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1 INTRODUCTION 

In their quest for a quantum consistent unified theory of all fundamental interactions 
among elementary particles, theoretical particle physicists in recent years have been 
entertaining the ideal that such a theory may be constructed within the framework of 
superstring theories1• As opposed to the previous attempts in the past fifteen years, all 
formulated within the framework of ordinary quantum field theory, superstring theories 
seem to possess the very same desirable properties that stimulated previous attempts 
as well as the resolution of problems which led to the dismissal of these attempts,,3, •. 

One of the most appealing features, not only from a particle physicist'. point of 
view, is that string theories provide a unique unification between gravity and all other 
interactions. Indeed, all fundamental matter particles and gauge quanta mediating all 
interactions, including the graviton, are nothing but the same fundamental object, a 
relativistic string in different states of excitation. This idea resolves the centuries old 
dream of ultimate unification: the Universe and all that it contains being made of 
only one fundamental object, with dynamics so rich that it leads to this infinitely large 
variety of physical phenomena that we observe at all energy scales in our Universe. 

Obviously, our present understanding of these theories is still far too poor to be able 
to make any definite conclusion concerning such fascinating speculations. About four 
years ag0

5 
when string theory became the prime candidate for fundamental unification, I 

uniqueness was regarded as a very compelling argument. Indeed, only a handful of 
different theories were known at the time'. Since then however, countless new string 
theories have been constructed in space-time dimensions ranging from ten to four, with 
a few of the four dimensional theories leading to a massless particle content resembling 
that of the quarks and leptons in the Standard Model. 

Furthermore, some four years ago, optimism was high that realistic particle phe­
nomenology would easily be achieved withing string theory. This optimism was based 
on the study of the corresponding low-energy effective field theories,,3, •. Recent inves­
tigations however, at the level of string theory itself, show that the problems are much 
more subtle, with entirely new mechanisms coming into play.'-, 

The prevailing attitude nowadays", is to consider that all these theories are different 
vacua of a few underlying fundamental theories still to be formulated - the hope being 

that 1I01l-p(!rtllrhativ(: l)h'!1I01ll(!lIa would df!tennille wllir.h alllollg 1111 pusliil,ll! stl'illg 
t:Olllilrudions arc actually dynamically gmleratcd, together witl. the '~Illmillg particlc 
("olllcllt and ()henomenology. 

Clcarly,such a state of affairs makes it even more difficult to make any cxperimcntal 
contad with string theories. On the other hand , this is not a goo(1 enough reasoll 
to dismiss this approadl to unification altogether. After all, string theories are the 
I)(~!lt and ollly (so far) consistent formulation for such a quantum unification, illcluding 
gravity. MorL'over I we should not forget that it took many years before the basic ideas 
of the Standard Model were widely accepted by the scientific community, and that the 
dctailed eXI)eriUlcntal tests of the Standard Moclel are only just beginning at the new 
big accelerators". 

From a different point of view, the study of string theories is also responsible for a 
strong revival of interest in two-dimensional conformal field theories9 and related lIlath­
ematicalstructures.ln recent years, this interest has led to fundamental developments9 

in the field of two-dimensional statistical systems at and off criticality. New results 
point to deep relationships between so far unrelated fields in pure mathematics', with 
completely new insights into different problems 10. These are truely fascinating subjects 
in their own right. 

All these reasons make the effort involved in getting acquainted with string theory 
worthwhile. One could even go as far as to consider that some familiarity with the 
field should now be part of common knowledge for any (theoretical) particle physicist, 
in the same manner that such familiarity is now assumed for grand unified theories, 
supersymmetry, and so on. Herein lies the main motivation for these lectures. 

It is of course not possible to discuss in such lectures all the aspects of the subject 
which have emerged over the last years. What will not be discussed for example, are 
the following points: 

• 	 the calculation of string scattering amplitudes, at any order of perturbation the­
ory, either through path-integral methodsll , or through operatorial methods such 
as the infinite Grassmannian approachl1, 

• string field theory13, i.e. the second quantization of string theory, 

• particle phenomenology from string theory·. 

What will be discussed are the "principles of string theory construction". By first 
studying in detail the case of the bosonic string, we shall understand the origin and 
the meaning of the structure and of the consistency constraints which appear when 
quantizing the system. Having identified the relevant structures, we shall then show how 
they easily generalize to the case of spinning strings, and how these general constraints 
lead to the formulation of "principles for string theory construction". 

Hopefully, by starting at an introductory level, newcomers to the subject will not 
be put off by the jargon which will be introduced in a pedestrian manner as we go 
along. Interested readers should find these notes a useful starting point for their own 
research. 

Basic references may be found in Refs. 1,14,15,16, where some historical comments 
concerning the development of the subject from a theory for strong interactions Lo a 
theory of fundamental unification are also given. Here, we shall follow more closely Refs. 
17,18,19. We shall also use units in which Ii = 1 = c, and we shall take space-time 
to be D-dimensional, with the Minkowski metric '1"''''(1',11 = 0,1, ...D - 1) of signature 
mostly "+" signs. 
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2 RELATIVISTIC DOSONIC STRINGS 

2.1 Classical Lagrangian Description 

2.1.1 The action principle 

Although we shall discuss right away the relativistic bosonic string, the interested reader 
Ulay find it useful to first consider the case of the relativistic scalar particle, through an 
allalysis similar to the one followed in this chapter. For more details, see Refs. 17-20. 

A bosonic string, being a I-dimensional object, sweeps out a 2-dimensional surface, 
its world-sheet, as it propagates freely through space-time. To represent this 'l)aCe-time 
trajectory, one introduces coordinates s"(O', T) giving the space-time position of the 
string. These quantities are D functions of two (dimensionless) world-sheet coordinates 
0' and T, parametrizing the two-dimensional surface. Both for open and for closed 
strings, we shall take 0 SO'S x-; T is considered as the time-evolution parameter of 
the system. Clearly, having both the observer'. time coordinate s· and the world-sheet 
parallu!ter T present in this formulation is a redundant reature. This is the price to pay 
for having an explicit space-time covariant description. 

In order that the physical properties of the sy.tem do not depend neither on the 
observer's reference frame in space-time nor on the world-sheet parametrization «(1, T), 
it is necessary that the action describing the dynamics of the bosonic string be a space­
time scalar and a world-sheet scalar. The total world-sheet area between some initial 
and final string configurations sr(O') =s"(O', T =Ti)(i =1,2), properly rescaled by a 
dimensionful quantity, is the obvious candidate for such an action. 

There are two ways of expressing such an action. The first, by measuring the area 
using the metric induced on the world-sheet by the space-time Minkowski melric. This 
corresponds to the Nambu-Goto action", leading to non-linear equations of motion. 
The second way to express the action is by couplinS the 2-dimensional fields s"(O', T), 
which transform as space-time Yecton and world-sheet scalars, to an intrinsic world­
sheet metric. This corresponds to the so-called Polyakov action", originally discussed 
in Ref. 23, which lead. to linear equations of motion. 

In the following, we .hall UM the notation (O(a == 0,1) for world-sheet coordinates, 
with f =T and (I = (1. As usual, partial derivatives with respect to T (resp.O') will be 
denoted by a dot (resp. a prime) above quantities. 

