilaton.

One of the remarkable features of these spectra is the appearance of massless “spin
1" and “spin 2" states. Usually, the existence of such particle is associated with some
local gauge invariance, a Yang-Mills gauge invariance for “spin 1" states and a space-
time reparamelrization invariance for “spin 2" states. Actually, the low-energy behavior
of these string states is precisely that of such gauge bosons™.

The profound origin of such space-time local symmetries in string theories is still
not really understood. Nevertheless, such a relationship between world-sheet and space-
time local symmetries seems to be a generic feature of string theory constructions. Here,
world-sheet reparametrization invariance is related to space-time reparametrization in-
variance for closed strings and space-time Yang-Mills invariance for open strings. Later,
we shall see how this extends to world-sheet supersymmetry and space-time supersym-
metry, and to world-sheet current algebra and space-time Yang-Mills invariance.

2.2.3 Light-cone gauge quantization

Quantization in the light-cone gauge® proceeds through the correspondence principle
from the Dirac brackets in the reduced phase-space Hamiltonian formulation in that
gauge. Hence, we have the commutation relations

[V2a'q™, Pt] = ~ih, [2'(0,7),%i(d",7)] = ik698(a — o), (2.96)
or equivalently in terms of the mode expansion (h = 1):

¢ open string:

[V2dq™, P*) = ~i, [V2d'¢',Pi] = i8", (2.972)

[Q:, 0‘:“] = ns“j&wm.ﬂ: (297b)
¢ closed string:

[V2e%q™, P*) = —i, [V2d/¢i, PP} = 69, (2.98a)

[of, ol = nb6,yme = [@, 5], (2.98b)

with the adjointness properties:

(@) = ¢, (P*) = P (¢)* = ¢',(P') = P, (2.99a)

(@) =af,, (@) =7,. (2.99b)

The structure of these algebras, and of the corresponding spaces of states should
now be obvious. Fock vacua [Q,pf,pt > are eigenstates of the momentum operators

Pi and P*, | are annihilated by the operators of,, @ (n > 1) , and are normalized by
< Q,p, p* I, pF, ot >= §0-N(pF — pi)§(p* — p*). All slates are obtained from these
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vacua by the action of the creation operators al, @ .(n21). Note again the structure
for closed strings as compared to that of open strings.

In contradistinction to old covariant quantization, the present space of states docs
not have any state of negative norm. All states are physical ones, and correspond to
transverse string excitations only.

The light-cone coordinate operators are determined from the constraints. Hence,
we have the operational relations:

® open string:

¢t = 0, o} =V2'r*s,,, (2.100a)
o= e = (L - ab), (2.100b)
¢ closed string:
¢* =0, at = %\/27}”5., =&, (2.101a)
¥ =00] = el - bl @ = T - afl,
(2.101b)
with a; =@5= -21-\/2—«7 -, (2.101¢)

It is understood that the transverse Virasoro generators Lf.I:‘ have been normal or-
dered, with the same choice of normal ordering as in the conformal gauge. Here, “a” is
the ensuing normal ordering subtraction constant for the Virasoro zero-modes.

Note that the transverse Virasoro generators satisfy the Virasoro algebra with a
central extension ¢(n) = (D — 2)n(n? — 1) to which only transverse fields z¥(c, 1)
contribute.

From the previous relations, we have the mass formulae

* open string:

a'M*= Nt —qa, Nt= z:a';-ui,

n=)
o closed string:
% 'M? = N* 4+ N* 24, N* =N*, (2.102a)
. s s 1 L. . >
N =% ald, N =) &.&. (2.102b)
nz=l n=]

For the closed string the level matching condition for the right-and left-moving sectors
follows from the fact that the light-cone gauge fixing conditions do not fix the origin in
the parametrization in o.

Since the light-cone gauge does not preserve space-time covariance explicitly, it
may happen that quantization and normal ordering are not compatible with implicit
Poincaré covariance. Since the little group of the light-like vector n* is an explicit
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symmetry in the light-cone gauge, only the algebra involving the generators Af=% and
M®P-1) peeds to be checked. Actually, since only a;,@; are given by normal ordered
coinposite operators, only the commutator [M~¢, M~#] could be anomalous, whereas
it should vanish to maintain implicit space-timme Poincaré covariance. An explicit and
tedious calculation shows™ that this cominutator is indeed anomalous, unless we have:

D-2=2, a=1 (2.103)

1t is only under these conditions that physical states may be characterized by their mass
and their “spin”. Since in the light-cone gauge, all physical states transform explicitly
in representations of the SO(D — 2), rotation subgroup of the little group of the vector
n*, it is straightforward to identify the “spin” for massless states. For iassive states
however, with m? > 0, only under the conditions (2.103) do the

SO(D — 2), representations combine into representations of SO(D — 1), which is the
rotation subgroup of the corresponding little group.

This type of consideration alone actually leads to a restriction for the first excitation
level only*®, For example, in the case of the open string, we then have the states o' ;|1 >
with a’'m? = (1 — a). These (D — 2) states may transform covariantly under the full
Lorentz group, and not only under SO(D — 2), , only if they transform as a massless
veclor state in D dimensions.Hence , Lorentz covariance requires*® a = 1, which implies
in turn that the physical ground state is a tachyon. For states at higher levels however,
the counting of physical components is always such that the corresponding states could
be combined into irreducible representations of SO(D~1). Only the explicit calculation
of the full Lorentz algebra can ensure that indeed the space of states is organized into
irreducible but non-linear representations of the Poincaré group, and that this occurs
onlyifa=1and D = 26.

There exists however an heuristic argument*® for the value D = 26, which does
not require the full calculation. The value for “a” follows from normal ordering in the
transverse Virasoro zero-modes, and is thus given by the formal series:

a= -%(D-—2)§n. (2.104)

Using (-function regularization, we have

o 00 —l
Z:'" = );";;-. ={(-1)= 3 (2.105)
leading to
D-2 '
a= = (2.106)

Therefore, the necessary condition for Lorentz covariancea = 1 implies the critical value
D = 26. Clearly, such an argument does depend on which regularization of the series
is used. Only the full calculation of the commutator {M~%, M3} gives an unambiguous
answer. Nevertheless, {-function regularization happens to give the correct result, and
is used as an easy check on results. Later in chapter 4, we shall justify the use of this
regularization from the point of view of modular invariance.

With the critical values (2.103), let us briefly describe the first few excitation levels,
first for the open string. From the mass formula , we find again the physical ground
state to be a scalar tachyon. At the next excitation level, we have the massless states
o', | p,pt > transforming as Dgyq, i.e. as a massless space-time vector state, with

24




24 components. At the second excitation level N = 2, we have massive stales with
a'm? = 1, corresponding to a’,| > and o ,o’ |1 > and transforming as

(O 400 +)s4q24. Clearly, they combine into a massive 2-index symmetric traceless
tensor of S0(25) , with 324 components.

For the closed string, the physical ground-state is also a scalar tachyon with
Ja'm? = -2, At the next level, we have the massless states o', &@,|0 > transforming
as (O +B+.)so(m, and thus corresponding to the graviton, the antisymmetric tensor
state and the dilaton, with respectively 299, 274 and | components.

Clearly, positive norm physical states in the conformal and in the light-cone gauge
quantizations are in 1-to-1 correspondence, as guaranteed by the no-ghost theorem (sce
(2.94)).

It is possible to introduce a function which counts the number of positive norm
physical states at each excitation level, i.e. a generating function for level degeneracics.
Let us first consider the open bosonic string.

In the light-cone gauge, we have the mass formula

o’M?*= N+ ~1. (2.107)

lLet. us tlhen introduce the generating function for the degeneracies d, at the excitation
evel N1 = n;

Jolg) = f: dpg* ™M = f} dug®™3, (2.108)
n=0

=0

where ¢ is a complex or real number such that lg] < 1. We have:

Jolg) = Trg®™W*-n (2.109)

where.xhc trace is taken only on the non-zcro modes af,(n # 0). The calculation of the
trace xs'straxghlforward” (the reader may like to first do the calculation for a single
harmonic oscillator) , and one finds:

- D-3
folg) = El; {.I:I, ﬁ_—'l?ﬁ] =%ty 2(r), (2.110)

;"“h 1(7) being the Dedckind 5-function of number theory and the theory of modular
orms:

n(r) =g f[l(l - ¢, g=e"", (2.111)

Expanding (2.110) in powers of ¢ for D = 26, one obtains
_ 1
Jo(9)=n"(r) = 3;(1 + 249 + 324¢* + 3200¢° + 25650¢° + ..., (2.112)

thus giving the degeneracies at each excitation level. These numbers may of course be
checked by explicit construction of the associated physical states. It may be shown'®
that the degeneracy numbers increase exponentially as the level increases.

. For the closed bosonic string, the degeneracy number at excitation level N* = N* =
n is simply given by d2. The corresponding generating function is thus:

Jalgl) = ff EglD = 3 g, @.113)

n=0
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where Jg| is a real number such that |¢| < 1. For convenience, lot us introduce the
complex number ’

q = |qle"s, -x <0< (2.114)
The generating function may then be expressed in terms of the corresponding function
for the open string, as:

* *d0, p-
siah = [ g = [ g o (2115)
Hence, for D = 26, we have
s = [ . (2.116)

We shall make use of these results when discussing modular invariance of 1-loop parti-
tion functions in chapter 4.

2.3 BRST Quantization

As was discussed extensively, conformal symmetry is the remaining reparametrization
gauge invariance of the system in the conformal gauge. Any breakdown of conformal
symmetry would thus imply breakdown of reparametrization invariance, and lead to a
depence on the world-sheet parametrization used to compute physical quantities.

It seems that such a breakdown of conformal invariance is indeed obtained, since
the central extension, or conformal anomaly, of the Virasoro algebra does not vanish,
not even for the critical values D = 26 and a = 1. In other words, reparametrization
invariance, which is the fundamental symmetry leading to the constraints 4»(;') = 0,
which guarantee at the quantum level the decoupling of unphysical and zero-nonn
states from amplitudes, seems to be broken by quantum anomalies! Does the theory
still make sense?

Since the days of Feynman, de Witt, Faddeev and Popov*!, we know that such
a question can be meaningfully addressed only when taking into account the ghost
sector*! following from gauge fixing. This is usually done by considering the configu-
ration space path-integral and its gauge-fixing, and using the Faddeev-Popov trick*'.
Such an approach however, does not always give a meaningful answer. In the general
case of open algebras of constraints*?, i.e. when the structure coefficients of that alge-
bra are functions on phase-space, one has to resort to more general Hamiltonian*® or
Lagrangian** methods developed by Batalin, Fradkin, Vilkovisky and others.

In the spirit of the Hamiltonian approach adopted in these lectures, we shall apply
the general Hamiltonian methods leading to BRST quantization* of gauge invariant
systems, namely the Batalin-Fradkin-Vilkovisky (BFV) formalism34343,

Actually, although we shall not need this method in its full glory, let us briefly discuss
it independently of string theory, not only to give a flavor of its fundamental aspects
but also because it provides today the most general approach to the quantization of
gauge invariant systems. Moreover, such a brief discussion should help to demystify
BRST quantization.

2.3.1 The BFV Hamiltonian formalism

For simplicity, we shall consider the case of a gauge-invariant system with bosoanic phase-
space degrees of freedom only, and a set of irreducible bosonic first-class constraints
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do (i.e. constraints which are linearly independent locally on phase-space, and with
vanishing Poisson brackets when the constraints are imposed). The generalization to
Grassmann (or anticommuting) degrees of freedom and/or to reducible constraints is
rather straightforward, and follows the same general approach as the one discussed
below3242.:43,

Time-evolution on phase-space is obtained from a first-class Hamiltonian®
Hr=H 4 X¢a, (2.117)

where H is a specific first-class Hamiltonian, and A* are Lagrange multipliera for the
constraints ¢,. We have the algebra of constraints

{$ards} = C,3¢x, (2.118a)
{H,¢a) = V.4, (2.118b)

where generally C,} and V,” are structure functions on phase-space.
The corresponding Hamiltonian equations of motion also follow from a first-order
action. This action is invariant under infinitesimal variations generated by linear com-
binations €* ¢, of the constraints. For phase-space degrees of freedom, these variations

are given by the corresponding Poisson brackets, and for the Lagrange multipliers, we
have®42;

8% = & 4 X'ePC,% - Vo (2.119)

The algebra of constraints thus characterizes, in the Hamiltonian formalism, the algebra
of the local gauge invariance of the system. (The reader may like to compare this general
discussion with the previous analysis for the bosonic string).

In the BFYV approach, the original phase-space is extended in two steps®?4243, First,
to render the Lagrange multipliers A* dynamical degrees of freedom, one introduces
bosonic conjugate momenta x,, with the Poisson brackets:

2%, xp) = 82. (2.120)
We then have the set of constraints G, = (Ga,,Ga, ), with
Goy =%ayy  Gay = duy (2121)
and the algebra:
' {G.,Gi} = CiG., (2.122)
{H,G.) = V.'G.. (2.123)

In order to compensate for the use of degrees of freedom which are not all independent,
one then introduces a set of degrees of freedom of opposite statistics, i.e. Grassmann
variables. (In the general case, for Grassmann odd constraints, the corresponding
Lagrange multipliers are Grassmann odd, hence also their conjugate momenta, and
the additional degrees of freedom which one introduces are then Grassmann even, i.e.
bosonic). These BFV ghosts come in conjugate pairs *, P,, with the Poisson brackets

{n*, P} = -4, (2.124)

and the properties
)y =9 (P)==-P. (2.125)
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The BFV extended phase-space (EPS) thus consists of all these degrees of frecdon.\,
namely the original phase-space variables z4 together with A%, %,,n* and .. On this
EPS, one also introduces an integer grading, by defining the ghost number as follows:

degrec of freedom ! 24, A%, X I N l P. (2.126)
ghost numnber ] 0 [+1]-1

By counting Grassmann even and Grassmann odd de.grees of freedom with plus
and minus signs respectively, the reader may check that md?ed the total number of
locally independent degrees of freedom on EPS is the same as in a reduced phase-space
WP(I’)O':?;-‘ the fundamental results of the Hamiltonian BFV formalism*?3 is the follow-
ing. Associated to the algebra of constraints ¢,, there exists a quan.my gg, the BRST
charge, which is uniquely determined®?, up to canonical transformations in EPS, by the

properties:
* Q3 =0Qs
¢ Qp is Grassmann odd,
¢ Qp has ghost number (+1),
o Qp is nilpotent , i.e. {@5,Q8} =0.
The expression of the BRST charge is of the form

Qs =n"Ge ~ %vp‘q‘ '3 Pe + “more”, (2.127)

where “more* stands for additional terms necessary for nilpotency when the structure
coefficients are functions rather thaa constants. o ) )

The nilpotency property of @p is & very strong condition 'mdeed, since Qs is a
Grassmann variable, This property embodies in one single equztt_lon a!l .thfszormatlon
concerning the algebra of constraints and the associated Jacobi ldentm_es . Mor?over,
it only depends on the algebra of constraints, and not on any p.armfular choice ;‘)f
gauge-fixing conditions. Hence, corresponding to gauge transformations mc.iuced by the
constraints on the original phase-space, we now have BRST tm:nsformat:ons on E}PS
generated by the BRST charge. It is the nilpotency property which now characterizes
the gauge invariance of the system.