With these notations, from the invariant space-time line element 

d$2 ="lWds,.d~" = fJIW80s,.8fJs"J(.0J(.fJ, (2.1) 

it is clear that the induced world-sheet metric 70fJ is given by the components 

70fJ = fJIW80s"8{Js,,. (2.2) 

The Nambu-Goto action" then read. 

-11'1) r 1'1) r5(s"] =2x-o' ~ dT 10 d(1( - tkf1ofJ)I/2 = ~ dT 10 d(1£(i, s'), (2.3) 

with 

£(i,s') =2:~ -/(is')' - i'sl2. (2.4) 

Here,o' is a dimensionful quantity, of dimension a lenght square, which thus determines 
the physical scales in the system, such as the scale of the mass spectrum of the bosonic 

string. The choice of sign in the fador (-dd1oO)I/' is due to the ract thal the ill(llln~(1 
metric 100 has a world-sheet signature (-+). This also guarantees that 110 point of tht' 
Htrillg III()Vt~ raHtf~r than tllf! sp(!C!t1 of light."·IT 

Introducing an intrinsic world-sheet metric gaO, of signature (- +). llu~ Polyakov 

action22•23 is given as: 


-1/,'1 101' ~ 5[x",goo) = -- dT d(1V-Jdga/J ga08as"8pxv""". (2.5)
4 .. 0',. 0 .,., 

A priori, one could also add to it the usual Einstein-Hilbert action term 

_1_ fJ2eR/~2', (2.6)
411'''' 

or a world-sheet cosmological term 

f-I (2.7)411'0,1" "eR· 
However, the former term is a topological invariant in two dimensions (up to surface 
terlnl), which thus does not contribute to the equations of motion (in 2 dimensions. 
the Ein.tein tensor Go, = Ro, - bo,JlC') vanishes identically). The lalter tel"m is 
consistent with the classical equations of motion only if p' =O. 

At the quantum level, using a path-intesral formulation ll , it may be seen that the 
Einstein-Hilbert action sets the strength of strins interactions, whereas the cosmological 
term i. induced by I-loop short-distances singularities on the world-sheel24

• It then has 
to be properly renormalized'" .0 as to maintain the local Weyl symmetry of the classical 
Polyakov action (see below). 

Let us remark here that the action (2.5) mayallO be used to represent the propa­
gation of the bosonic string in a curved space-time background of metric G",,(s). This 
is easily done by replacing 'I,." in (2.5) by G",,(s), leading to the usual action or a 
non-linear sigma model in two dimension.. Such a formulation is the slarting point 
of a much .tudied approach to the problem of space-time compactification in string 
theory", 

By construction, both the Nambu-Goto and Polyakov actions are invariant under 
.pace-time Poincare transformations and world-sheet reparamelrizations. From the 2­
dimensional field theoretical point of view, the former symmetry is a global inlernal 
symmetry, whereas the latter is a world-sheet gauge symmetry. 

By Noether's theorem, associated to space-time translations and generalized rota­
tions (i.e. rotations in space and Lorentz boosta), there exist locally conserved energy­
and angular-momentum world-sheet currents, whose conserved charges, giving the total 
energy- and angular-momentum of the bosonic strins, generate Poincare transforma­
tions of the system. Clearly, the exi.tence of such quantities follows from tbe fact lhat 
the bosonic string is propasatins in a space-time with ilOmetry precisely the Poincare 
group. For a generic curved space-time, with arbitrary melric G,.", such quantities 
would not exist, unless the space-time metric has some special symmetries. 

In contradistinction, the world-.heet reparametrization gauge symmetry is always 
present for any string theory. Actually, it is precisely this gauge invariance, when 
imposed at the quantum level, which is responsible for all the profound and beauliful 
properties of string theory (this should become clear as we proceed with the discussion). 
Also, as we shall see in chapter 4, the formulation of IIprinciples ror string theory 
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construction" immediately followll from the W(luirernent of this gauge illvariance in the 
quantized theory. 

Among world-sheet gauge transformations. we have local worid-sht!Ct repararnetri­
zatious in the same connected component of tbe diffeomorphism group as the identity 
transformation. These reparametrizations are generated by repeated applications of in­
fiuitesimal reparametrizations, thus preserving tlae orientation of the world-sheet. Cor­
respondingly. there should exist two quantities, associated to the two arbitrary functions 
lOU) specifying such transformations, which generate infinitesimal reparametrizations 
and which vanish at all times for physical solutions. In other words. associated to 
world-sheet reparametrization invariance, we have two constraints generating the local 
gauge symmetry of the system. As we shall see, imposing this local gauge invariance at 
the quantum level leads to a constraint on the number of world-sheet degrees of freedom 
used in the construction of string theories. 

There also exist world-sheet gauge transformations which are not connected to the 
identity transformation, so called disconnected or global gauge transformations. De­
pending on the world-sheet topology, there may exist orientation preserving global 
reparametrizations. These symmetries lead to a new type of constraint at the quantum 
level. not existing in ordinary field theory, which goes by the name of modular invari­
ance. One may also impose invariance under orientation reversing global reparametriza­
tions. thus describing unoriented string t~eories (indeed, both the linear and non-linear 
actions above are invariant under such transformations). At the quantum level, this 
leads to further constraints on the physical spectrum of the corresponding theories. 
Both these constraints and modular invariance will be discussed in chapter 4. 

When compared to the Nambu-Goto action, the Polyakov action (2.5) actually pos­
sesses one more local symmetry (when ",, = 0) under local Weyl rescalings of the 
intrinsic metric 9o{J: 

90{JU) -+ C·«()9o{J«(). (2.8) 

These transformations lead to local shifts in the conformal mode of the metric 9t:r{J, 
by the arbitrary world-sheet (unction ~«(). Hence, one expects one more constraint, 
involving the generator of local Weyl rescalings. Actually, this constraint combines with 
the previous two generators of local reparametrizations into the equation of motion for 
the metric 9o{J which is an auxiliary field: 

TO{J=O. (2.9) 

Here, To{J is the world-sheet energy-momentum tensor of the scalar fields %", with: 

IT' _ ~,,~ _ ! ..,6 ~ ,,$,I
.lo{J - voZ v{J%" 29o{J9 v..,% V6%,.. (2.10) 

The constraint To{J == 0 is thus a consequence of local reparametrization and Weyl 
invariance. Its solution expresses the intrinsic metric 9t:r{J as a Weyl rescaJing of the 
induced metric "Yo{J' When substituted in the Polyakov action, one then recovers the 
Nambu-Goto action, thus showing that at the classical level, these two formulations of 
the relativistic bosonic string are indeed entirely equivalent. 

This need not be true a.t the quantum level however, due to the conformal anomaly 
in two dimensions. In a quantization a.pproadt which explicitly preserves reparametriza­
tion gauge invariance but not Weyl invariance, such as Polyakov's path-integral 
approadt22, one finds that the conformal mode of the metric 90p couples dynamically 
unless a specific condition on the number of degrees of freedom is met. In the case of 

the bosonic string disCUHs(!d here!, this condition fixes the numher of scalar fidds x" (or 
the dimension of space.time) &''1 IJ =26. 

In a quantization approadl which explicitly Im~rv(.'S Weyl invariance hUL lIut WPiL' 

rameterization invariance, such as the canonical approad, which we shall use ill these 
lecturcs20, this laLter symmetry is not realized at the quantum level unless the same con­
dition ensuring decoupling of tile conformal mode in Polyakov's path-integral is met:W. 
lienee, when this condition is satisfied, both the linear and non-linear approadtes lead 
to equivalent descriptions of the system, also at the quantum level. In these lectures, 
we shall only consider the construction of string theories in which the conformal mode 
decouples. i.e. reparametrization IJnd Weyl invariant string theories. It is also pos­
sible to construct reparametrization but not Weyl invariant string theories, in which 
the conformal mode is dynamical2T• Recently. more progress has been made in that 
direction28. 

For these reasons, we shall now concentrate on the non-linear Nambu-Goto action, 
and use canonical Hamiltonian methods to quantize the system. The same results 
actually also follow for the linear action when applying the same methods20. 

Considering the Nambu-Goto action (2.3). the conserved world-sheet currents as­
sociated to space-time translations and generalized rotations are easily found to be 
respectively 

~=~ 0_ (2.11 )" o(ot:r%")' M"" - P;%II - p:%", 
with 

OoP: =0, ooM:" = o. (2.12) 

We have: 

~~ (%%')2 _ %2%l2fl/2 [(%%')%~ _ zl2%"J, (2.131.)P! 

pi = ..::!. (r ')2 _ • 2 12)-1/2 [C' ')' _. 2 '] (2.l3b)
" 21"0' Z% % % %% %" %%" . 

The corresponding conserved charges are 

P" = fo~ d(1p!, M"" = fo~ d(1M!". (2.14) 

giving the total energy -and angular-momentum of the string for any physical solution. 
The variation of the action under infinitesimal variations cS%"«(1, T) in the coordi­

nates. leaving the initial and final configurations fixed (i.e. cS%"((1, Td = 0, i = 1.2), 
leads to the equations of motion for the system and to boundary conditions in (1. The 
equations of motion precisely express the local conservation of the energy-momentum 
world-sheet current 1';. The boundary conditions in (1 appear since we are dealing with 
a two-dimensional field theory on a space with boundary. 

For a simply-connected space-time. two choices of boundary conditions are possible. 
respectively: 

- open strings P;«(1 =O,r,T) = 0, (2.151.) 

- closed strings z"«(1 = 0, T) =%"«(1 =1", T). (2.15b) 

Note that the boundary conditions for open strings imply that there is no flow of 
energy -nor angular-momentum at the end points. 
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Finally, from the expressions for P;, it is straightforward to check that the following 
equations 

(P!:I: 8.S__ )2 =0 
-­ 2 .. 0' ' 

(2.16&) 

(Pl:l: 8..s,.), = 0 
,. 2 .. 0' ' 

(2.16b) 

are identically satisfied. Actually, these are the constraints which we expect as cousc­
(illences of local reparameterization jnvariance. Indeed, it may be seen, by performillg 
all arbitrary infinitesimal reparametrization 

~• ..... i. = ~o _ '10(~), (2.17) 

that these constraints follow from reparametrization invariance of the Nambu-Goto 
action, and that the quantities in (2.16) are the correspond in, generators. 

However, from our previous discussion we would expect to have only two constraints 
whereas we seem to obtain four. Actually, the constraints (2.16a) and (2.IGb) are 
not independent. They are related to one another by orientation preservin, ,Iobal 
reparameterizations exchangin, the role of u and T. Later, we shalt need to consider 
the constraints (2.16a) only. 

Let us remark here that in the case of the open strine, due to the boundary conditions 
(2.15a), the constraints (2.16b) reduce to 

:i2( U = 0, '1', T) =O. (2.18) 

This implies that the end points move at the lpeed of light for any classical physical 
IOlutiop. 

2.1.2 The conformal gauge 

The general solution to the non·linear equations of motion of the Nambu-Goto action 
does not seem to be obtained easily. Moreover, it would involve two arbitrary functions 
of the world-sheet coordinates, due to reparameterization gauge invariance. 

There exists however, a choice or world-Iheet parametrization, i.e. of gauge-fixing, 
in which the equations or motion limply reduce to those of massless two-dimensional 
scalar fields. Indeed, locally on the world-Iheet it is alway. possible to choose a param­
eterization such that 

701 = 0 , 700 +711 = 0; (2.19a) 

or (i:l: %')' = O. (2.19b) 

Geometrically, these conditions mean that the tan,ent vector. in the u and T directions 
are orthonormal (with respect to the space-time Minkowski metric) up to a locallcale 
factor. (Strictly speakin" such a choice ofparametrization always exist for a world sheet 
metric of Euclidean signature, but otherwise requires lOme additional technicalities in 
the case of a Minkowski signature20. This point is not essential in these lectures). 
These gauge-fixing conditions define the conformal or orthonormal gauge (the meaning 
of conformal will become clear shortly). 

Using these conditions in the definition for P:, one finds: 

_ :ill 1_ -s~ 
(2.20)P! - 2.-0" p-- - 2 .. 0" 

7 

so tbat the eCluatiolls of motion reduce to 

(2.21 )(8: - 8!),z--(u, T) = O. 

Thcse are indeed the Klein·Gordon equations for D masslc...ss scalar fields ill two dimell­
SiOiIS. The general solution is of the form 

x"(u, T) = %el,(T - u) +%e2,(T +u), (2.22) 

thus dearly showing the separation into right- and left-moving mOtles in the conrormal 
gallge. Imposing the boundary conditions {2.l5a) for open strillgs, onc finds t.hat tbe 
functions %rl) and X(2' are essentially equal and 2..-periodic (more precisely t.hese are 
tbe properties of their derivatives). This is the expression or the fact that modes are 
reOected back at the end points of open Itrings. In the case of closed strings, one 
finds that the two functions sri) and Se2, are completely independent. Thus, for closed 
Itring theories, right- and left-movin, modes are entirely decoupled and "transparent" 
to each other. This is the basic property which allowl for the vast richness in string 
theor)' constructions, since one may then use completely different structures in each 

moving sector. 
Although in the conformal gau,e the equations of molion have reduced to t.hose of 

free massless Icalar fields, the Iystem has not really simplified to such a set of fields. 
Any IOlution to the equations of motion has to satilfy the gauge-fixing conditions (2.19), 
thulleading to constraints on the Integration constantl defining the solution. 