Igotes also that the ghost iector and the BRST charge only de{)end on .the alg?h:;
of constraints, and in no manner whatsoever on how this algebra is explicitly rea!:
for a given system, i.e. for a given set of phase-space degrees of freedom z4. ! n{
gauge-invariant system with the same Hamiltonian gauge a!gebra has the same ghos
sector and BRST charge, leading thus to an identical discussion of 'BRST quantization.
This remark is fundamental in the construction of all string theories. ] .

Time evolution on EPS is obtained from a BRST invariant effective Hamiltonian,
i.e. having a vanishing Poisson bracket with the BRST charge, of the form:

Hey = Hp - {¥.Q8}- (2.128)
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Here, Hy is a particular BRST invariant Ifamiltonian, of the form
Hg = H 4+ 9*V,*P, + “more”, (2.129)

where “more” stands for additional terms necessary for BRST invariance when the
structure coeflicients are not constants.

The function ¥ is a pure imaginary Grassmann odd function on EPS of ghost number

(-1). Its roleis that of gauge-fixing the system, and has thus to be chosen appropriatcly*®
according to the structure of the space of gauge orbits of the system¥%, However ,
the Fradkin-Vilkovisky theorem**43 (which is another fundamental result of the BFV
approach) establishes that two functions ¥, corresponding to gauge equivalent sections
?f the space of gauge orbits*®, lead to an identical physical description of the gauge
invariant system (this does not mean*, as is usually stated*>*3, that the description of
the system is independent of ¥),
o In order to recover the same physical description as in the old covariant approach,
it is necessary that the physical solutions to the equations of motion in EPS have zero
ghost and BRST charges®42. This requires a choice of BRST invariant and zero-ghost
charge boundary conditions on EPS*42, Clearly, the system may then also be described
starting from some BRST invariant first-order action on EPS32:42,

Finally, BRST quantization simply corresponds to the canonical quantization of
Y.he BFV Hamiltonian formalism. Quantum physical states are then defined as BRST
invariant states of zero-ghost charge (up to possible ordering constants).

2.3.2 The BFV formalism for bosonic strings'®,

Let us apply this general discussion to the bosonic string. We have the phase-space
degrees of freedom .x“‘(m 7) and x,(o, 7),with the Poisson brackets (2.49). Associated to
the Lagrange multipliers A* (o, 7), we now have the conjugate momenta x4 (o, T), with

{X(0,7), 70", 7)} = 828(0 — o’), 1,0’ = +,—. (2.130)
The full set of constraints G,(a = 1,2,3,4) is thus
G) = t-,G: = tt‘.; Ga = ¢(:), G4 = ¢5;.). (2.131)

The BFV ghost sector is then given by Grassmann odd fields n°(o, ), Py(c’, 7)
(a=1,2,3,4), with
{n(0,7), Pie’,7)} = —6%8(0 — o), (2.132)
(") =9%(P.)" = -P.. (2.133)

From iht? two-dimensional reparametrization algebra (2.52) and the expression
(2.127), it is straightforward to obtain the BRST charge:

Qs = [ doln's- +n'xy + 0% 4190 - PO Pe 4 0P (2134)

In particular, we then have

{Plh QB} = —¢(~T)l {Ph QB} = -¢$r)’ (2'135)
with
¢gl - ¢(:) + ¢(t‘)’ (2.136a)
9 = ~20,7°P3 — 1°8,Ps, (2.136b)
¢¥) = +20.9°P, + 18, P.. (2.136¢)
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The quantities d’i‘) may be shown to satisfy the same algebra as the bosonic constraints
¢(:). Hence,the total quantities ¢‘I’ are the Hamiltonian generators of world-sheet
reparametrizations for all EPS degrees of freedom, with ¢¥) generating such trans-
formations for the bosonic coordinates z* and =,, and ¢% generating those for the
BFYV ghosts. In the conformal gauge, the Fourier modes of ¢‘f’ will thus also be the
generators of conformal transformations, as was shown for the constrains ¢§._°).

In the present case, since the first-class Hamiltonian H vanishes identically, the

BRST invariant effective Hamiltonian is simply given by

Hyy == [ do{¥,Qa), (2.137)

where ¥ is some function on EPS.

This is not the place to discuss the problem of the appropriate choice for ¥2°. Let us
only mention that there does not exist any choice of ¥ such that a global and complete
section of the space of gauge orbits is ‘obtained®. In other words, the bosonic string
suffers®®47 from a Gribov*® problem. :

Actually, we are only interested here in gauge-fixing the system to the conformal
gauge, which is done as follows®®. Let us consider for the function ¥:

V= %‘P;(A" -1)+ %P;(A" = 1)+ Pad™ + Pt (2.138)

The corresponding effective Hamiltonian and first-order action are then easily obtained.
In these expressions, redefine then x4, P, and P; by Bxy, 8P, and P, respectively.
Only then take the limit § — 0.

Through this series of manipulations, the degrees of freedom A, x4,n!? and P34
become auxiliary fields, which are determined by the dynamical degrees of freedom
z*,7,,7°, 1% and Py, P}>%, In particular, we have

=1, A=, (2.139)

showing that the system has indeed been gauge-fixed to the conformal gauge.

Usually, the choice ¥ = P; + P, is believed®® to correspond to the conformal
gauge.This however is not correct®. Indeed, it does not lead to the constraints L{(®) = 0
for classical solutions®®. Only the procedure described above®®®? leads to conformal
gauge-fixing within the BFV formalism.

On the other hand, the procedure just presented is actually singular, since it “squeezes
out” part of EPS by taking the limit § — 0. It may be shown however®*324€, also at
the quantum level, that all the associated singularities in some sense “factor out” from
the system, and may be ignored. Of course, one looses by this procedure any local
information concerning the integration measure over the space of gauge orbits?°%48,

In order to make contact with the usual notation'®¢ | let us redefine the dynamical
fields as follows:

¢ =t ¢t =gt b = <2ixPy, by = —2ixP,. (2.140)

With the procedure outlined above, we then obtain for the first-order action:

Sets = [ dr [ dofirm, — (@) + 60) 4 5200+ B)e + 5-bes(Dr - a;;c;];)
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for the BRST charge:
Qs = jo " dofem ' 4 et 4 i—c‘&.c‘b__ - -%;c*t?.c"’bH], (2.142)

and for the ghost charge:

1 -
Q=35 /.. dolc™b-_ + c*byy). (2.143)
For the Poisson brackets, we now have:
{z*(o,7),x.(0", 1)} = 806(c — '), (2.144)
{c(0,7),b-_(0', )} = ~2ix8(0 — ¢') = {c*(0,7),by+(0", 7))}, (2.145)
with
{bs,Qp) = —2ixé{", (2.146)
and ,
= -;—;(za.c*m +c28,bs4). (2.147)

The corresponding BRST invariant boundary conditions in o are®:
e open strings:

d,z*(0 = 0,x;7) =0, {2.148a)
(" ~c*)o=0,x;7) =0=(b__ — byy){o =0,7;7), (2.148b)

o closed strings:
periodicity in ¢ — o + 7. (2.149)

Note that the expression for the BRST charge now explicitly depends on the choice of
the conformal gauge. Actually, when solving for the conjugate momenta =, the action
(2.141) and the BRST charge (2.124) precisely correspond to the Lagrangian BRST
formulation of the theory, first discussed in Ref. 26, and also derived by the usual
Faddeev-Popov path-integral approach!®, The (b,c) ghost system is the correspond-
ing Faddeev-Popov ghost sector due to reparametrization invariance. As emphasized
previously, this ghost system always appears for any two dimensional reparametrization
invariant system which is gauge-fixed in the conformal gauge.

To conclude this classical Hamiltonian BRST approach, let us give the solutions to
the equations of motion in the conformal gauge. Obviously, the solutions in the bosonic
sector are those given previously. Only the ghost sector needs to be considered.

For open strings, we have

H(o,7) = Y caeminlrde) (2.150a)
bis(o,7) = Y byeinlrde), (2.150b)
Then 1
) = 5 o LWemintrde) k= T\ q,c, (2.151)
3

with L{®) given previously, and

LY = Yl = m)butmem, LD = L + L. (2152)

m

One also obtains:
i
= (@) 4 —LE]c_,, 2.153
QB ;[L- + 2Ln ]c ( )
ch = zc—nbm (2.154)
L

and the corresponding Poisson brackets lead to

{cabm) = —ibpimo, (2.155)
{6,,Q5) = —iL®. (2.156)

Similarly, for closed strings, we have

it 1 -2in(r
c(o,1) %Ec,.c""‘""),c"(a,r) =3 g'é,.e fnlr4o)  (2.157a)
L]

AT bue ¥ b, (0, 7) = 4 Y Bae7"0H) (2.157b)
L n

b._(o,7)

One also obtains

o9 = Iy gt k=T, (2.158a)
x L]

g9 = Iy W detr k=Tap, (2.158b)
x

"

with the same expressions for L&"),f?) as for the open string, in terms of right-and
left-modes. Finally, we have:

Qs = Z{lL!.°’+%Lk’lc-,+[lf."’+%tf,"]a_..}. (2.159)
Q: = Ylc-nba+2-abal, (2.160)
and
{cmbm} = -"5.+m.o={?q.3u}. (2'161)
{b., @8} = —ibﬁr’.(&.Qn}=-iﬁ”' (2.162)

Hence, the separation into left-and right-modes obtained for the non-zero mode bosonic
sector, with each moving sector identical to the structure which appears for the open
string, extends to the ghost sector as well. .

Finally, it should be clear that the Virasoro generator L#, T satisfy the usual
algebras (2.70) and (2.75) of conformal transformations.
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2.3.3 DBRST quantization

BRST quantization in the conformal gauge simply follows by canonical quantization
from the previous classical BRST formulation. In the bosonic sector, this leads of
course to the same quantum algebra of commutation relations for ¢*, P'#, o, @4 as in
th‘c f‘ld covariant quantization. In this ghost sector, we now have the auticox?mu?ta.tiou
relations:

{“mbm} = 5u+m,0n {Eml—'m] = 6u«hn.0v (2‘l63)

with
c: = Cop E‘: = Copy (2‘1643)
b¥r=bp , b =b... (2.164b)

Hence, except for the bosonic zero-mode sector, the quantum operator algebra for the
closed string theory ax}d thus also the space of states, is essentially the tensor product of
those for the open string, with however the important feature that in the ghost sector

the right-and left-moving ghost modes anticommute rather than commute with one
another, since

{enEn} =0 , {ca)bm} =0, (2.165a)
{bmaﬂ} =0, {bmzm} =0. (2165!))

For the sake of definiteness, let us restrict the discussion to the open string (or one of
the two sectors of the closed string). :
. In the bf)sonic sector, the ground-states of the space of states are the states |2, p >
introduced in the old covariant quantization. The space of states is now considerably
enlarged through the ghost sector, which is represented as follows.
The algebra of ghost zero-modes

{Co,bg} = 1' Cg = 0) bg = Ov C: = Coy b: = bOv (2’166)

is represented on a two dimensional space spanned by two basis vectors |~ > and |+ >
such that:

ol->=+> , cl+>=0, (2.167a)
bol->=0 , bol+>=|->, (2.167b)
<=+ >=<H~->=1 , <-|->=<+|+>=0. (2.167¢)

For the non-zero mode ghost algebra, let us introduce a ground state also denoted
|t >, such that:

LIN>=0, |t >=0, n21, (2.168a)
<Q1>=1 (2.168b)

'I;:ms, the space ?f states is: spanned by the ground states |2, p,+ > and their bosonic
and ghost excitations, obtained through the action of the bosonic and ghost creation
operators a¥,,c_, and b_,(n > 1).

T!ze complete deﬁn_ition of the quantum system also requires a choice of normal
ordering. In the bosonic sector, this choice is as before. In the ghost sector, one again
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chooses Lo bring all the creation operator c_mybon(nt = 1) to the left of all annihilation
operators Ca, ba(n 2 1). For the zero-modes, we must have

| .
s coly 1= ;l-{rubu — byt). (2.169)
"T'his leads to

Qs = Y (19 + f;l,lfl )eu : —ac, (2.170)

l' &.
Qc = 'i(colb - bOCO) + Z[c-nbu - b-ncn!v (2‘171)

=l
LN = {b.,Q8} = LO + L) — abup, (2.172)

where all composite operators L{¥ are understood to be normal ordered quantities.
Here again, “a” is a normal ordering constant. Obviously, similar expressions apply for
the closed string, with left-moving modes then also contributing.

The question of quantum conformal invariance in the conformal gauge way now
consistently be addressed, either by computing the central extension in the Virasoro
algebraof the total Virasoro generator L{T), or equivalently by checking gauge invariance
of the quantum system, namely by checking nilpotency of the quantum BRST charge.