In the case of the open string, the generallOlulion to (2.21) and the corresponding 
boundary conditions in u may be parametrized as: 

~ "t'""'I.X"(U,T) = v20'(q" + a:T + i £.J -a:e-u,,'cosnu), (2.23a) 
III n 

(2.23b)where a:=~III' 
0: =..;;wP". (2.23c) 

u:~ means summing over all positive and ne,ative integers, but excluding n = 0). 
The gauge-fixing conditions are then equivalent to the constraints 

(2.24)L!.-' =0, 

where the bosonic Virasoro generator. are given by 

Le.) 1 "t'"" _Ii .. =2£.JUIII-JIIIa ",. 
JIll 

In particular, the zero-mode constraint L~o) =0 leads to the classical mass rormula 
00 

a'M2 =E ~..aft__ =N. (2.25) 
III-I 

In the case of closed strings, we have 

%"(u, T) = v'2d{q" +(0: +D;)T + -2
1 iE1

.!.(a:e-2ift(..-., +a:e-2in(f'+"')},
III n 

(2.26a) 

where 
(2.26b)0:· =a~III'O:· =~lIIt 
(2.26c)0: = ~,I2..o'P-- = 0:;. 
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TIU! gauge-fixing conditions then rt,'duce to 

l (0) - 0 '"ii ­l a) 0 (2.27a)
"'" - " .1ft - , 

whew 
) 1"'''.:rl' _

'n ! '" va = (2.27b)1(0) -- 2 L..J a,,_mam,.,. - L..J0,,-mam,.. , " 2 m
'" 

TIlt! zero-mocle constraints L~R) =0, ~o, = 0 I(!ad to the da..~sicallllass formulae: 

21a'M' N+N, (2.28a) 

N N, (2.28b) 
with 

00 00 

N= Ea~"a",. , N = E~,,(in,., (2.28c)
".1 .=1 

Note tbat except for the bosonic zero-modes 9", a:, and a:; giving the space-time 
position of the center-of-mass of the string, we have twice as many non-zero modes a: 
and Ci: for the closed string as compared to the open string, corresponding to each 
moving sector. As said above, such a factorization in characteristic of all closed string 
theories and is the essential property which allows for a large variety of constructions 
in the conformal gauge. 

As the reader has been suspecting since the beginning of this section, the con­
formal gauge-fixing conditions (2.19) actually do not completely fix the world-sheet 
parametrization. This may be seen in many ways. 

We made it plausible that the constraints (2.16a) are the generators of the local 
reparametrization gauge invariance of the system. In the conformal gauge, these con­
straints precisely reduce to the gauge-fixing conditions, whose Fourier modes in a are 
tbe Virasoro generators. The fact that these lalter quantities must vanish for physical 
solutions thus points to the existence of a remaining gauge invariance in the conformal 
gauge, generated by the Virasoro generatora. 

As was noted above, the common scale of the tangent vectors Z,. and z'" is not fixed 
by the conformal gauge conditions (2.19). Actually, there exist local reparametriza­
tions {a({){i.e. non-singular and orientation preserving transformations) preserving the 
conformal gauge-fixing conditions. Such transformations must satisfy the equations 

8T 811 8T 811 
(2.29)8T =8tT' 8a =8T' 

For a world-sheet metric of Euclidean signature, the second of these relations would 
involve a minus sign. These relations would tben correspond to the Cauchy conditions 
for analytic or conformal transformations on the complex plane. The condition (2.29) 
thus corresponds to (pseudo )-conformal transformations, the remaining local gauge in­
variance of the system in the conformal gauge (hence the name). 

The general solution to (2.29) is of the form 

f +a =I+(T +a), T - a = I-(T - a). (2.30) 

It may be checked that the world-sheet metric 'YaP(or 9ap) is then indeed rescaled by a 
local facior. 

f)epmlding 011 the! wuri(l-she(!t tOI)(alogy, the fundiolls 1+ anel f- ahuv(! hav(! tu 
satisfy sollle boulldary conditions ill a. These fUlictions are associah'" to the cxist('n("(! 
of conformal Killing v<..dors on the world-sheet. In tbe case of free closed and opell 
stringll, sllch conformal transformations lIIay be shown to exist. lIenc(!, the solutiuns 
given above ill the conformal gauge are IIOt the most general solutions to tlte two­
dimensional massless I\lein-Gordon ecluation. The general solution is obtaim!d as ill 
(2.23) and (2.26), witll a and T given throngh two functions It and f- satisfying the 
apprOI)riale boundary conditions, as in (2.30). Of course, all these solutions correspond 
to the same physical configuration of tbe system. 

In conclusion, in the conformal gauge, the system has reduced to a set of conformal 
invariant "freelt massless scalar fields on tbe world-sheet. The existence of this conformal 
symmetry follows frolll a remaining reparametrization gauge invariallce of the system 
in the conformal gauge. This is also the reason why physical solutions must satisfy the 
Virasoro conditions L~a) = 0, L!.0) = O. Indeed, as will be shown, these quantities are 
precisely the generators of conformal transformations in the conformal gauge. 

2.1.3 The light-cone gauge 

It is possible to completely fix the local reparametrization invariance of the system 
in the conformal gauge, by introducing an additional condition fixing the local scale 
of the world-sheet metric. However, as this amounts to solving explicitly the Virasoro 
constraints, such a complete gauge fixing cannot be achieved in an explicitly space-time 
covariant manner. 

Since conformal reparametrizations (2.29) also satisfy the massless Klein-Gordon 
equation, it may be possible to fix this local scale by relating a or T to some linear 
combination of z"(a, T) in the conformal gauge. Due to the boundary conditions in a, 
both for the open and for the closed string, this may actually be done only for the time 
evolution parameter T. Moreover, to maintain explicit space-time convariance as much 
as possible, let us introduce some constant space-time vector n" to define the additional 
gauge-fixing condition. 

Thus finally, complete gauge-fixing of reparameterization invariance of the bosonic 
string is obtained through the three conditions, 

(z ± z')' =0, n"z"(a, T) = 2a'o"p"T, (2.31) 

the first two being the conformal gauge conditions, the third fixing the scale of the 
world-sheet metric. The proportionality constant in this last condition is determined 
by relating it to the total momentum of the string. Let us also remark that use was made 
of the invariance under constant shifts in T (these are indeed conformal transformations) 
to remove any constant which could appear in the last condition. 

That the conditions (2.31) completely fix the world-sheet parametrization may best 
be seen from their geometrical meaning. A condition of the form '1"z" = constant 
defines a (D - 1)-hypcrplane. lienee, tbe third gauge fixing condition determines for 
each value of T, a hyperplane intersecting the world-sheet. This then determines the 
parametrization in a for constant T, up to a constant shift in a for the closed string. By 
the conformal gauge-fixing conditions, the parametrization in T is then also determined. 

The additional non-covariant gauge-fixing condition explicitly breaks the space-time 
Poincare group down to the little group of the vector nIl (for a resume, see Ref. 17), 
whicb is still an explicit space-time symmetry of the gauge-fixed system. A priori, any 
vector of' may be used19• The most convenient choice turns out to be a light-like vcctorlO 
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n",n1 = 0, in which case the liUle sroup is isomorphic to the (0 - 2)·dimensional 
Euclidean group, having as subsroup the group SOC 0-2)" of Ipace rotations transverse 
to the vector n". Such a choice corresponds to the light-cone sauge. 

Dy convention, one takes ror the light-like vector: 

1 -1
,," = (J2,0.... ,0, J2)' (2.32) 

and one introduces the corresponding light-cone coordinates for any vectors u", v": 

:!: 1 D iu = J2(UO± u - 1», u i = 1, ...0-2, (2.33) 

with 
D-t 

U.v =-u+v- - u-v+ +E u'v'. (2.34) 
i.1 

The generators or the connected part of the litlle sroup of "" are then M+i, Mil, with 
Mil being the generators of SO(O - 2) •• The remainins generators of the Lorentz 
group, M-i and Mo(D-I), are not explicit symmetries in the light·cone sause. Their 
algebra needs to be checked explicitly, especially at the quantum level where anomalies 
may arise. 

With the use of light-cone sause.fixins conditions, it is possible to explicitly solve the 
constraints or reparametrizalion invariance and express the gauge degrees of freedom in 
terms of the physical onei'O. One then finds that the lalter degrees of freedom are the 
transverse coordinates %'(0',1") (and their associated conjugated momenta pot(a, 1"», 
whereas the gauge degrees of freedom are the light-cone components given by: 

1%+(0'.1") =20'P+1",PO+(a,1")== -P+, (2.35)

'" 
and 

Ii 

po-(O', 1") = 2;+ (poi)t +(2:d)'), (2.36) 

'" n..l • (2.37)%'-(0',1") -= P+ r-(a, 1")%"(0',1"). 

The solution to (2.37) is 

r.;-; 1 r [ ",. 8%'
%-(0',1") = v2dq- +20'P-1" +(1-; Jo da). 0 dO" P+ P"(a', 1") 80"(0",1"), (2.38) 

with q- an integration constant, and P- siven by 

p- -= /.W dO'PO-(a, 1"). (2.39) 

Hence, given the physical desreea of freedom s·. P"', ,- and P+, the sause desrecs of 
freedom %:1:, po:!: are uniquely determined and 10 is the trajectory of the bosonic Itring 
in Ipace-time. 

The relations above may also be expressed through mode expansions as in the con­
formal gauge. For open strings, this Sives 

%'(0',1") = J2d(9·+a!"+iE!0~e-··"cosna), (2.40a) 
" n 

with 

o~ = v'fc;ip'. (2.40b) 
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For tbe light-cone components, one obtains: 

q+ =0, 0: =J2(jp+~"p, (2.41 a) 

_ _ _ I L.1 (2.41 b)q = q , 0" = .J2dP+ ft' 

with the transverse Virasoro generators 

.1_1" i , (2.42)L" - 2' L.,.,0"_",o,,,. 

'" 
This leads to tbe mass rormula: 

00 

,.,, _ N.1 ="at a' (2.43)a It - - £." _. .',,-I 
thus IhowEns that the classical mass spectrum is indeed positive definite, a property 
not so obvious in the conformal gauge. 

For the closed string, the corresponding results are: 

%'(0',1") = v'fc;i(q' + (o~ +lif,), 1" + j-i E';(o~e-2ift("-.) +a!.e-2ift(T-.')], 
" (2.44a) 

with 

, 1 r.;-;. . 
 (2.44b)

00 = -v2dP' =0:"
2 

and 

(2.45a)q+ =° , 0: =~J2dP+6... =a.!, 
- _ - - _ 2 L.1 0: ___2_I.1 (2.45b)

q - q a" - J2i;ip+ .' • - ,.fidP+ ft' 

with 
(2.45c)00 = iJ2dP- =00, 

.1 1". • T.1 1 't""....i • (2.46)L. == 2' £."O~_ttlOIll' ...." = 2' £."0,,_,,,0:,..
ttl III 

The mass formulae are then: 

!o'M' = N.1 +N.1, (2.47a) 
2 

N.1 = N.1, (2.47b) 

with 
00 00 

N.1 _ '" • N.1 _ 't""...... ...... (2.47c)- L.,., 0_.0", - £." 0_.0.­
ft_1 ,,-I 

As we Ihall see, the constraints 0 0 =00, or equivalently N.1 = N.1, is the consequence 
of the fact that in the case of closed strinlS, the light-cone gauge·fixing conditions fix 
the parametrization in a only up to a constant. 

12 



2.2 Hamiltonian Quantization 

As is well-known, two different but essentially equivalent methods are available for 
quantizing a given system. One is the operatorial or canonical quantization approach. 
Thc other is the path-integral approach. In these lectures, wc shall only consider the 
former approach for thc quantization of string theories. 

For regular system, i.e. systems without constraints, canonical quantization consists 
in the following procedure. Given a description of the system through an action princi­
pic, with a Lagrange function depending on coordinates and velocitics, thc Hamiltonian 
formulation is dcrived through the usual Legendre transform. The systcm is then de­
scribed by a phase-space, i.e. the space of coordinates and their conjugate momenta, 
with time-evolution determined by a Hamiltonian function through its Poisson brack­
ets. These Poisson brackets define a symplectic structure on phase-space. Canonical 
quantization of the system then proceeds by the correspondence principle. Phase-space 
degrees of freedom now correspond to quantum operators acting on a space of states. 
The algebra of these operators is given from the Poisson brackets: the value of .the com­
mutator (or anticommutator for Grassmannian quantities) of two operators is obtained 
as (iii) times the result of the corresponding Poisson bracket (for example {q,p} = 1 
leads to [q,p] = iii, for commuting degrees of freedom q and pl. In addition, the space 
of states is equipped with an inner product such that the relevant adjointness properties 
of the quantum operators are satisfied. Finally, time-evolution on the space of states 
is determined by the Schrodinger equation, with the quantum Hamiltonian operator 
given by the classical Hamiltonian function, through a specifically chosen ordering of 
quantum operators. 

It is then also possible to obtain a phase-space path-integral representation for any 
quantum matrix element, which is unambiguously defined in so far that the quantum 
system itself is uniquely determined. 

If the integral over conjugate momenta may be completed, one then obtains the 
configuration space path-integral quantization approach for the same quantum system. 

This is the approach which we shall adopt here. The presence of constraints however, 
renders the analysis more involved. The general Hamiltonian formulation of constrained 
systems has been given by Dirac31 (for a resume see Refs. 17,32) but we shan not need 
to consider this discussion in full generality here. Within that formalism, there are two 
possible ways of quantizing a constrained system. 

The first, where the constraints are not solved for but are imposed on quantum 
physical states, typically leads to an explicitly covariant quantization of the system with 
states of negative norm. In the case of QED, this corresponds to the Gupta-Bleuler 
quantization procedure. 

In the second procedure, one first solves for the constraints by introducing gauge­
fixing conditions. The ensuing reduced phase-space33 then leads to the gauge-fixed 
quantized system, in the manner explained above. Typically, the corresponding space of 
states has a positive-definite inner product, but explicit covariance is lost. For example, 
this is the case of QED quantized in thc Coulomb gauge. 
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2.2.1 The Hamiltonian formalism"-20. 

In the case of the bosonic string in the Nambu-Goto description, associated to the 
coordinates x"(O', T) , we have the conjugate momenta dcfined by 

ac 
",,,(O',T) = !l' ( \ = P!(O',T). (2.48)

x" 0', T 

The corresponding pbase·spa.ce is then equipped with a symplectic structure defined 
through the Poisson brackcts (we always only give the non-vanishing ones): 

{x"(O', r), ....,(0", T)} = 6=6(0' - 0"). (2.49) 

All these phase-space degrees of freedom are not independent however. They must 
satisfy the primary31 constraints: 

~~) = 0 , ~!.") =0, (2.50a) 

where 
1 ax" (2.50b)~C;) = 2"'Q/~*~Z" , ~* = ..." ± 2:"" 

They satisfy the following relations: 

{x"(O', T), ~C;)(O", T)} "'Q'~*(O", T)6(0' - 0") (2.51a) 
1

{x"(O', T), ~C;)(O", T)} == :t:2~*(O'" T)a,,6(0' - 0") (2.51b) 

{~~Qr)(O', T), ~~C:)(O", Tn = '161J",[~~Qr)(O', T) +~~)(O",T)]a,,6(0' - 0"), '1, rl = +, - (2.52) 

Time-evolution of the system in phase·space is generated by an Hamiltonian, through 
its Poisson brackets, The canonical Hamiltonian density 

(2.53)'Ito =i"..." - C =0 

vanishes identically, as a consequence of reparametrization invariance. However, one 
may also add to it an arbitrary linear combination of the primary constrainta31

, and 
thus generate time-evolution (or translations in T) with the Hamiltonian 

H =10" dO'(.\+~~) +.\-~~)], (2.54) 

where .\ + , .\- are functions of the world·sheet coordinates. These functions should be 
such that the constraints ~~) = 0 are consistently preserved through time-evolution3l 

, 

namely 
~':) = {~~),H} =0 for ~':) =0 (2.55) 

From (2.52), one sees that this is always the case. lienee, the functions .\+ and .\­
may be chosen arbitraril~, and the full set of constraints consists of the primary and 
first-claar1 constraints ~:) and ~~), whose algebra is given in (2.52). 