Using techniques of conformal field theory (see for example Ref.19) , one obtains:

(LELLE) = (n - m)LEhw + 15 D0(8 = Dbemas (2.173a)
(LO,LO] = (n—m)LE}n+ 715[—2613“ + 2n)8nsm,0, (2.173b)
(L, LD] = (n—m)Ln + -}5{(0 - 26)0° + (2 + 24a = D)n}baimo,
(2.173¢)
and
(@5,05) = 20b= L 15D =26 + 2+ 2a = D)o + 2a — D conins

= SO, LD = (n = m)LEn) : conn - (2.174)

Hence, quantum conformal invariance and nilpotency of the quantum BRST charge are
obtained under the same conditions, namelyl?l

D =26, a=1. (2.175)

That these two properties are equivalent may be seen from the relation (2.172), which
leads to the following when Q3 =0

LM,Qsl =0, [LO,LD) = (n = mLi. (2.176)

Thus, nilpotency of Qg or cancellation of the central extension in the total Virasoro
algebra are one and the same expression of conformal invariance in the conformal gauge.
The critical values (2.175), which we found in the old covariant approach, are precisely
those which ensure reparametrization invariance of the quantum system.
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We still have to define physical states in the present formalism. First of all, since
Qs implements gauge transformations, two states which differ by a state of the form
Qs|x > must be considered as representing the same quantuin state. Thus, gauge
equivalent states fall into cohomology classes of the BRST charge. Morcover, physical
states must be BRST or gauge invariant states, namely

Qsl¥ >=0. (2.177)

Ilence, physical states correspond to BRST invariant cohomology classes of Qp, or in
other words the coset KerQg/ImQp. Since the null class is always BRST invariant
for a nilpotent BRST charge, we only need to consider the non-trivial BRST invariant
classes. The answer to this problem is the following®®.

All states in non-trivial BRST invariant classes are of the form

¥ >= ey —> + ¥+ >, (2.178)

(up to a state Qg|x > of course), where | Wt-) > are states with bosonic excitations only
and of strictly positive norm, i.e. transverse physical states in 1-to-1 correspondence
with states in the light-cone gauge.

In order to restrict the choice further, it is useful to require that physical states have
ghost number (-1/2):

Ql¥ >=(-1/2)|¥ >, (2.179)
so that we finally have
¥ >=¥5—>. (2.180)
The BRST invariant condition (2.177) then becomes
had
(L = 1]+ 3 coaliN ¥y - >=10, (2181)
L3 ]

which clearly shows that the Virasoro conditions defining physical states in the old
covariant approach are indeed recovered.

In conclusion, within BRST quantization, physical states correspond to BRST in-
variant cohomology classes of the BRST charge of ghost number (-1/2). Such non-trivial
classes are in 1-to-1 correspondence with physical states of strictly positive norm both
in the old covariant approach and in the light-cone gauge approach.

3 FERMIONIC STRINGS

Qur discussion so far has been very detailed, and emphasized the fundamental features
of the quantization of bosonic strings in the conformal and in the light-cone gauge. The
reason is that these basic properties are generic of any string theory, so that it should
now be easy to understand how any of their extensions and gencralizations are to be
used in the construction of any string theory. In this chapter, one such extension will be
considered in some detail, not only because it provides an example of a generalization
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of the structures encountered so far, but also because it plays an important role in the
construction of “realistic™ string theorics.

Hosonic strings obviously lack an important feature : their space-time spectrmn does
not contain any fermions. Such states can be obtained within string theory throngh
two maiu approaches, where one introduces additional world-sheet degrees of free-
dom. In the first approach, the so-called spinning string® or chcu-Schwarz-R:tmond
(NSR)"$? formulation, one introduces world-sheet Majorana spi'nors transforming as
space-time vectors. lu the second approach, the so-called superstring or Qrcchf:hwarz
formulation®?, one introduces world-sheet scalars transforming as Space-lltt\(i l\'lagora'ua-
Wey) spinors. In the latter approach, the construction of the theory explicitly realizes
a space-time global supersymmetry, while in the former approach such a symmetry
is only achieved by some specific projection of the spectrum®, necessary for quan-
tumn consistency®®. 1 is widely believed however, that the two approaches are actually
equivalent®, but this has not yet been proved in full generality.

By lack of space, we shall not consider here the superstring approa_ch. 'Let us only
mention that recent progress’” has been made in the covariant quantizalion of these
theories (for their quantization in the light-cone gauge, see for examplg Refs. H)"IQ'
and that they have been used in the construction of four dimensional string theories™.

As was shown in the previous chapter, reparametrization invarim‘lce.aud tlx'c cor-
responding constraints, which are the equations of motion for an intrinsic metric, are
essential in obtaining a consistent quantum theory. In the conformal gauge, they are
necessary in establishing the decoupling of unphysical and zero-norm s't.a.l.es from pl}ys-
ical amplitudes. In the light-zone gauge, they are essential for obtaining space-time
covariance. Thus, by enlarging the system through the introduction of world-sheet
spinors, we need at the same time to have an additional world-sheet loca.! symmelry,
leading to new constraints necessary to ensure consistency of the quantized system.
The candidate for this additional symmetry is obviously a supersymmetry®, Henc?.
by extending the previous bosonic construction in the linear formulation to a two di-
mensional supergravity theory with local supersymmetry®, we should expect‘. that the
necessary constraints would follow as the equations of motion of the supergfavny s::ctor.

Indeed, the action for the spinning string® is that of a two dimensional N=1
minimal supergravity theory, with D matter multiplets (z”(f),/\“({))l cctuplcd to a su-
pergravity multiplet (e2(£), ¥a(€)), where e5(£) is a world-sheet zweibein or graviton,
Yo(€) is a world-sheet Majorana gravitino and the N = 1 superpartners A#(£) of the
bosonic coordinates are world-sheet Majorana spinors. Here, a = 0,1 are the llSl.lal
world-sheet coordinate indices, and a = 0,1 are the corresponding tangent space in-
dices. In the following, we shall use!” the Majorana representation of the Dirac algebra
in two dimensions, namely

(23 (1) (3 8) o

("0} =2, 3:2)
"ab = ( —ol ? ) . (33)

In this representation, a Majorana spinor is a real spinor. o

As for the bosonic string, the spinning string action is not only mv:.maut under lo-
cal world-sheet diffcomorphisms and supersymmetry transl'ormatio_ns. i.c. local super-
reparametrizations, but also under local Weyl rescalings of the graviton supermultiplet

with
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and the associated fermionic transformation, i.e. super-Weyl transformations (for more
details, see for example Refs. 15,17). As a consequence, the corresponding Weyl modes
of the graviton and gravitino do not couple in the classical action, and will not ap-
pear in the canonical quantization of the theory. They do couple in a path-integral
quantization® unless conditions analogous to those discussed for the bosonic string
are satisficd. Moreover, the graviton multiplet is only an auxiliary multiplet in two
dimensions, whose equations of motion are precisely the constraints'®*'? associated to
super-reparametrization and super-Weyl invariance and generating these transforma-
tions.

These local gauge invariances allow for gauge-fixing the system to the supercoufor-
mal gauge, defined by

ea(€) = e¥963 , $a(6) = e(€)pax(£) s (34)

where x(¢) is a Majorana spinor. In the superconformal gauge, the system still possesses
a local gauge invariance under superconformal transformations. The corresponding gen-
erators are then simply the Fourier modes of the constraints, as we showed in the case
of the bosonic string. The important point which makes this possible is that the super-
conformal gauge-fixing preserves an explicit global N = 1 world-sheet supersymmetry.

3.1 Old Covariant Quantization
3.1.1 The superconformal gauge's?”

In the superconformal gauge, the action of the spinning string reduces to

-1 -
$= / ¢ 1708,z Bz, + X620 u M| (3.5)
where

w_ [-10

=3 1) 35)
Al‘

w2 3.7
(A:) d

and ¥ = x*p° for a spinor y.
This action is invariant under the N =1 global supersymmetry defined by

Sz = AfA* | 6X* = 62p°B 2"y, (3.8)

v{here.r) is a constant infinitesimal Majorana spinor. For the Majorana representation
given in (3.1), the action (3.5) becomes

-1 .

S=is / 4 [24(07 — O2)aps = iX5(8, — B )M — (B, +0A-] , (39)
thus leading to the equations of motion

(83 -3Hz* =0 (3.10)

(0r —8,)A5 =0, (8, +8,)2% =0. (3.11)

Hence, as for the bosonic string, the system has reduced in the superconformal gauge to
a set of “free” massless fields, which have to satisfy a set of constraints to be discussed
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below. Note that the separation into right- and left-movers extends to the fernsionic
sector, where M} and AL correspond to left- and right-moving Majorana-Wey! spinors
respectively.

The boundary conditions in o in the bosonic sector are as specified previously. For
the fermionic matter ficlds, we have for open strings :

M@=0,1) = M(e=0,7), (3.12a)

Me=x71) = difo=1x7), (3.12D)

where ¢ = +1 corresponds to the Ramond (R) sector®, and ¢ = —1 to the Neveu-
Schwarz (NS) scctor® of the spinning string. For closed strings, we have

Mo =x,1)=AN(c=0,T1) (3.13)

with A= -1, A = p% A = —p% A = 1 respectively for (N,NS), (R,NS), (N,R}, (R,R)
sectors, where the first entry corresponds to the right-moving modes and the second to
the left-moving modes.

Actually, R boundary conditions preserve the global supersymmetry (3.8), whereas
NS ones break it. As we shall see, such a breakdown of world-sheet supersymmetry is
related to the presence of space-time tachyons in the physical spectrum.

Corresponding to space-time Poincaré invariance of the system, we have locally con-
served world-sheet currents whose charges are the total energy- and angular-momentum
of the string. In the superconformal gauge, on finds!” for the energy-momentum current

=2 p oI apeag (3.14)
T oM ot e T '

thus showing that the total energy-momentum of the spinning string
i 3
P = /0 do P?, (3.15)

is entirely carried by the bosonic coordinates. On the other hand, fermionic degrees of
freedom do contribute to the angular-momentum of the system. Indeed, one finds'”

. . 1.
M, = v {[z,z. -z,z,)+ Es[z\f,\. - ,\f,\,,l} ) (3.16a)
M, = s {leaa b a4 500 AN}, (3160)
with
8aMm' = ot (317)
and .
M,, = [) do M2, (3.18)

Note that the boundary conditions in o for open spinning strings are such that there
is no flow of energy- nor angular-momentum at the end points.

Local world-sheet reparametrizations and supersymmetry transformations are gen-
erated by the two dimensional matter energy-momentum tensor T, and supercurrent
Ja respectively, which are given in the superconformal gauge by '3,

.-
Tag = 0pz*Opz, + le‘lpqaa + ps0.)A,
1.
“%qaﬂ ['716613“8511« + E'?F.'a'vxp] ' (3.19)
= pzalpal, (3.20)

-~
I
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where
=8, pa=nasbtp". (3.21)
They obey the local conservation equation :

8,T°* =0, 8,J° = 0. (3.22)

n fac't, as a consequence of super-reparametrization and super-Weyl invariance, the
cquations of motion for the graviton multiplet simply reduce to the constraint
equations'$7 ;

Top=0,J,=0, (3.23)
which must be satisfied by any solution to the free field equations (3.10) and (3.11).

!n. the case of open spinning strings, we have the same mode expansion for bosonic
coordinates as in (2.23), and for fermionic coordinates :

M(o,7) = V'Y demintrze) (3.24a)
L ]
with (&) = &, (3.24b)

Here, the fermionic modes c§ are integer-moded and denoted d* = G (g=n€ T for
a R sector, and half-integer moded and denoted V=c(g=reZ+1/2) fora NS
sector.

The Fourier modes of the constraints then lead to the super Virasoro constraints

LM =0,J" =0, (3.25)
where the super Virasoro generators are given by
U = 410, 10 = 25 (g Jn) &oveun, (3.26)
'
JX = Y& O (3.27)
m

Here, tb.e superscripts (X), (a) and () stand for the contributions of the matter su-
permultiplet, of the bosonic modes and of the fermionic modes respectively. The su-
percurrent modes J{X) are integer moded and denoted JIX) = F{X) for a R sector, and
half-integer moded and denoted JI¥) = G¥) for a NS sector.

Thoise quantities L{¥) and JX) are the generators of N = 1 superconformal trans-
formations, which is the remaining super-reparametrization invariance of the system in
the superconformal gauge.

For closed spinning strings, the mode expansion for bosonic coordinates is as in
(226), and for fermionic coordinates we have :

Mo, 1) = V2o Z'j cpe~ =) At(a,r)= V2x' Y] e dalrie) (3.28)
L]

with the following notation :

right-left sector c* @
(NS,NS) & b reZ+1]2
(NS,R) b d& nez (3.29)
(R.NS) 42 ¥
(R,R) d d,

The Fourier modes of the constraints (3.23) lead to the super Virasoro constraints :

=0 , M=o, (3.30a)
JW=0 , =0, (3.30b)

with the samnc notations and definitions as in (3.25), (3.26) and (3.27), now in termns
of right- and left-moving inodes. Note the by now familiar fact of doubling of fermionic
and non-zero bosonic imodes, when comparing closed strings to open strings.

The old covariant quantization in the superconforinal gauge would require the cor-
responding Hamiltonian formulation of the system. Compared to the bosonic string,
there are essentially two new features which arise here. The world-sheet Majorana
spinors lead to second-class coustraints, which may be solved by using Dirac brackets
for these degrees of freedom. The set of first-class constraints generating the gauge
symmetries of the theory now consist of bosonic and Grassmannian constraints. The
associated Lagrange multiplets are respectively bosonic and Grassmannian variables,
related to each other by local supersymmetry transformation and transforming as com-
ponents of a supergravity multiplet. Superconformal gauge fixing amounts to setting
the bosonic Lagrange multipliers A* and A~ equal to 1, and the Grassmann Lagrange
multiplies equal to zero. It should thus be clear to the reader how such an Hamiltonian
formulation of the spinning string could be obtained, and we shall not give any other
details here.

In the superconformal gauge, we therefore have the same commutation relations
as before for the bosonic modes (see (2.80), (2.81), (2.82)), both for open and for
closed strings. For the fermionic matter fields A}(o,7), we obtain the anticommutation
relations :

{c:‘nd:g} =1"by100 » {E:"E:'} = 1"6g 4020, (3:31a)

with (@) =, , (@) =2, (3.31b)

These results allow for the description of the corresponding spaces of states. Let us
first consider the case of the open spinning string.
In the Ramond sector, the Fock vacuum is a space-time spinor Ju(p)), with u(p)
being a D-dimensional spinor, such that

alulp) = 0, Elu(p)=0,n>1 (3.322)
oflu(p)) = Vaa'p*lu(p)), (3.32b)
dlu(p) = t—};-‘fu(p», (3.32¢)

where 9* are the D-dimensional Dirac matrices which satisfy the Clifford algebra
{7} = =2, P =10 (3.33)
Indeed, the fermionic zero-modes df satisfy the algebra
{5, 45} =", {@,d} =0, n#0, (3.34)

so that they are represented by

PRRLIPERT) st - S .
a W( 1) o (3.35)
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All other states are obtained by the action of the creation operators o*,,, d*,,

(n 2 1) on these Fock vacua. Clearly, all states in the Ramond sector are space-time
fermions. In particular, the ground-state spinor transforms under Lorentz transforma-
tions as ;

M*|u(p)) = Vaarlp'e” — p*g*llu(p)) + 2" u(p)) , (3.36a)
where
Tav — _i,‘hu'.’vl (3.36b)

is the generator of Lorentz transformations in the spinor representation. The first term
in (3.36a) corresponds to the orbital contribution.