The corresponding equations of motion are: 

i" {x",H} ="'Q'[.\+cP~ + .\-~~], (2.56a) 

i" = {...",H} == ~a.,[.\+cP~ - .\-cP~], (2.56b) 
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Together wilh the constraint, they also follow frona the first-order adion on piaL"'!" 
sl,ace: 

S[r'''."j~+,~-) == I"" 4r r 40'[i".,. - ~+~~, - ~-"!.'»'). (2.57)Jt't Jo 
lienee, ~+, ~- are the Lagrange multiplien for the constraints. 

Solving ror ." rrom (2.56a), the action (2.57) reduces Lo the linear action (2.5) , 
will. goll give by 

2 [ -~+~- 1(~+ - ~-)] 
goll = e' ~+ +~- l(.V _ ~-) : . (2.58) 

Here, ~ is an arbitrary function of eo, which docs not appear in the linear action due 
to its Weyl invariance. 

From the transformations generated by the first-clus constraints to be discussed 
below, one may actually show· that this matrix indeed tran.rorms u a world-sheet 
metric tensor under world-sheet reparametrizationa. Hence, the Lagrange multiplien 
~+ and ~- are also components of an intrinsic world-sheet metric, with ~ being the 
conformal mode. We thus recover our previous result, that the equations of motion 
of the world-sheet metric field are the constraints ~~, = 0 of local reparametrization 
invariance. This should convince the reader that the same HamilLanian analysis applied 
to the linear action reduces exactl,- to the one considered here, \Vhich follows from 
the non-linear action. 

The first-order action (2.57) is invariant under infinitesimal transformations gener­
ated by the first-class constraints. Let us define the quantity 

~!o, =L" 40'((+~~, +f-f~'J, 	 (2.59) 

where (+ t C are two arbitrary (infinitesimal) functions of (0', '1'), aalisfying appropriate 
boundary conditions for open and for closed strings (for details, see Ref.20). Then, the 
following variations leave the action (2.57) invariant (up to surface terma which vanish 
for the appropriate boundary conditions): 

6,z" = {z".~!o)} =rQ/[f+~ +c~~I, (2.60a) 

6,." = {r".~!-)} =ia.[f+~~ - f-.,~I, (2.60b) 

and 

6,~+ = at'f+-l+a.f++a.~+f+' (2.61a) 

6,l- = at'C+~-8.f--a..~-C. (2.61b) 

Defining ,,- by 
(:I: =XJ:'10 :I: 'I' , (2.62) 

and solving for .", it may easily be seen that the variation 6,z" precisely reduces La 
the variation 6.,r" = '1t1180 z" induced in the Lagrangian formalism by tl.e infinitesimal 
reparametrization (2.17). The matrix (2.58) may then also be seen to transform u a 
world-sheet metric tensor. 

Thus, the constraints ~~o) and ~~) are the generaLan of local conn~ted gauge 
transformations, in the HamilLanian formalism. Their Poisson brackets (2.52) define 
the algebra of two-dimensional dill'eomorphiams. 

The previous discussion shows that tIle arhltrarinCSl in the c.huit-(! (If Lagrang(! lIIul­
Lil,liers ~+ .~- precisely corresponds La the arbitrariness in the chuice ur worltl-sht.'t~t 
I,arametrization in the Lagrangian formalism. Solutions to the lIarnillouiall equations 
of motion depend on the two arbitrary functions ~+ and ~-. lienee. gauge-fixing or the 
system requires at least some cboice for ~+ and ~- • 

The cOllformal gauge corresponds to the choice 

~+ = I, ~- = I. 	 (2.63) 

Indeed, the equations of motion then reduce to: 

Z""
i" = 2.0'.", i" = --, 	 (2.64)

2.0' 

and the constraints ~r' = 0 then become equivalent La (i:l:z')2 = O. The same solutions 
u in the Lagrangian approach are thus recovered. The Hamiltonian in lhe conrormal 
gauge is 

H =10" 40'(~~) +~~)J. 
The conformal gauge i. not a complete ,auge-fixing of the system however. There 

are transformations generated by .,r' which leave the conformal gauge conditions (2.62) 
invariant but induce a transformation in phase-space. Such transformations correspond 
to zero-modes of the equation 

(a., T a. )f:l:{O', r) == O. 	 (2.65)' 

With the use of (2.62) in the conformal gauge, we precisely recognize the infinitesi­
mal {pseudo)conformal reparametrizations discussed previously, corresponding to the 
remaining gauge invariance of the system in the conformal gauge. Tbe associated quan­
tities ~c are thus the generators of conformal transformations in this gauge. 

In the case of open stringa, we have the boundary conditionl1
-20: 

(f+ - C)(O' = 0,.,'1') = 0, 	 (2.66) 

so that the solutions to (2.65) are 

f+(O','1') = f('1' + 0'), f-{O', '1') = f(r - 0'), 	 (2.67a) 

(2.67b)with f{'1' +2.) == f{'1'). 

Using the mode expansion 
f( '1') == E flle'''t', (2.68) 

" 
we then have 

~!o) == E t"e''''', (2.69&) 

" 
where 

L1:' == 10" 40'(e'''(t'+·)~~) +ein(,,-·,.,~)l· 	 (2.69b) 

These quantities are precisely the Virasoro generators introduce above. They satisry 

the conformal algebra 
{L~tII', L!:'} == -i(n - m)L1:}",. 	 (2.70) 
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Note that the generator of translations in T, namely the Hamiltonian, is the Virasoro 
zero-mode L~(I). 

In the case of closed strings, we have the bounda 20ry conditions17­

t:t(O' == 1", T) =t:t(O' = 0, T), (2.11 ) 

so that the solutions to (2.65) are 

(:t(O',T) t:t(T ± 0'), (2.12a) 
with (:t(T + 1") (:t(T). (2.12b) 

Using the mode expansion 
t:t(T) == "(:te2itIT 

L...J" , (2.13) 

" we then have 

cP~(I) 2E[t!V:) +t;: L~Q)J (2.14a) 
It 

where r!.Q) = ~ loft dO'e2jlt(T+·);~),L~0) = ~ loft dO'e 2in(T-·)cPt-). (2.14b) 

These Virasoro generators, precisely the quantities introduced above, satisfy the two­
dimensional conformal algebra 

'( )L(o){L~O), L!:)} = _+m,-I n-m (2.15a) 
{~o),v:)} = . )""0)-.(n - m L;'+m' (2.15b) 

{ L(III) ro)}
" , " O. (2.15c) 

Note that the generator of translations in T is now given by 2(L~Q) +Valli). The 

generator of translations in 0' is easily seen to be 2(L~Q) - ~III). Hence, the constraint 

L~o) =~o), or equivalently N =N, is consequence of the fact that the origin in 0' has 
no physical meaning for physical states of closed strings. 

These results show, as was claimed previously, that the Virasorogenerators L~o), ~o) 
are indeed the generators of conformal invariance, the remaining gauge invariance of 
the system in the conformal gauge. Thus, they must vanish for any physical solution, 
since otherwise the solution would depend on which conformal parametrization is used 
to describe it. Requiring that this local conformal invariance is realized at the quantum 
level leads to restrictions on the system, aa we shall discuss. 

To obtain the Hamiltonian formalism in reduced phase-space, two additional gauge­
fixing conditions must be introduced, in order to completely fix the remaining gauge 
~nvariance of the conformal gauge. Corresponding to the light-cone gauge, these two 
conditions are34 : 

0 1(0', T) Z+(O', T) - 20'P+T =0, (2.16a) 
1O2(0', T) 1"+(0', T) - -p+ = 0, (2.16b)
I" 

with P+ being some integration constant. 
The full set of constraints ;~), ;t-), 0., O2 then becomes second-c1aara, so that by 

the use of Dirac brackets31 
, one may explicitly solve for these constraints. The gauge 

degrees of freedom z:t(O', T), 1":t(0', T) are then determined in terms of the physical de­
grees of freedom Zi(O', T), q- and their conjugate momenta 1"'(0', T), P+ ,as was explained 
previously. The symplectic structure defined on this reduced phase-space, which is con­
sistent with the solutions to the constraints, is given by the Dirac brackets: 

{J2aiq-, P+}o == -I, (2.71a) 

{i(O',T),l"j(O",T)}O = 6'j6(0'-0"). (2.11b) 

Time-evolution is then generated through these brackets by the light-cone gauge 
Hamiltonian: . 
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I/,.c. == 1"0'10 dO'((r')2 +(2::)2] = 20'p+ P-. (2.18) 

2.2.2 Old covariant quantization 

The so-called "old covariant quantization" corresponds to canonical quantization in the 
conformal gauge. By the correspondence principle, the phase-space degrees of freedom 
become quantum operators, whose commutation relations are given from their Poisson 
brackets by 

[Z"(O', T), 1".,(0", T}] = ih6:cS(0' - O"}. (2.19) 

In terms of the mode expansions in the conformal gauge, we have equivalently (f, = 1): 

• open string: 
[J2Qi'q",P"] =i'l"", [a:,o:a] =n'l""cS,,+m,O, (2.80) 

• closed string: 

[J2Qi'q",P"] = i'l"", [0:,0:;'] == n'l""cS,,+m,O = [0:,0:;'], (2.81) 

with the adjointncss properties: 

(q")+ = q",(P")+ =P",(a:}+ = o~",(a:)+ == ~". (2.82) 

These algebras are very familiar. They are tensor product algebras of: 

• position-momentum algebras for q" and P", for each value of p, 

• harmonic oscillator a1gebraa with creation operator o~" or ~" and annihilation 
operator 0:,£i: (and the wrong sign of the commutator for time components), for 
each value of p and n ~ 1. 

Note that for the closed string, the algebra of non-zero modes is the tensor product of 
that of the open string with itself. This tensor product structure extends to the space 
of states, and is characteristic of closed string theories. 

The corresponding spaces of states are abstract Hnear representation spaces of these 
algebras, equipped with an inner product consistent with the properties (2.82). Hence, 
the space of states is obtained by acting with the creation operators o~" (for open 
strings) or o~n and ~" (for closed strings) on Fock vacua or ground states. These 
ground states are, say, eigenstates of the momentum operator P", and are annihilated 
by the operators o:,o:(n ~ 1), namely: 

P"IO;p> = pIIlOiP >, (2.83a) 

a:IO;p> = O,a:IO;p >= O,n ?!: 1. (2.83b) 

They are normalized by 

< OJ plO; p' > = 6(0)(p - p'). (2.83c) 
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Due to the OPI)()site sign for tlae lime components of the oscillator algebra, many 
states actually are of negative norm. For example, the Itates o~"ln;p > (n 2: I) are all 
of negative norm for I' = O. The presence of such Itatel is the price to pay for having 
explicit space-time covariance in the quantized tllcory. To avoid any IJrohle!lIlS with 
unitarity and causality. none of these negative-normatatea ahould be a I,hysical.tate. 

To define physical states, we Ilave to conlider Virasoro generators. which are com­
posite operators. lIence, we Iirst need to specify a normal ordering for the! fundamental 
operators. 'n the conformal gauge Ltli, i. easy, since we arc olily dealing with frcc Iields. 
As usual. the ordering chosen i. deli ned by bringing all the position and creation opera­
tors to the left of all momentum and annihilation operators, which is denoted by double 
dots. From now on, all quantum operators are understood to be normal-ordered. so 
that for example: 

(a' _!". .L" - 2 L.. • 0:-".0",,, •. (2.84).. 
Note that among Virasoro generatol'l, normal ordering may only affect the zero-mode 
operators L1°),v.,o'. 

Since only matrix elements of the Virasoro generators need to vanish between phys. 
ical states, it is enough to define quantum phYlical states by the following Virasoro 
constraints: 

• open strings: 
[L1°' - 0)1" >= 0, L!a)l" >= 0, n 2: I, (2.85) 

• dosed string: 

[LLa, +na) - 20]" = 0, [L1a, - ~a)1I" >= 0, (2.86a) 

L~O)lt/I >= 0, ~o)lt/I >= 0, n 2: 1 (2.86b) 

Here, "a" is a subtraction constant, 10 far not specified, following (rom normal ordering. 
From the constraint involving the zero-modes, we obtain the quantum masl formulae: 

• open string: 
00 

a'M' = N -a, N= LO~"o"",
".1 

(2.87) 

• dosed string: 

1
2o'M2 =N +11-20, N =N, (2.88a) 

00 00 

N = L a!"o""., N = L ~"Q"".,,-t ,,_I 
(2.88b) 

Note that Fock vacua are always phy.ica.lltatea of positive norm, but that they are 
tachyonic, both for open and closed Itring', when a > o. 

Generally, normal ordering would allO afect the conformal algebra, as follows 

(L!a',L!:») = (n - m)L!1", + 1~c(n)6,,+m.o, (2.89a) 

fV,.a), V:)] =(n - m)~7", + 112c(n)6f1+m.o, (2.89b) 

IL!:"', z<:)] =o. (2.89c) 
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Here, c(ra) il a central edefl3;on due to lIorlllai orci(!rillg, or short dislann.! sillgllla ..iticlf 

in tlte two dimensional field theory describing the string theory in the conformal gaugc~. 


Thil celltral exlension corresponds to a conformalallomaly9·22 , or a Schwinger tt.-rln, in 

till! alg(!bra of llt(! wurM-sl..,.!t (!lu'rgY-lIIollumtmu t(~mlor uf tlt(! Nyslc'lII ill 1I11' fUllfurtlml 


gaug(!. lIy tltc Jaw'" idc!utity. the ccntral cxtC!mliUII ill ..Iway!! (If till! funll:l~ 


r(n) =en' +/lit (1.m)) 

where "c" is the cent,.al charge of the Virasoro algehra9 (2.89a) and !lllIay be modified 
by constant shifts in LI;-'. 