In the Neveu-Schwarz sector, since there are no fermionic zero-modes, the Fock
vacua are momentum eigenstates [{);p) annihilated by o, b4 (n > 1,r > 1/2), and
transforming as space-time scalars. Hence, all states in the NS sector are space-time
bosons.

In the case of closed spinning strings, except for the bosonic zero-mode sector, the
spaceof states is essentially obtained as the tensor product of spaces of states of the open
string, with the subtlety that the right- and left-moving fermionic modes anticommute.
We thus have for the Fock vacua and the space-time spectra in each sector :

sector I Fock vacua ] space-time spectrum
(NS,NS)| 12,p) [space-time bosons
(R,NS) lu(p)) |space-time fermions (3.37)
(NS, R) l&(p)}  [space-time fermions

(R,R) | lu(p),6(p)) | space-time bosons

where u{p) and ©(p) are independent D-dimensional spinors associated to the right-
and left-moving sectors respectively.

Let us remark that all these spaces of states, both for open and for closed strings,
have states of negative norm, due to the fact that n% = ~1.

The definition of the quantum system is complete only when a normal ordering of
quantum operators has been specified. As usual, all position and creation operators
are brought to the left of all momenta and annihilation operators. For the fermionic
zero-modes in the R sector, we must choose :

Jor l 4 L4
: dydy i= 5(dydy — dgds). (3.38)

Defining then the super Virasoro generators by the same expressions as given before,
but now understood to be normally ordered, it is possible to compute the corresponding
N = 1 super-Virasoro algebras, bothin R and NS sectors, using techniques of conformal
field theory (see for example Refs. 17,1 9). We only give here the results for the open
string or for the right-moving sector of the closed string. Similar results obviously hold
for the lefi-moving modes.

Ramond sector
1
{F,Sx), Fé‘x)} = 2L‘.§.¥" + 50"26n+m.0 ’ (3'393)
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(LX), K (%n - m) ), (13.39D)

(L, L09] = (n = m)LEh + 1D basma, (3.39¢)
where I )
(LD, L) = (n —m)LL), + 'ﬁ’) [5"3 + u} Sngma - (3.40)
even-o¢ SECLO)]
(6", 6%y = 2l + %D(r’ - ;i-)é-»,..o. (341a)
(4,6 = (3n-r)GHE, (3.41b)
(L, 18] = (n = m)Lh + £Dn(n* = Doutmo, (341c)
where : )
(L, L) = (n = m)Lw + 52 Dn(n? = Dbnymo.- (3.42)

As for the bosonic string, we obtain central extensions to the N = 1 superconformal
algebra, thus showing that short distance quantum effects in the matter sector of the
theory (seem to) break the super-reparametrization invariance of the spinning string.
Note that each Majorana-Weyl spinor contributes a value (+1/2) to be central charge
of the total Virasoro algebra.

It should be obvious that the quantization in the superconformal gauge explicitly
preserves space-time Poincaré covariance. Indeed, one may show that the Poincaré
algebra is obtained at the quantum level, and that it commutes with the super Virasoro
algebra. Hence, all physical states may be characterized by their mass and by their
"spin”, as was ekplained for the bosonic string.

In a R sector, physical states are defined by the super-Virasoro constraints :

FOYy = 0, LX) =0,n>1, (3.432)
(F - anly) = 0, (L5 - a))l¥) = 0. (3.43b)
In a NS sector, we have
CMNyy=0, LYy =0, r21/2,n 21, (3.44a)
(L ~a )lp) =0 (3.44b)

Here, a4 and a. are subtraction constants following from normal ordering in the
super-Virasoro zero-modes. Note that we introduced a normal ordering constant for
Fox’. On the one hand, this does not seem necessary since Féx) does not suffer from
an ordering ambiguity. On the other hand, it seems necessary since we have (Féx’)’ =
Lf,x). As it turns out, a4 indeed vanishes (see the no-ghost theorem below). Note also
that the constraint which involves F§{*) generalizes Dirac's equation!. As usual, the
constraints involving the Virasoro zero-modes lead the mass formulae. For open strings,
we have:

Rsector : o'M?=Ng—a,, (3.45a)
where
o0 o0
Np = Y opanu+ ) nd d,. (3.45b)
n=} nzl
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NS sector : o'M?= Nys-—a., (3.46a)
where
had o0
Nys = Y ataa+ 3 rb2b,,. (3.46b)
n=l r=1/2

For closed strings, we have :

% M = (N—-a)+(N-3a), (3.47a)
N—-a = N-a, (3.47h)

where N, N are Ng, Nys, Ng, Nys, and a, @ ate a4, a.,a4,a- depending on whether
wehavea It or a NS sector in each moving sector. The level matching constraint (3.47b)
has the usual geometrical meaning in terms of constant shifts in o.
For the spinning string, the results of the no-ghost theorem®® lead to the critical
values : .

D=10, 04.=0, ¢-=§. (3.48)

These are the necessary conditions for the absence of negative norm physical states and
for the correct cut and pole singularities in one-loop amplitudes. The values (3.18) may
be checked by explicitly constructing the first few physical excitation levels. Let us give
those of strictly positive norm.

In the Ramond sector of the open spinning string, the physical ground-state is at
excitation level Ng = 0. It corresponds to a massless space-time spinor |u(p)) with
fulp) = 0. At the next excitation level Ng = 1, we have the states a”,|u(p)) and
d” Ju(p)), which lead to a massive Rarita-Schwinger (“spin ;") state. All states in this
sector are space-time fermions, with a double degeneracy of the Regge “trajectorics™due
to the space-time chirality of the spinor u(p).

In the NS sector of the open string, the physical ground state is a space-time scalar
tachyon |2;p), with a'm? = 1/2. At the next excitation level Nnsi, we have the
massless states b2, ,|0; p >, giving a massless vector state. At the second excitation
level Nys = 1, we have the massive states o”,|2;p >, b, 1282l p >, with a'm? = 1,
leading to a 2-index antisymmetric tensor state. All states in this sector are space-time
bosons, with two types of Regge “trajectories”. Those corresponding to an even number
of fermionic excitations, to which the tachyon belongs, and those with an odd number
of fermionic excitations, to which the massless vector belongs.

For the closed spinning string, the discussion is very similar. In the (N,NS) sector,
the physical ground-state |2, p) is a scalar tachyon with 1a’m? = —1. At the next exci-
tation level, we have a massless graviton, a massless 2-index antisymmetric transverse
tensor and a massless dilaton, obtained from b%, ,8", i p)-

In the (R,NS) sector, the would-be spinor tachyon Ju(p)) is not a physical state, due
to the level matching condition. The physical ground-state has Ng = 0, Nys = 1/2,
and thus corresponds to the massless states ¢,b”, plu(p)), with pu(p) =0 ande-p=0.
Since the condition fu(p) = 0 is not obtained, we have a massless spinor (“spin 1/2")
and a massless Rarita-Schwinger (“spin 3/2") state.

The discussion in the (NS, R) sector is similar, by exchanging the right- and left-
moving sectors. Finally, in the (R, R) sector, the physical ground-state [u(p), %(p)) is
massless, with pu(p) = 0., fii(p) = 0, and corresponds to all completely antisymmetric
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space-time tensors, appearing in the teusor product of the two space-time spinors u(p)
and G(p). i

Clearly, the Regge “trajectories” of the closed string also have a double “doglcmvp
acy”, associated cithier to the chirality of the spinor in a R sector or to the parity of
the fermion excitation number in a NS sector, in each of the two moving scctors.

3.1.2 Light-cone gauge quantization

Let us briefly describe how the same results are obtained in the lig!n-conc. gauge. For
the spinning string, the light-cone gauge fixing couditions are'” (in addition to the
superconforinal gauge conditions) :

z¥(0,7) = 2a'P*r, At(o,7)=0. (3.49)

The super-Virasoro constraints L{¥) = 0, J{¥) = 0 may then be solved for explicitly,
by expressing the light-cone components z*za, 7) and A*(0, 7) (or eqmvalefuly a¥, '6,?
and c}, &) in terms of the transverse components %(a,7), N(0, 7), (or equivalently ¢,
al, &, ¢, &) and the two integration constants ¢~ and P+, .

From the corresponding Dirac brackets, we then have _the.usu§! commutation and
anticommutation relations for the transverse modes ¢, P oy, &, <o ¢ and g7, P*.
Thus, the Fock vacua for a NS sector are simply states 2,9, p*) anm‘hulated by.a:,, and
b (n > 1,r > 1/2). For a R sector, they are SO0(D-2)a !Pinofl {u(p‘,p*?) annihilated
by o and d', (n > 1), since the fermionic zero-modes d; ‘sa'hsfy the Clifford algebra
{di, &) = §. By construction, all states have strictly positive norm, and correspond
to transverse excitations only. ) i

At the quantum level, when solving for the light-cone coordinates in terms of the
transverse ones, normal ordering constants appear in the exprasi.ons for the zero-modes
oy and @. This then leads to the mass formulae. For open strings, we have :

a'M? = Nt —a, (3.50)
with

o0 e . R
R sector : Nt = z«:f__ai +Y ndd,, a=a,, (3.51a)

=R
NSsector: Nt=Yalal+ ) rtl b, a=a-. (3.51b)

n=1 r=lf2
For closed strings, we obtain :

% M = (N:-a)+(N*-3), (3.52a)
Nt-a = N'-a, (3.52b)

with an obvious meaning for the notation (as in (3.47)). Here again, t.he level rf\'atchnng
condition (3.52b) follows from the fact that the light-cone gauge fixing condmons-do
not fix the origin in o parametrization for closed strings.
Due to the necessary normal ordering of composite operators, the Lorentz fxlgebra
may not be realized at the quantum level due to quantum anomalies. Here again, onl?l
the commutator [AM i, M ~i] needs to be checked, and can be shown to vanish only if

we have® :
D=10, a,=0, a_=1/2. (3.53)
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The values for the subtraction constants are easily understood*®. For definiteness,
let us consider the open string. In the Ramond sector, the ground state |u(p)) has
2AP-3/2 components and a mass @’'m? = —a,. This state may transform covariantly
under the full Lorentz group only if it is massless, i.e. only if a; = 0. In the NS sector,
the same argument applies to the first excitation level bt ,|; p), which has (D - 2)
components and a mass o’'m? = 1/2 — a_, We must have a_ = 1/2, thus also implying
that the physical ground state is a space-time scalar tachyon.

If we now use our favorite® (-function regularization for the evaluation of a4 and
a_, we obtain : '

—ay = (D-2) L{; %n - nf::l %n] = Q_é_’_zl[((_l) —¢(-1)] =0, (3.54)
- _ — 1 1 (D-2) -1 D-2
a. = D - 2 —p - —rfl = ~—l{ =1} - —((— [,
(3.55)

In each of these expressions, the first term is the contribution of the bosonic zero-point
fluctuations, and the second term that of the fermionic ones. They cancel in the R sector
.but not in the NS sector, due to the global N = 1 supersymmetry which is preserved
by R boundary conditions but broken by NS boundary conditions. This breakdown
of supersymmetry is responsible for the appearance of a space-time tachyon in the NS
sector. If we now set a_ = 1/2, we find indeed D = 10 from (3.55).

The reader is invited to check that all states of strictly positive norm obtained in
.the superconformal gauge, both for open and for closed strings, are indeed recovered
in the light-cone gauge, and that all massive states indeed transform as irreducible
representations of the covering group Spin(9) of SO(D — 1) = SO(9). Note also that
the same types of “degeneracies” of Regge “trajectories” as in the covariant approach
appear in the light-cone gauge.

3.1.3 GSO projection and space-time supersymmetry

The physical space-time spectrum of spinning strings contains bosonic and fermionic
states. Actually, we have to think of the complete spectrum of these theories as the
direct sum of the spectra in the different sectors.

We saw however that in the NS and (N,NS) sectors, one obtains space-time scalar
tachyons, causing problems for unitarity. Moreover, the massless “spin 3/2" states
also lea'd to problems, unless they couple to a conserved current of “spin 1/2”,i.e. to a
space-time supersymmetry current, in the same way that gravitons couple to a conserved
energy-momentum tensor. Gliozzi, Olive and Scherk (GSO)** were the first to realize
th?.t by taking advantage of the double “degeneracy” of Regge “trajectories”, there
exists a consistent truncation of the spectrum of the theory, in which these problems
are avoided, namely such that :

o tachyons are no longer physical states,
o the numbers of space-time bosons and fermions are equal at each mass level®*,

o the spectrum is space-time supersymmetric®.
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The corresponding truncation is called the GSO projection. In the next chapter,
we shall find a more geometrical understanding of it, from the point of view of two
dimensional reparametrization invariance. Actually, it is the only projection making
the theory quantum consistent to all orders of perturbation theory®.

To discuss the GSO projection, let us first consider the open spinning string. The
quantity which distinguishes between the “degenerate” Regge “trajectories” is essen-
tially the fermion number F, given in the R sector by

F=Y dd,, (3.56)
nxl
and in the NS sector by
F= Y #,bo. (3.57)
r=1/2

Of course, the same definitions apply in the light-cone gauge, where one then sums only
over transverse components.
Finally, let us introduce in the R sector the string chirality operator

r=m(-1)F, (3.58)
where 7, is the space-time chirality operator
m=r=9".0 (3.59)
(In the light-cone gauge, we would have I' = y(—1)F with 7 = 1.

. . .

.78,
GSO projection of the open spinning string is then (not yet completely) defined by
the conditions® :

e Rsector: T|p)=+¥), (or T'=-1), (3.60a)
eNSsector:  (=1)Flg)=—I¢). (3.60b)

The latter condition projects out in the NS sector all states having an half-integer
value for @’'m?, thus including the tachyon. Only states with integer values for a'm? are
retained. The physical ground state is then the massless vector state with 8 components.
At the next excitation level with a’m? = 1, we have the positive norm states among
b2 a0 ), B2, 1207, 1221l p) and a¥,b, 1|; p) leading to the SO(9) representations
(ﬁm)SO(g), and having (84 + 44 = 128) components respectively.

In the R sector, the ground state spinor |u(p)) decomposes into right- and left-
handed components uz(p) = 3(1 £ yu)u(p). The GSO projections retain states at
all integer values of o’m?, but only half the original number. At the massless level,
the condition T’ = +1 (resp. I' = —~1) implies that the physical ground-state of the
truncated theory is a right-handed (resp. left-handed) massless Wey! spinor, with 16
real components.

A Majorana condition on u(p) would reduce this number further to 8, i.e. the same
number of components as in the bosonic sector, which is a necessary condition for hav-
ing space-time supersymmet.y. The remarkable fact is precisely that Majorana-Wey!
spinors exist in Minkowski space-times only of dimension D = 2(mod 8)*, which in par-
ticularincludes D = 10. Hence, the complete GSOprojectionconditionsarede f inedby(3.60)togeth

In the R sector, the physical ground-state is then a right-handed massless Majorana-
Weyl spinor, with 8 physical components. At the excitation level a’'m? = 1, we have the
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states aZ,|u(p)) and @2, |u_(p)), combining into a miassive Majorana Rarita-Schwinger
“spin 3/2" state, with 128 components.

That the number of bosonic and fermionic physical states (of positive norm) is the
same al each mass level may best be seen by computing the corresponding degeneracy
generating functions®. In the R sector, we have :

[n(q) = i dn(n)q"""""" = i dn(n)q"‘ =dTr qmg (3.61;)
n=0

n=0
hd I\ 8

d[l +16¢® + 144¢* + 960¢° +...],  (3.61c)

where ¢ is a complex number such that lgl < 1, dy is the degeneracy at excitation
level Nt = n, d is the number of physical components of the ground-state spinor u(p)
(d = 8 for a Majorana-Wey! spinor on-shell), and the trace in (3.61a) is taken over all
non-zero bosonic and fermionic modes.

In the NS sector, let us distinguish the states with an even and an odd number of

fermionic excitations. We then have :

fhs = Try(1 & (-1 )b (3.620)
) - 1 Cad ~— o .
= §;Em{g(l+q’ ‘)'ig(l -q ')’}. (3.62b)
leading to the series expansions :
Thslg) = 2114367 +4034" 419640 4], (3.63a)
Ins(g) = 8[1416¢° + 144¢* + 960¢° + .. . (3.63b)

Comparing (3.61) and (3.63), it becomes clear that only the GSO projection as
defined above may lead to a space-time supersymmetric spectrum. To show the equality
of fr(q) and fgs(q), it is useful to express these functions in terms of Jacobi theta
functions defined as follows : :

0;(2'7)

i Z:(__ 1 )a q(n-llz)’ e2irin=-1/2)s

20" sinxz [T (1 - ¢*) [I(1 - g™e¥**)(1 — e b, (3.64a)

n=} nml

Bi(zlr) = Y gt/ grintn-1/ae
n

[

= 2¢"cosxz ﬁ(l - ﬁ(l +¢™e¥)(1 4 ¢™e %), (3.64b)
ne} nxzj
93(2'1‘) = an'cz.'.n = ﬁ(l _qh) ﬁ(l + q""eﬁ")(l + qzn-lc—h'n)‘ (3.640)
n n=l n=l
0‘(2'7) = Z(__l)nq.!cﬁcu = ﬁ(l - qh) ﬁ(l - qzu-leﬁn)a - qzn-le-zo'u)'
n nxl n=}
(3.64d)
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where as before we sct ¢ = ¢**. In the following, we shall only need the values
0z = O]r) (i = 1,2,3,4), which will be denoted as 0; (i = 1,2,3,4). Theu, one
finds:

1,03 6
Inlq) = i"éd;"";, (3.65a)

11 .
Jiste) = '2';;;103*03. (3.65b)

where () is the Dedekind n-function defined in (2.111).
That the GSO projection leads indeed to a space-time spectrum with the same
number of bosons and fermions at each mass level now follows** from the Riemann

identity (6, = 0) :
0 4 0% =0} + 0}. (3.66)

Moreover, it has been shown®! that the spectrum then transforms under a D = 10
N =1 supersymmetry algebra, with in particular the massless states falling into a
D = 10 N = 1 Yang-Mills supermultiplet, i.e. a massless vector and a massless
Majorana-Weyl spinor. From that point of view, the Riemann identity (3.66) is an
expression of space-time supersymmetry.

For closed spinning strings, GSO projections are defined in a similar way!". Here
however, we have two choices in the relative chirality of the two Majorana spinors in
the two moving sectors, thus leading to two different theories. The first is the Type lla
fermionic string, defined by

. u(p), B(p) : Majorana spinors
¢ TI'=+41 TF=-1 (or vice-versa) (3.67)
o )=-1, (-1 =-1

and the second is the Type IIb fermionic string, defined by

. u(p), (p) : Majorana spinors
o I'=41,F=41(or’=T=-1) (3.68)
o (==, () =1

Here, as usual, quantities with and without a bar correspond respectively to the left-
and right-moving sectors.

It should be clear that in both cases, the numbers of space-time fermions and bosons
are equal at each mass level, and are given by the square of the corresponding degen-
eracy numbers of the open spinning string. Moreover, in each theory, the space-time
spectrum transforms under a space-time supersymmetry. For the Type lla theory, this
is the non-chiral D = 10 N = 2a supersymmetry, and for the Type IIb theory, it
is the chiral D = 10, N = 2b supersymmetry, with the massless states falling into
the corresponding graviton supermultiplets. In both cases, the (NS,NS) sector leads
to the massless graviton, 2-index antisymmetric tensor and dilaton, transforming as
(m+ B +¢)s0(s) and having respectively (35 + 28 + 1 = 64) components. In the (R,R)
sector, since the two Majorana spinors u(p) and @(p) have different relative chiralities
in cach theory, we have different bosonic states. For the Type Ila theory, we have the
states (O+ || )soge) with (8 + 56 = §4) components respectively. For the Type llb
theory, we have the states (s 4+ | + gé)m‘;’ with (1 4 28 + 35 = 64) components re-
spectively, where E is a self-dual oF anti-selfdual tensor depending on the chirality of

X
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the spinors u(p) and %(p). From the (R,NS) and (NS,R) scctors we obtain the massless
fermions. In the type Ila theory, we have a Majorana spinor and a Majorana Rarita-
Schwinger “spin 3/2" gravitino, none being Weyl fermions. In the Type 11b theory, we
!navc a left-handed Weyl spinor and a right-handed Rarita-Schwinger “spin 3/2” grav-
itino, none being a Majorana fermion. In both cases, the nnmber of components are
2(8456) = 128, respectively. Clearly, the spectrum of the Type Ha theory is non-chiral,
whereas that of the Type Hb theory is indecd chiral.

3.2 BRST quantization

So fa‘r in our discussion, we have not taken into account the necessary ghost sector
ass?aated to superconformal gauge fixing. In principle, to be faithfull to the Hamil-
tonian approach adopted in these lectures, we should again use the BFV Hamiltonian
formalism for the BRST quantization of the spinning string,

However, as long as one is not primarily interested in that aspect of the theory, such
an analysis can be avoided by taking advantage'® of the explicit world-sheet global
N = 1 supersymmetry remaining after superconformal gauge fixing. We simply nced to
'find out how to supersymmetrize the BRST quantization of the bosonic string, which
is most efficiently done by means of world-sheet superfields'é?,

Indeed, matter fields (z#, \¥) correspond to such superfields, and the ghost sector
now follows from a ghost superfield'®!®. The fermionic components of the ghost su-
perfield are the (b, c) ghost system associated to the bosonic constraints of world-sheet
reparametrization invariance. Its bosonic components are the ghost system associated
to the fermionic constraints of world-sheet local supersymmetry, the so-called (8,7)
system of superghosts.

Since we have in the superconformal gauge, the action (3.9) for the matter fields,
and the part of the BRST invariant action associated to the bosonic constraints and its
ghost system (see (2.141)), it is rather easy to guess'® what the BRST invariant action
and the BRST charge for the spinning string should be in the superconformal gauge. By
lack of space, and since we do not really need the details of BRST quantization in the
remainder of these notes, we shall not develop these considerations any further, despite
}he fact that the superghost system plays an important role in string theory'®, and
is cssential in one general approach to string theory constructions®%3, The interested
reader is invited to apply the approach sketched above and work out for himself the
BRST quantization of the spinning string in the superconformal gauge. Details can be
found in Refs. 15, 16, 19.

For later purposes, it suffices here to state some of the results following from such
an 'analysis. As for the bosonic string, superconformal transformations of the spinning
string in this BRST formulation are generated by total super-Virasoro generators L(T)
and J{T). Now, they not only include the contributions LX) and JIX) of the matter
fields considered previously, but they also include the total contributions LB and J(B)
of the ghost sector. In particular, the total ghost Virasoro generators LB} are given by
the sum of the (b, c) contribution L{) obtained for the bosonic string, and a contribution
L) from the (B, 7) superghost system.

The moding of the ghost supercurrent modes J{B) is the same as that of the fermions,
namely integer for a Ramond sector and half-integer for a Neveu-Schwarz sector. Indeed,
the matter supercurrent J, in (3.20) satisfies the same boundary conditions as the
matter fermions, hence so do the superghosts (B,7) associated to the gauge invariance
generated by J,, and the ghost supercurrent coupling to them. Hence, the contribution
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of the superghost system to the central extension of the total Virasoro algebra depends
on the fenmionic boundary condition. For the Virasoro algebra generated by L, one

finds'®'? .
o ftsector : e(n) = lin® - 2u, {1.69)
o NS sector : e(n)= 1w +u. (1.70)

If we now add up all contributions to the total central extension of the total Virasoro
algebra, which, as for the bosonic string, includes the subtraction constants ay and a_
following from normal ordering, one obtains'®!® ;

o Rsector: ¢(n) = g(D —10)n° + 24ayn, (3.71)

e NSsecor:  ¢(n) = g(o — 10 + [g(z -D)+ 24a_] n. (372)

Hence, conformal invariance, and thus reparametrization invariance, is maintained
at the quantum level only if we have the same critical values as obtained previously
from different considerations )

D=10, a; =0, a-=%. (3.73)

Recall that within the present quantization approach, super-Weyl invariant is explicit,
since the superconformal modes of the world-sheet graviton and gravitino decouple.
In Polyakov's path-integral approach®, super-reparametrization invariance is explicitly
preserved, but super-Weyl invariance is only realized if we have the conditions (3.73)%.
Otherwise, the superconformal modes are dynamical fields.

Actually, with the critical values (3.73), not only does the central extension of the
total Virasoro algebra vanish, but so do all the central extensions of the total N = 1
super-Virasoro algebra generated by L{T) and J{T)!%, Moreover, the total quantum
BRST charge is then also nilpotent®, thereby ensuring gauge invariance, namely super-
reparametrization invariance, of the quantum spinning string.

That all these considerations are related and all lead to the critical values (3.73) is
not surprising, considering the fact that the super-Virasoro generators L{T) and J{™
are given by anticommutators and commutators of the b and § ghosts with the BRST
charge, as was the case also for the bosonic string. This is the reason why it is enough
to consider for example, the total central extension of the Virasoro algebra to determine
the critical values for gauge invariance.

As a last comment, let us say that physical states are again defined as BRST in-
variant states of definite ghost charge. Indeed, as for the bosonic string, the non-trivial
BRST invariant cohomology classes of the BRST charge, both in Ramond and Neveu-
Schwarz sectors, are in 1-to-1 correspondence with positive norm physical states in the
old covariant or light-cone gauge quantization, with however a degeneracy due to ghost
and superghost zero-modes®5, In the NS sectors, this degeneracy is two-fold since
only the (b, ¢) system has zero-modes. But in the R sector, this two-fold degeneracy is
itself infinitely degenerate!® due to the (8,7) bosonic zero-modes. Hence the necessary
restriction on the ghost number, to obtain a 1-to-1 correspondence with the physical

content of the theory.
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4 THE PRINCIPLES OF STRING THEORY CONSTRUCTION

Now that we have described and understood the structure, the origin and the mean-
ing of the restrictions which appear for bosonic and spinning strings, we may actually
infer a general description of the requirements that any string theory should meet. So
far, we have concentrated on the restrictions following from local gauge invariance,

i.e. invariance under infinitesimal gauge transformations. As we shall discuss, addi- .

tional requircment also follow from global gauge invariance, i.c. invariance under gauge
transformations not connected to the identity transformation.

The formulation of the basic rules for string theory construction that we are about
to present, actually grew out from the construction of ten dimensional hicterotic strings
with space-time supersymmetry®®, and their toroidal compactifications®’.

4.1 Quantum Consistency Constraints
4.1.1 Local world-sheet invariances

As is now clear, string theories are two dimensional field theories of quantum gravity
coupled to matter fields, which are reparametrization invariant in the world-sheet. The
constraints which follow from this gauge invariance are the vanishing of the generators
of local diffeomorphisms, i.e. local world-sheet reparametrizations connected to the
identity.

This world-sheet gauge invariance may be extended to some larger symmetry, in-
cluding reparametrization invariance, as is the case for example for the spining string
where we have world-sheet super-reparametrization invariance under a local N = 1
supersymmetry. Other extensions are also possible.

Such local world-sheet symmetries are essential in obtaining a consistent quantum
string theory. In the conformal gauge, the existence of such symmetries at the quantum
level guarantees that negative and zero-norm states decouple from physical states and
amplitudes, as is necessary for unitarity (actually, we only established this property at
the level of the physical spectrum, through the no-ghost theorem, but it may be shown
to be also true for tree level amplitudes'®). In the light-cone gauge, the existence of
local world-sheet symmetries is essential for the space-time Poincaré covariance of the
space of states.

Moreover, world-sheet local gauge invariances seem to be related in a very profound
and natural way to space-time local symmetries. Indeed, string spectra always contain
the associated massless gauge bosons, such as the graviton, Yang-Mills bosons and
gravitinos, and the corresponding quantum field theories are known to be consistent
only if such massless particles couple to the associated conserved space-time currents.

Hence, it is vital for quantum consistency of a string theory that its local world-sheet
symmetries be preserved at the quantum level. As we know, this leads to restrictions on
the number of world-sheet degrees of freedom, since the associated quantum anomalies
must vanish.

Gauge invariances of string theories require gauge-fixing, with the ensuing ghost
sectors. In the conformal gauge, as was discussed in detail, the ghost sector associated
to world-sheet reparametrization invariance, which is a symmetry for any string theory,
is the (b, c) ghost system. Its contribution to the central extension of the total Virasoro
algebra is

o(n) = —26n> + 2n. 4.1)
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If in addition we have local N = 1 supersymetry in the world-sheet, the corresponding
(8,7) superghost system contributes the following values to the total central extension.

+11n? = 2n, (4.2)
+1in® 4 n. (1.3)

R sector: ¢(n)
NS sector: ¢(n)

]

Similarly, for any other local world-sheet gauge invariance of the theory, one must
take into account the corresponding contributions of the associated ghost sector Lo the
central extension in the conformal gauge.

In this gauge, the remaining world-sheet degrees of frecdom, namely the matter
ficlds which couple to the two dimensional quantum gravity sector, define a confor-
mal field theory, with the corresponding Virasoro algebra and central extension. Local
reparametrization invariance at the quantum level, requires that the total central ex-
tension of the total Virasoro algebra, which includes the subtraction constant due to
normal ordering, and the contributions from all the ghost sectors, vanishes identically.
Clearly, this determines the value of the total central charge for the matter fields, and
the value of the normal ordering constant. The same values should ensure that any
other local world-sheet symmetries of the system are then also realized at the quantum
level. This may be checked by computing the central extensions of the full symmetry
algebra in the conformal gauge, or equivalently, by checking that the corresponding
BRST charge is indeed nilpotent.

In order to describe a string theory in a D dimensional flat Minkowski space-time,
we must have as world-sheet matter fields D scalar fields z#(a, 1), giving the space-time
position of the string. In the conformal gauge, each of these scalar fields contributes to
the central extension of the Virasoro algebra by

e(n)=n®~n. 4.9)

For string theorics with space-time fermions in the NSR formulation, we need a world-
sheet local N = | supersymmetry such that the D scalar fields have as superpartners
D world-sheet Majorana-Weyl spinors A4(e,7). In the conformal gauge, each of these
spinors contributes as follows to the central extension of the Virasoro algebra:

R sector: e(n) = %n’ +n, (4.5)
NS sector:  ¢fn) = %n’ - %n. (4.6)

The remaining world-sheet degrees of freedom, if any, are then considered as inter-
nal degrees of freedom, which in the conformal gauge define a conformal field theory
contributing to the Virasoro algebra with the corresponding central extension:

- e(n) = cin® + Binin. (4.7)

Hence, for a theory having only world-sheet reparametrization invariance, so called'
N = 0 supersymmetry, quantum gauge invariance requires that the central charge of
the internal conformal field theory and the subtraction constant in the total Virasoro
algebra be given by:

Cine = 26-D, (4.8)
a = 5l(D=2)-fai (4.9)
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For a theory having N = 1 world-sheet supersymmetry, the corresponding values are:

ot = g(m-o). (4.10)
1
R sector: a, = ﬁ[—'ﬂi‘,’,,], (4.11)
1.3 -
NS sector: a. = ﬁ-[i(D—ﬂ—ﬂiM]. (4.12)

Clearly, the value for the subtraction constant determines the lowest mass values of
the physical spectrum. We have the following contributions to this normal ordering
constant: +3; from a scalar degree of freedom, —3 from a Majorana-Wey! spinor in
the Ramond sector and + % from a Majorana-Weyl spinor in the Neveu-Schwarz sector.
These are also the values given by (-function regularization of the correspanding infinite
series. Note again the breakdown of N = 1 supersymmetry for NS boundary conditions.

The same restrictions on cin¢ and the subtraction constant may be obtained in the
light-cone gauge®. Indeed, the transverse string coordinates together with the internal
degrees of freedom define a conformal field theory, with a central extension such that
the full Lorentz algebra is realized at the quantum level, i.e. such that the commutator
{M~*, M~J] vanishes identically. For example, the total central charge of this conformal
field theory must be ¢ = 24 for a string theory with N = 0 supersymmetry®, and
¢ = 12 for a theory with N = | supersymmetry®. These restrictions then lead again
to (4.8) and (4.10). The same applies to the normal ordering constants, which however
may also be determined by considering the would-be massless physical states, as was
explained for bosonic and spinning strings*,

With the string theories discussed in the previous two chapters, we have a situation
where there are no internal degrees of freedom. From (4.8) to (4.12), we then recover
of course the same critical values. Historically, the values D = 26 and D = 10 were
believed to correspond to critical values of the dimension of space-time for which these
theories could be consistently quantized. Now, they are seen to correspond to upper
bounds on the dimension of space-time. Indeed, in order that the internal conformal
field theory be unitary, we must have®® ¢, > 0.

However, in the present formulation of string theory, there is no dynamical argument
which could single out any particular value of D. String theories may be constructed
for space-time dimensions ranging from 26 to 2. In particular, the case D = 4 requires
Gine = 22 for N = 0 supersymmetry, and ciny = 9 for N = 1 supersymmetry. If the
classification of the corresponding conformal field theories were known, one could then
give the complete list of all possible four-dimensional string theories.

From the present point of view, the problem of decoupling of conformal modes
of the two dimensional gravity sector becomes somewhat academic. Indeed, in the
conformal gauge, when these modes are dynamical fields, they simply correspond to
some conformal field theory, and as such they may be regarded as some internal degrees
of freedom. The study of the corresponding conformal field theory may be nonetheless
important 3728

The reader may have been wondering why we restricted all our attention to N =0
and N = | world-sheet supersymmetry, and did not consider local N > 2 supersym-
metries. The reason is that the corresponding possible’™ dimensions of space-time are
D <2, which does not leave much room for describing strings vibrating in transverse
space dimensions! Nevertheless, the corresponding conformal structures find important
applications elsewhere®, and also in string theory as we shall comment upon later.
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In conclusion, the requirements discussed in this section determine the necessary
and sufficient conditions for maintaining , at the quantum level, the local world-sheet
gauge invariances of string theory, namely local reparametrization invariance and its
extensions. They are also necessary, but not necessarily sufficient as we shall discuss in
the next section, for full quantum consistency of the theory.

The corresponding world-sheet structures can be used in the construction of open
and of closed string theories. For closed strings however, we have the additional feature
that different such structures may be used in each moving sector. Except for the space-
time bosonic zero-modes ¢* and P* giving the space-time position of the center-of-mass
and the total space-time momentum of the string, all other modes indeed separate into
right-and left-moving modes, including the internal degrees of freedom. Hence, we have
the following broad classification of closed string theories’, depending on the number
of world-sheet supersymmetries in each moving sector:

sector
string theory | right | left | dimension
bosonic N=0|N=0] D<2
heterotic N=0 | N=1| D<.10
Type Il N=1|{N=1| D<10

4.1.2 Global world-sheet invariances

Global world-sheet reparametrizations, which are not continuously connected to the
identity transformation, but should also be symmetries of the quantum string theory,
fall into two classes: orientation preserving and orientation reversing diffeomorphisms.
If only the former syminetries are imposed on the system, one is describing an oriented
string theory. Otherwise, we have an unoriented string theory. Let us first discuss this
latter situation.

In the case of a closed string, an orientation reversing reparametrization, such as
o — % — g, clearly exchanges the right-and left-moving sectors. Hence, all states which
are symmetric under this transformation remain physical for unoriented closed strings.
For example, the massless 2-index antisymmetric tensor is always projected out from
the spectrum,

For open strings, the orientation reversing diffeomorphism (¢ — # — o) clearly
changes the phases of bosonic and fermionic modes. These phase factors may be com-
pensated for by coupling open strings to gauge degrees of freedom, by introducing
Chan-Paton factor”. These Chan-Paton factors may intuitively be thought to corre-
spond to charges attached at the end points of the open string. This was originally
suggested by Chan and Paton for U(n) groups™, by viewing these charges as a quark
and an anti-quark in the fundamental representation of U(n).

Actually, this idea is easily generalized™ by associating to each state of the open
string some representation of some algebra. However, this may not be done arbitrarily,
since the correct factorization of tree-level scattering amplitudes must be obtained™.
Indeed, the gauge quantum numbers of intermediate states must be such that they may
couple to those of the external states. This tree-level consistency requirement may be
solved™7, with the following result:

o only the Lie algebras associated to U(n), SO(n) and USp(n) are allowed,

¢ all mass levels even in a’m? must be in the adjoint representation,
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o all mass levels odd in a’m? must be in the following representations:
~ U(n): adjoint representation
- S§0(n): M1 4+
- USp(n):B +e

Moreover, U(n) gauge degrees of freedom may only be introduced for oriented open
strings, and SO(n) or USp(n) ones for unoriented open strings (this result agrees with
one’s intuition).

When considering string interactions, where open strings interact at their end points,
it is clear that both open and closed string sectors of a same theory must be included
in the description of the spectrum. Indecd, a single open string may interact at its own
end points to form a closed string, or a closed string may break to form an open string.
Hence, the possible situations are:

o open and closed oriented strings,
¢ open and closed unoriented strings,
o closed oriented strings,
¢ closed unoriented strings.
Therefore, there exist the following D = 26 bosonic theories:
o open and closed oriented strings, with gauge group U(n),
o open and closed unoriented strings, with gauge group SO(n) or USp(n),
¢ closed oriented strings,
¢ closed unoriented strings.

The first two classes correspond to the Veneziano Model™, the third to the Extended
Shapiro-Virasoro Model™ and the fourth to the Restricted Shapiro-Virasoro Model™.
All these theories have space-time scalar tachyons, a feature incompatible with unitarity.

Since the open spinning string has only one space-time supersymmetry, we have the
following D = 10 supersymmetric string theories™:

¢ Type 1 open and closed unoriented superstring, with gauge group SO(n) or
USp(n),

o Type I closed unoriented superstring,
¢ Type lla closed oriented superstring,
o Type IIb closed oriented superstring.

The closed string sector of the first two classes is obtained by truncation of the the
type 1Ib superstring under the orientation reversing diffeomorphism symmetry. Indeed,
the space-time supercharges associated to the two moving sectors must have the same
chirality. Hence, the first two cases have N = 1, D = 10 space-time supersymmetry,
whereas the last two cases have N = 2a or N = 2b, D = 10 supersymmetry.
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‘I'hese are thus the restrictions following from the requirement of quantum invari-
ance under orientation reversing world-sheet diffcomorphisms, by considering quantum
consistency at tree-level. By considering higher loop amplitudes however, further re-
strictions are imposcd.

In the case of open strings, this is well known®. lndeed, when considering
1-loop amplitudes with external open string states of zero-norm, such amplitudes nist
vanish identically, i.c. all null states must decouple. In the casc of Type I superstrings,
this question hias been investigated for external massless gauge bosons® and gravitons™,
with the conclusion that such a decoupling occurs only for the gauge group SO(32) =
50(2'%/3), Although such a decoupling has not been established yet for all other null
states, including massless and massive fermions, it will most probably also occur for
the same gauge group only.

In the case of open bosonic strings, the same question has been investigated for
arbitrary external open string states, with the conclusion® ™ that such a decoupling
can never occur because of the open string tachyon, but that otherwise, except for
this non-vanishing tachyon contribution, decoupling would require the gauge group
S0(2%/%)™, independently of any regularization®®".

Hence, higher loop unitarity restricts open string theories to those of unoriented
open and closed strings with gauge group SO(2P/2), up to possible tachyon contribu-
tions® ", in which case the theory is ill-defined anyway.

In the case of unoriented closed strings, not much is known along these lines. In
the case of oriented closed strings however, it is widely believed that modular invari-
ance (which is discussed below) and the absence of tachyons are sufficient conditions to
guarantee decoupling of all null states. This has been established explicitly for massless
bosonic states in the case of superstrings, and from the point of view of the correspond-
ing low-energy effective field theory®®. General arguments support this conjecture.®

It so happens that the SO(2P/2) unoriented open string theories can be obtained
from oriented closed string theories by a Zy-orbifold construction in the world-sheet™,
Thus, this leads to the idea?? that all consistent open string theories are unoriented

 string theories which are obtained through such a construction from an oriented closed

string theory. Moreover, quantum consistency of these open string theories, with in
particular decoupling of all null states to all orders of perturbation theory, would then
simply follow from modular invariance to all orders of the corresponding oriented closed
string theory®®’", Since a Z-orbifold structure may be defined in two ways, one
may believe that one of these structures would lead to a theory of unoriented open
and closed strings, and the other structure to a theory of unoriented closed strings
only. In addition, more complicated theories may possibly be obtained through other
abelian (and non-abelian?) orbifold structures on the world-sheet, thus corresponding
to theories of strings with more than two end points®*7".

Hence, this opens the way to the construction of new open (and more complicated?)
string theories in less than 26 or 10 dimensions, including 4 dimensions®, by considering
any consistent closcd oriented string theory. This is certainly an interesting possibility,
in particular with regards to the possible gauge symmetrics. Much however remains to
be done in this direction.

In the remainder of these lectures, we shall concentrate on the construction of ori-
ented closed strings, i.e. theories for which the world-sheet has a well-defined orienta-
tion. In string perturbation theory, scattering amplitudes are obtained by considering
a world-sheet corresponding to a surface of given topology, to which the external states
are attached!!, The topology of the surface is characterized by its genus g, which counts
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“the number of holes in the surface, or the number of handles attached on the sphere (of
genus g=0) to obtain the surface. In the case of oriented closed strings, the space of
global diffeomorphisms is non-trivial when the world-sheet has a topology more complex
than that of the sphere, namely when its genus is greater than zero, g > 0.

Let us introduce some terminology'!. Dif fo denotes the space of all world-sheet
diffeomorphisms continuously connected to the identity transformations; they thus pre-
serve the orientation. Diff denotes the space of all orientation preserving diffcomor-
phisms. The quotient Dif f/Dif fy = §, then forms a group, the group of all discon-
nected components of Diff, known as the modular (or mapping class) group. This
group is defined for each genus g separately.

By imposing the constraints discussed in the previous section, we are assured that
Dif fo is a symmetry of the quantized theory. However, requiring that string theory
is fully reparametrization invariant still imposes the additional constraint of modular
invariance under §, to all orders in the loop expansion.

Actually, it is enough to impose this invariance for vacuum amplitudes only. Modu-
lar invariance for scattering amplitudes should then follow by factorization. Moreover,
it seems to be a fact that modular invariance of the 1-loop vacuum amplitude and
the correct spin-statistics relation (namely, that space-time bosons and fermions con-
tribute with opposite signs in loops) are sufficient conditions for modular invariance to
all orders®>8!,

For this reason, we shall restrict the discussion to 1-loop vacuum amplitudes, or
partition functions, for closed oriented string theories. The corresponding world-sheet
has genus ¢ = 1; this is the topology of a torus. By using local diffeomorphisms and
Weyl rescalings, it is always possible to map this torus into a parallelogram, with a flat
metric, in the upper-half complex plane €, with opposite sides identified, and defined
by two vectors attached at the origin and ending at 1 and 7 = 71, + in(Immny; > 0)
respectively (the parameter 7 should not be confused with the world-sheet coordinate
7). There is thus a torus associated to every point in Ct. The opposite however, is
not true. A same torus may correspond to different points in C*. Indeed, modular
transformations leave the torus invariant but act non-trivially on C*.

The modular group of a given compact Riemann surface is generated by so-called
Dehn twists®¥®, For the genus g = 1 case, there are two such Dehn twists, obtained
as follows. For each of the two homology cycles of the torus, cut the surface along this
cycle, twist it by 2x and glue it back together. Clearly, this is a global diffeomorphism,
leaving the torus invariant, but not the associated parameter . Indeed, cutting along
the cycle corresponding to o-parametrization, we have the Dehn twist acting on 7 as:

T:r—7141. (4.13)
For the Dehn twist along the other cycle, we have

Sit—-1/1. (4.14)
Hence, the modular group §2, = 1 of the torus is generated by these two transformations

S and T. It is isomorphic to the group PSL(2Z) = SL(2, Z)/7,, since it acts on 7 as:

ar+b

o d a,bec,d€Z ad-bc=1. (4.15)
Let us introduce here some more terminology''®2. For a Riemann surface of given
topology g, let us consider the space of all metrics (of Euclidean or Minkowski signa-
ture) defined on this surface. The quotient of this space of metrics by the semi-direct

T —
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product Dif fox Weyl, with “Weyl” representing Weyl transformations, is then called
Teichmiller space. Cenerally, the modular group ©, acts non-trivially on Teichmiller
space, whose quotient by €1, is called modular space. Modular space parametrizes all
possible conformal, complex or geometrical structures of the corresponding Ricmann
surface. In particular, we just saw that for g = 1, Teichmiller space is the upper-half
complex planc C* and that modular space is simply ¢t/ PSL{22). Let us choose the fol-
lowing fundamental domain of the modular group in Teichmiller space, to represented
modular space:

F={reC:|r]> l',w%SRer<%,lmr>0}. (4.16)

Modular invariance thus requires that the transformations (4.13) and (4.14) leave 1-loop
vacuum amplitudes invariant. To express these amplitudes, all the machinery of path-
integrals!!:2482 s not really necessary, if one recalls that the 1-loop vacuum amplitude
of a single relativistic bosonic or fermionic degree of {reedom in ordinary quantum field
theory is given by:

F -;-ln det|[-0+ m?] = :}:%trln[—D +m?, (4.17)

where the upper (resp.lower) sign applies to a boson (resp. fermion). Through a proper-
time representation, this quantity is given (up to a factor) by:

1 fodt :
) = 4o — ~D[3,-t0F
A(m?) :|:2/; : (4xt)~ e (4.18)

where ¢ measures the total proper-time in the loop, and ? is some mass scale. Note
that in this expression, the trace over the zero-modes, namely the loop momentum, has
already been taken.

For a mass distribution p(m?) of states of the same statistics, given as

p(m?) = 3 db(Z ~ (an + B), (4.19)

2
n=0 “2

where a, f are rational numbers, and the degeneracies d, are defined by the function

f(g) =Y dug®™*P qe gl <1, (4.20)
=0
the total contribution to the 1-loop vacuum amplitude is then:
= 1 fedn 2. \-D/2 f(.~%m
A= [7 2 Betn) S ). (421)

Here, we set t = 2x7;.
Let us now consider the case of a closed string. Typically, for bosonic and fermionic
states, we have the mass formulae:

%a’m’ = (an+ Br) + (am + ), (4.22a)
an+fr = am+ P, (4.22b)

where a, Br, B are rational numbers, such that a~*(fr — ft) is an integer, and
n,m are positive integers (it is always possible to choose the factor a to be the same
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in each moving sector). The values an and am are the eigenvalues of the excitation
level operators N and N (or N+ and N") in each moving sector, namely the Virasoro
zero-modes with the contribution of the bosonic zero-modes subtracted away. To each
moving sector, we associate a partition function:

falg) = Trg®™*+om) = 5~ dp(n)q?len+om), (4.23a)
n=0

Julg) = Trg™+0m) = 3 4y (n)gPlonso), (4.23b)
ne=0

with the traces taken over all non-zero modes, As was explained for the closed bosonic
string after (2.113), the level matching condition (4.22b) is easily implemented in the
partition function for the theory, which then has the expression:

16 = [ 32 ntele =it (21)

When substituted in (4.21) , we thus obtain for the corresponding 1-loop vacuum am-
plitude:

1 - dry fi/2e 1 Ny e

A = £5a(8x?)"08 f: -;:,1 L e dr.?m Tale™ ) Te(e™), (4.25)

where
T=1 411, 0=2ran. (4.26)

On the other hand, we have:

SR(e™)fu(e™) = Trei*nFPe-mni’, (4.27)

where
P = 2[(N*+Ba)~ (N* + Au)] = 2((L¢ + Br) — (L + BL)), (4.282)

H' = 2(N* +8p)+ (N* + Bo)} = 2(L¢ + Br) + (Tg + Bu)] - o'(PP)2.

(4.28b)

Hence, P is the generator of translations in ¢, and A’ the generator of translations in
7 with the bosonic zero-modes subtracted out. The physical meaning of the expression
(4.25) is thus clear. As the closed string propagates freely before annihilating itself, it
propagates for a total proper-time value (proportional to ) (xr;) and twists on itself by
an angle (proportional to) (x7). The factor (4.27) precisely computes the corresponding
partition function. We recognize in 1, and 7, respectively the real and imaginary parts
of the modular parameter r of the associated torus topology. When multiplied by the
factor r,"” /2 which corresponds to the trace over the bosonic zero-modes (P¥) , the

_partition function (4.27) is then integrated in (4.25) over all possible values of 1, and 1y,

i.e. overall possible geometries of the torus associated to this 1-loop vacuum amplitude.

We thus conclude that the 1-loop vacuum amplitude of a closed string theory is
given by the expression (up to a factor):

/d%;ﬁ-r:-oanq’(N“wﬂauﬂl H".l’ (4'29)
where )
g="", r=n4in, (4.30)
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and the integration is performed over some domain of Teichmiiller space. Modular
invariance requires on the one hand, that the integrand in (4.29) be modular invariant,
namely invariant under the S and T transformations of the modular parameter, and on
the other hand, that the integral in (4.29) be performed over the fundamental domain
F defined in (4.16), as otherwise the same geometrical configuration would be included
more than once in the amplitude.

It is easy to see that invariance under T in (4.13) only requires that

N+fpn=N+p8. (modl) (4.31)

This is the constraint expressing invariance under constants shifts in (¢ — o + a¢). For
the transformation S in (4.14), it is easy to show that we have

dﬁdﬂ dﬁdfz
T:
n - —lfi" (4.33)

Hence, invariance under r — —1/r requires that the factor

1=y N 4oR) 53N 401) (4.34)

be modular invariant.

By restricting the integral (4.29) to the fundamental domain F, the usual short-
distance divergence at r; — 0 is excluded. Thus, string theories have a much better
short-distance behaviour than ordinary quantum field theories of particles. This re-
striction due to modular invariance is one of the reasons for the possible finiteness of
string theories. However, the point r — 0, a short-distance limit, is related to the point
7 — i0o, a large-distance limit, through the modular transformation r — —1/r. This
is the simplest example of a duality property between large distance and small distance
physics in string theories.

The fact that the large distance point r; — ioco is included in the integral (4.29)
implies that its expression is ill-defined for tachyonic theories. Indeed, we have

g™ =it (4.35)

Actually, this divergence has no physical meaning® ™. It is only a consequence of
the fact that the proper-time representation used in (4.18) is not adequate® ™™ when
m? < 0. It may be shown®77 that the correct result is obtained by inserting in (4.29)
a factor ¢~*™7, with v > -m: achyon’ and then taking ¥ — 0 once the integral is
completed. However, modular invariance is then explicitly broken. But after all, this
is not so surprising. Modular invariance is believed to be essential in the quantum
consistency of string theories. For example, it should guarantee that all null states
decouple to all orders of perturbation theory, which is necessary for unitarity. For a
tachyonic theory, unitarity is certainly not obtained, and as we discussed, null states do
not decouple either. Thus, if modular invariance indeed implies unitarity, a tachyonic
theory can never be modular invariant. For these reasons of unitarity and modular
invariance, a tachyonic theory can never be considered to be a consistent quantum
theory.

Finally, let us remark here that the factorization of the partition function (4.29)
into right-and left-moving contributions generally extends to all orders of perturbation
theory. This property is known as holomorphic factorization.!!
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4.2 Examples of Modular Invariance
4.2.1 The D=26 closed bosonic string

As a first example of the principles of string theory construction at work, let us re-
consider the simplest of all string theories, namely the closed oriented bosonic theory
studied in chapter 2. In this case, all world-sheet matter fields are bosonic coordinates
z#(a,1), taking their values in some Minkowski space-time of D dimensions. From
our discussion above, we know that quantum local reparametrization invariance in the
world-sheet requires the values (see (4.8) and (4.9)):

D-2
D =26, a=——= 1. (4.36)

These values immediately lead to the description of the space-time spectrum which we
gave in chapter 2.

Let us now consider the global constraint of modular invariance, and, as an exercise,
assume that the values (4.36) are not specified. The contribution of one scalar degree
of freedom z#(o,7) to the partition function (4.29) in one moving sector is simply:

1 = l - 2 Bo__ 3 -1
q—;,;ag o [ %)™, (4.37)
where 8° is the contribution to the ordering constant “a” from one scalar field in one
moving sector, and 5(r) is the Dedekind n-function defined in (2.111). Hence, the 1-loop
vacuum amplitude is:

dridry . ik )2(p8 - k)] (3=D) -
/ S [q2e2- g8 -20) 02 gy pa-0), (4.38)
Under modular tranformations, the n(7) function transforms as follows:
T:r—=71+1 7(r) = ™ Miy(7), (4.39)
S:ir—=-1/r n(r) — (-—ir)"’q(r). (4.40)
Hence, modular invariance under  — 7 + 1 requires
B2 =B} (mod1), (4.41)
whereas invariance under 7 — —1/7 requires
1
Bl=5 =5 (4.42)

Therefore, modular invariance requires that each scalar field contributes a value 1/24 to
the subtraction constant. This is the value also following from local reparametrization
invariance, and from (-function regularization. From this point of view, one may say
that this type of regularization is compatible with modular invariance, so that it may
consistently be used to obtain the correct values for the subtraction constants. Intu-
itively, the reason for this compatibility is that (-function regularization does not require
any mass scale, and thus should preserve conformal , Weyl and modular invariance®*.
Note however that modular invariance does not fix the value for D; the quantity (4.38)
is modular invariant for any value D, provided we have the values (4.42) for the order-
ing constants.lt is only local reparametrization invariance, through the requirement of
a vanishing total central charge of the Virasoro algebra, which fixes the value D = 26.
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In conclusion, the 1-loop partition function for the oriented closed string in 26
dimensions is: dnd
S e (4.43)
Thus, modular invariance does not impose any additional constraints than those follow-
ing from local reparametrization or conformal invariance. From that point of view, the
closed bosonic string is a consistent theory. However, we know that the values (4.42)
lead to the existence of a tachyun, which manifests itself in (4.43) by the fact that the
factor |n(r)|~*® diverges as (¢**?) when 7 — ico. This divergencess indeed corresponds
to a state with %o:'m2 = —2, As we discussed in the last section, such a situation leads
to the breakdown of modular invariance, a consequence of the fact that the theory is
not unitary.

4.2.2 The D=10 closed spinning string

Let us now consider the case of the spinning string discussed in chapter 3. The mat-
ter fields are then D N = 1 d = 2 chiral supermultiplets (z*,)*). Local super-
reparametrization invariance requires

D=10, ap=0, ans = %. (4.44)

In our analysis of modular invariance, we shall use these values, although the reader
may like to repeat the argument with D, ag and ays unspecified.

The contribution of a single scalar degree of freedom to the partition function in
one moving sector is:

Trtviopi o L L1

ql/ﬂ n=l (l - qz‘) "(1).
Here, we used the fact that the corresponding subtraction constant is . For the
Majorana-Weyl degrees of freedom, we have to distinguish between Ramond and Neveu-
Schwarz boundary conditions, with the corresponding subtraction constants (~ ) and
(+%) respectively. In the Ramond sector, we then have the following contribution to
the partition function for one Majorana-Weyl degree of freedom

(4.45)

TrgWV*+3l = o ﬁ(l +¢) = 1 [fg] 1/2 (445)
q q9 n q VAL . 4
In the Neveu-Schwarz sector, we obtain
L © 8,12
Trqle -8l = q’* H(l + q"‘"’) = [.r'-] [ (4'47)
n=1
and if the contributions are weighted by the fermion number (~1)*, we have
o0 1/2
Tr(=1)FN*-%1 = % [Ha-¢"H= [%1] . (4.48)
n=l

In these expressions, 5 is the Dedekind n-function, 8; are the theta functions 0;(0]r)
defined in (3.64), and the quantities N+ and F represent the contribution of the corre-
sponding degrees of freedom to the respective quantum operators, with the trace taken
accordingly over the associated subspace of the space of states.
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It should then be clear that the corresponding partition function has the form:

drydr: [
/75" Tl;lq(r)j'“ [7gdn0s - ants - gutf] [cdu0t - au0t - pu0t]  (4.49)
- lere, dp and d count the degeneracies of the ground state spinors in the respec-
tive Ramond sectors. This degeneracy is 8 for an on-shell massless Majorana-Weyl
spinor, 16 for a massless Majorana or Weyl spinor and 32 for a massless Dirac spinor.
The quantities an, ar, fn and i, correspond to the “projectors” % an + ﬂt.(—l)"‘] and

i [an + ﬂ[,(—-l)F] in the respective Neveu-Schwarz sectors, with F, F being the fermion
numbers. For fp = 0 or At = 0, we have no projection, hence a possible tachyon state.
The case (a + B)a.L = 0 corresponds to GSO projection; the tachyon is then avoided.
In order to count correctly the number of states at each mass level, we must have
laacl + |Br Ll = 1. Finally, the relative minus sign between R and NS contributions
is due to the fact that space-time bosons and fermions should contribute with oppo-
site signs to the 1-loop vacuum amplitude. Thus, the correct spin-statistics relation is
obtained when ap and ay, are positive (with dg,d;, positive).
Under modular transformations, we have:

Tir—141 9(r) — ¢*/Mp(r), (4.50)
03 — e“"o:, (4.51!)

0 — 0, (4.51b)

04 a4 03. (4.5102)

Siroa=1fr  g(r) = (—ir)(r), (4.52)
0y — (—ir)'%,, (4.53a)

0y — (—ir)"/%,, (4.53b)

0, — (—ir)'%,. (4.53¢)

Hence, invariance of {4.49) under T requires that:
ap+Pr=0, ar+PL=0. (4.54)

This precisely corresponds to GSO projection in the respective NS sectors. With the
requirement that |ag ] + |BaL] = 1, (4.54) implies that all ap g, Br.i take the values
:!:l/?. The sign of these quantities is now fixed by modular invariance under S, since it
requires:
d d
—Br= ﬁ, -BL= Tg‘ (4.55)
Therefore, modular invariance of the 1-loop partition function implies:

1
dR = dL = 8i ap=aL = 5 = -ﬂn = —ﬂL, X (456)

These are precisely®® the conditions imposed in the GSO projection®*. They show that
this projection of the oriented closed spinning string indeed leads to a consistent string
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theory. Note that we also obtain the correct spin-statistics relation *. In conclusion,
the 1-loop modular invariant partition function of the type Il spinning string is:

drydry, 1
i (0t - 0+ 0] . (457)
Note first of all that this quantity is finite, since the limit ¥ — ico is not singular.
Indeed, the would-be tachyon in the (Ns, Ns) scctor is projected out in the difference
(03—~ 0%). Moreover, this quantity actually vanislics exactly, due to the Riemann identity
(3.66). This is a consequence of the space-time supersymmetry in each moving sector.
Note also that the discussion of modular invariance considered cach moving sector
independently from the other. In particular, this implies that the chiralities of the two
Majorana-Weyl spinors in the R scctors are not corrclated. These chiralitics may be the
same or different, corresponding respectively to the Type 11b and Type l1a superstrings.
In lower dimensions, there exist examples of string theories where the right-and left-
moving scctors are related in a non-trivial manner through modular invariance.

4.3 Spin Structures

It is convenient Lo express these last results concerning the spinning string in an other
language, by introducing a new geometrical concept: spin structures®. In the quan-
tization of world-sheet spinors, we considered two sectors associated to Ramond and
Neveu-Schwarz boundary conditions, corresponding respectively to having periodic (P)
or anti-periodic (A) fermions when taken around the closed string in the o-direction on
the world-sheet.

Clearly, when the world-sheet has the topology of a torus, since fermions may then
be taken around the two homology cycles of the torus, we have 2? = 4 possible choices of
boundary conditions. Thus, NS (resp.R) spinors then correspond to anti-periodic (resp.
periodic) fermions around the homology cycle associated to o-parametrization, with
periodic or anti-periodic boundary conditions on the other homology cycle associated
to r-parametrization. We shall denote these choices by arQ) , where the horizontal
line corresponds to the boundary condition in the o-cycle, and the vertical line to the
boundary condition in the r-cycle. Hence, NS fermions correspond to 40 and +01, and
R fermions to 4D and . These four possible choices correspond
to so-called spin structures of the torus®*#283, In the same way that a torus is endowed
with a geometry (or equivalently a complex or a conformal structure) by specifying the
modular parameter r, the torus is endowed with a spin structure, which is necessary
to describe fermions on it, by specifying these boundary conditions on a basis of the
homology group of the torus. Let us only remark here that this notion of spin structure
extends to compact Riemann surfaces of higher genus, once a basis of the associated
homology group is given®?3,

Under modular transformations of the torus, it should be clear that spin structures
are mapped into one another as follows:
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Tir—r4l
[ J.e ]
ALaL]
"],
l’lﬁ—u\ﬁl (4.58)
A A
it =1r

L)
A(;L. PI;L
Al A[A],
P[:J—» A[P], (4.59)

Therefore, when considering modular invariant partition functions of string theories
with world-sheet fermions, one must not only sum over the different possible geometries
of the torus, by integrating over t in the fundamental domain F, but one must also
sum over all possible spin structures of the torus®®. From this point of view, the GSO
projection of the previous section corresponds to summing over all geometrical data
of the torus topology of the world-sheet for the 1-loop vacuum amplitude. At genus
9 =1, the rQ sector does not mix with the other sectors. At a higher genus, this is
not the case anymore, so that it indeed participates non-trivially to the sum over spin
structures necessary for modular invariance’®.

The transformations of spin structures under the modular group are very reminis-
cent of the associated transformations of theta functions (see (4.51) and (4.53)). The
relationship can be made exact. The ordinary partition function of a Majorana-Weyl
fermion in two dimensional quantum field theory corresponds to having anti-periodic
boundary conditions in the time direction®®#, Thus, to the spin structure A0, we
must associate the contribution (4.47) in the NS sector, namely: '

) 03 1/2
AE].[;] , (4.60)

whereas the spin structure D) is associated to (4.48), since the insertion of the fermion
number (—1)¥ precisely corresponds to changing the boundary condition in time:

PRLA
p[].[%
I;I.[’7 ) (4.61)

This a.s§ociation is indeed compatible with the modular transformation under T of these
quantities. From the transformation under S, we then have for the spin structurel):

A[;j : [%]m' (4.62)
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I'inally, we may thus expect to have for the remaining spin structure

r[]: [ﬂ] m. (1.63)
P n

This is indeed correct. The first three spin structures are known as even spin structures,
whereas the last one is an odd spin structure, since the corresponding partition function
vanishes identically (scc(3.64)). This is due to the existence of fermion zero modes for
the associated boundary conditions®.

In terms of this notion of spin structures, the partition function (4.57) of the Type
11 superstring may be rewritten symbolically as:

e R R = ez

(4.64)

where the relative sign # = %1 in the Ramond sectors corresponds to the Type Ila
(7 = —1) or to the Type IIb (n = +1) superstring partition function. In (4.64), the
notation for the boundary conditions means that all 8 Majorana-Weyl spinors in each
moving sector (in the light-cone gauge) have the same boundary conditions.

To conclude, let us remark that the notion of spin structure can be extended to
arbitrary twisted fermions, where the phase factors that fermions pick up when taken
around homology cycles are now arbitrary rather than simply (£1) factors. The corre-
sponding partition functions may then be expressed in terms of general theta functions
with characteristics. For more details, see Ref.83.

5 COMMENTS AND CONCLUSIONS

Unfortunately due to lack of space, we have to leave our discussion of string theory
constructions here. It would be interesting to apply the general principles of the last
chapter to the torus compactification of bosonic strings®, or to the construction of all
ten dimensional heterotic string theories®*#88 either in a bosonic or in a fermionic
formulation, i.e. where the internal conformal field theory is realized in terms of free
scalars or free spinors on the world-sheet. This is left as an exercise for the interested
reader. He may find in Ref. 63 a useful discussion of torus compactification of bosonic
strings, and in Refs. 15, 17, 82 a description of D = 10 heterotic strings, both in a
basonic or a fermionic formulation. For example, he may like to construct the D = 10
N =1 supersymmetric heterotic strings®® with gauge group Eg x Eg or Spin (32)/Z,,
and the D = 10 non-supersymmetric tachyon-free heterotic string®s®* with gauge group
S0O(16) x SO(186), by considering all possible choices of spin structures for the internal
world-sheet fermions and imposing modular invariance.

A new fundamental structure that these theories realize is that of a world-sheet
current algebra, namely a Kac-Moody algebra®, which leads to the existence of massless
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vector states, corresponding to the gauge bosons of a space-time gauge symmetry of
the theory. In a bosonic formulation, this structure is obtained through the so-called
Frenkel-Kac construction of level 1 representations of Kac-Moody algebras, using striug
vertex operators (for more details, see Refs. 15, 17, 35, 66). In a fermionic formulation,
the current algebra structure is obtained through a quark model type of construction
(for more details, see Refs. 15, 35, 86). Hence, we have here another example of the
general and profound relationship which exists belween space-tiine and world-sheet
local symmetries.

Despite the necessity of ending these lecture notes here, hopefully the reader will
have found in the above discussion a useful introduction to and understanding of the
principles of string theory construction. This should allow him to understand the
literature on the subject and develop his own research. Clearly, the “name of the
game” has become the following : pick your favorite dimension D of space-time (usually
D = 4), and use for the internal degrees of freedom some conformal field theory with
central charge ¢ = 26 — D or ¢ = 3(10 — D)/2, corresponding respectively to N = 0 or
N =1 local supersymmetry in the associated moving sector. This internal conformal
field theory should be such that the complete 1-loop partition function of the theory
is modular invariant, and consistent with the usual spin-statistics connection (and also
free of tachyon-related divergences). Then, work out the physical spectruin and its
space-time symmetries, and decide if it has a chance of resembling, in the massless
sector, the spectrum of quarks, leptons and gauge bosons of the SU(3) x SU(2) x U(1)
Standard Model, or some Grand Unification of it. Clearly, when such a string model
is found, there is still a very large amount of work to be done®*® before calling it a
“realistic string theory”.

Originally, since string theory became the most prominent candidate for a unified
quantum theory right after the wave of popularity of Kaluza-Klein theories®”, people
tended to think of the internal degrees of freedom as compactified degrees of freedom.
For example, starting from a ten dimensional string theory, by compactifying six bosons
and fermions on some internal compact space, such as a torus, a four dimensional theory
may be obtained'’>, When this was considered at the level of the low-energy effective

‘field theory in ten dimensions, it led? to compactifications on Calabi-Yau manifolds®*1*
when requiring N = 1 D = 4 global supersymmetry. But clearly, this is only one possi-
ble approach. More generally, an arbitrary construction would not have such a simple
geometrical interpretation (for example, when the right- and left-moving sectors are
completely different), although conformal field theory in two dimensions is so particu-
lar that such an interpretation may sometimes be possible nevertheless,

From this point of view, very large numbers of string theories in 4 dimensions have
been constructed over the last years, using many different formulations for the internal
degrees of freedom which do not always lead to different theories. Let us only mention
here toroidal compactifications®’, covariant lattice constructions*3%, orbifolds®®8, group
manifolds®®, fermionic constructions™®, tensor product constructions® %92 etc....

Clearly, the approach to string theory construction can be considered from a much

“more general point of view. As was one of the main leit-motives of these lectures, string
theories in the conformal gauge, and thus also in the light-cone gauge, are nothing
but conformal field theories, where the internal degrees of freedom define a N = 0 or
N =1 conformal field theory (CFT) with a given central charge’®®. Thus, if a complete
list of these CFT and of their partition functions was known, irrespective of explicit
realizations of those theories in terms of two dimensional ficlds, a complete classification
of consistent string theories could be given. This is one among many other reasons for
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the very rapidly expanding present rescarch activity on the classification of conformal
ficld theories in two dimensions®. Let us remark hicre that from such a point of view, the
calculation of string scattering amplitudes to any order of perturbation theory becomes
an exercisc in the calculation of correlation functions in conformal field theory®.

As should be emphasized, the present approach to string theory construction docs
not give any understanding as to why space-time should be four dimensional and flat.
Only requircinents of quantum consistency are imposed, which only lead to the upper
bound D < 10. The hope is that, by classifying all possible string theories, we could not
only find out if there are potential “realistic” theories, but moreover, such an approach
could bring some new insight into the little understanding that we have concerning the
dynamics of these theories, especially in non-perturbative regimes’®. In this context,
all present constructions should be viewed as the constructions of different classical
string vacua of what could possibly be only a few fundamental string theories, still to
be formulated. For example, all toroidal compactifications of bosonic strings are related
to one another, via expectation values of massless physical states®>, Dynamics in the
spaces of moduli (or parameters) describing these different classical vacua, induced for
example by possible non-perturbative effects, could lead to some unique “ground state”
string theory. This is the general present “philosophy” behind the approach discussed
in these lectures.

Clearly, since the number of possibilities for constructing string theories is so large,
one may be less ambitious, and only consider the classification of possible “realistic”
string theories, by imposing some additional general “phenomenological” requirements.
The obvious one is to choose D = 4. One may also require that the gauge symmetry
group of the theory contains the group SU(3) x SU(2) x U(1), with massless chiral
fermions transforming as a triplet and a doublet under SU(3) x SU(2). Under very
general conditions, it has been shown® that such a requirement excludes all
Type 11 string constructions, leaving thus only heterotic strings as possible candidates
for “realistic” theories.

One further constraint which one may like? to enforce is that the four dimensional
heterotic string theory has one global space-time supersymmetry. It has been shown®
that in the conformal gauge, such a requirement imposes the existence of a global N = 2
superconformal invariance in at least one moving sector of the theory.

Hence, from such a point of view,“realistic” string theories should be obtained
through heterotic string constructions using N = 2 superconformal field theories with
central charge ¢ = 9. The simplest such theories are obtained by tensor products of the
corresponding members of the unitary discrete series®. Indeed, they lead to consistent
string theories, which share many of the properties of Calabi-Yau compactifications of
ten dimensional heterotic strings, or the associated orbifold constructions®*. Other
constructions of N = 2 superconformal theories with ¢ = 9 are also possible”, leading
to new types of string theories®. Thus, the classification of all N = 2 superconformal
field theories (with ¢ = 9) is very important in that respect, and it has indeed grown
into a research field of its own over the past months®,

Clearly, although the main research activity in string theory emphasizes nowadays
more the conformal field theoretical aspects of these theories, it is a field of research
which is going to be with us for many more years, and as such any young theoretician
should be familiar with its basic structure and properties. Not only is two dimensional
conformal ficld theory a rescarch field in its own right, it also has iinportant connections,
many probably still to be discovered, with statistical mechanics in two dimensions and
pure mathematics. Morcover, after more than five years since string theory is back at
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the fore-front of theoretical particle physics, with so many people having worked on it
from very different perspectives, not one single argument has been put forth which could
make these theories less an appealing or even inconsistent framework for the unification
of all interactions.

As there is no other alternative known today, string theory still remains a fascinat-
ing and promising speculative avenue for the ultimate quantum unification of all our
understanding of particle physics. The beauty of the mathematics involved makes it
even more rewarding.
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