Normal ordering however, does not affect explicit space·time covariance. Indeed, it 
may be checked that the Poincare algebra is satisfied by tile quantum operator 1''' and 
AI"". This implies that the Ipace of slates trandorms as an infinite set of irreducible 
representations of the Poincare group. Moreover, since tbe Virasoro generators and the 
excitation level operators Nand N commute with P'" and M"", all physical states at 
each excitation level fan inlo such irreducible representations. 

Hence, physical states may be classified according to their mass and to their "spin". 
By "spin" we mean here the representation or the rotation subgroup of their little t 

group". For massless statea, "Ipin" is thul given by a representation or SO( D - 2), 
and for massive states (with m' > 0) by a representation of SO(D - 1). For example 
in four dimensions, we then have representations of $0(2) (helicity) and SO(3)(spin) 
respectively. 

Thil discussion completes the characterization of the quantum system and its phys. 
icalltates. We have to make certain however, that none of the physical states is of 
negative norm, as otherwile unitarity would be Ipoiled in amplitudes where such states 
contribute as intermediate states. The analysis of this question requires first of all an 
analysi. of the Virasoro algebra (2.89), which i. molt efficiently done by using techniques 
of conformal field theory in two dimensionl (see for example Refs. 9,15,16,11,19). 

The result of such an analYlis is that the Virasoro algebra for the bosonic string is 
given by: 

fL~a',L!:)J = (n - m)L!1". + 112Dn(n' -l)S,,+m.O, (2.91) 

or 
c(n) = Dn' - Dn. (2.92) 

Hence, each scalar field %"(0', r) in two dimensions contributes a unit (+1) to the central 
charge of the Virasoro algebra. 

Considering then the problem ofnegative norm phy.ical states, the no.ghost theorem15
,36 

asserts that: 
the necessary and sufficient conditions such that none of the physical states is of negative 
norm are: 

.0;51 

• if a = I : D :s; 26, 

• if a < 1 : D < 26 i.e. D :s; 25. 

The interested reader may check (but not prove) these statement by solving the prohlem 
for the Iirst few excitation levels (see Rcf.17). 

Although these conditionl are necessary for quantum consistency, they may not be 
lufficient. Indeed, when Itudying 1·loop amplitudes, one finds37 (see for example Refs. 
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15,:18) that the cormct I)ol(~ and cut lIingulariti'!H (II,,! to illtclrllll!diat" Ktl1t(!11 can ollly be 
obtained for D = 26. Thus, the necessary conditions for the absence of negative-noma 
pbysical states and I-loop unitarity require that 

D = 26, a = I (2.93) 

(as we shall comment upon later on, these are still not sufficient conditions for quantum 
consistency). 

Under the conditions (2.93), the statement of the no-ghost theorem is actually more 
detailed15.36. For the open string for example, we then have that any physical state 
lIP > is necessarily of the form 

lIP >= 14>0 > +L-llxl > +(L_2 +~L~1)lx2 >, (2.94) 

where IIPo > is a positive-norm transverse state (in I-to-l correspondence with a state 
in the light-cone gauge, to be discussed below), and L-llxl >. (L-2 + ~L!1)lx2 > are 
zero-norm physical states, such that 

Lolxl >= O,(Lo +1)lx2 >= 0, L,,/XI.2 >= O,n ~ 1. (2.95) 

Unphysical and zero-norm states are necessary (or explicit space-time covariance. Al­
though zero-norm states are physical by the definitions above, they actually (must) 
decouple in physical amplitudes (this point will be discussed further in chapter 4). The 
situation is analogous to the one of QED in the Lorentz gauge, where the longitudinal 
photon is precisely such a zero-norm physical state which decouples from amplitudes. 

With the critical values (2.93) , let us describe the first few excitation levels of 
bosonic strings, beginning with the open string. 

The physical ground states are states 10;p >, with N = 0, such that am2 = -1. 
These are space-time scalar tachyonic states, thus spelling disaster for the quantum 
theory which is then not unitary. 

At the next excitation level, we have states (,..Q~lIO;p > with N =I, hence 
Q'm2 = O. These massless states must satisfy the transversality condition t,..P" = 0, 
which has two types of solutions. One, consisting of the 24 linearly independent vectors 
t", such that t 2 = 1, tp = 0, corresponds to a positive-norm massless transverse state 
transforming as the vector representation 0 50(2.)' The other, with t'" =P", corresponds 
to a zero-norm massless scalar state, transforming as a singlet under SO(24), namely 
the longitudinal component of the massless vector. Note that this state is given as 
L-IIOiP> (see (2.94». 

At the second excitation level N == 2, one finds three states; a positive-norm 2-index 
symmetric traceless transverse massive state, transforming as CO 50(25) and having 324 
components, a zero-norm transverse massive vector state transforming as 0 50(25), and a 
zero-norm massive scalar state transforming as a singlet under SO(25). These states are 
respectively given by *~"'''~l~IIOiP >, L_I(,..Q~IIO;p > and (L-2 + IL~l)IOiP >, 
where the polarization tensors satisfy ~,...,~,..., == 1,~,..., - ~II'" = ~: = P"~"II =0 and 
t

2 =1, tp =0 (compare with (2.94». 
From the mass formula (2.87), it is clear that all states fall on "Regge trajectoriesn 

of slope 0'. Indeed, if space-time were four dimensional, spin would be characterized 
by a single number J, and the mass formula would then lead to the linear dependence 
J = Q'm2+ constant. 

Similar results easily follow for closed strings as well. From the mass formulae (2.88), 
the slope of "Regge trajectories" is now to'. The physical ground states 10iP >, with 

~n'm2 = -2, am space-tillifl scalar tachyons iu this acctor of tlt(l theury as wdl. At 
tim firHt f!xcitatioll le:vd N = N = I, we have ml18l1l'!88 stalf:tl, whida for thosel of 
positive norm combine into a 2-index symmetric transverse tracelcss tensor of SO(2·1) 
with 299 components, a 2-index antisymmetric transverse tensor of SO(24) with 216 
components, and a scalar state of SO(24) with 1 component. These states corresponel 
respectively to a massless "spin 2" state or graviton, a masslcss alltisymmetric tensor, 
and a massless scalar or dilaton. 

One of the remarkable features of these spectra is the appearance of massless "spin 
I" and "spin 2" states. Usually, the existence of such particle is associated with some 
local gauge invariance, a Yang-Mills gauge invariance for "spin 1" states and a space­
time reparametrization invariance for "spin 2" states. Actually, the low-energy behavior 
of these string states is precisely that of such gauge bosona39. 

The profound origin of such space-time local symmetries in string theories is still 
not really understood. Nevertheless, such a relationship between world-sheet and space­
time local symmetries seems to be a generic feature of string theory constructions. Here, 
world-sbed reparametrization invariance is related to space-time reparametrization in­
variance for dosed strings and space-time Yang-Mills in variance for open strings. Later, 
we shall see how this extends to world-sheet supersymmetry and space-time supersym­
metry, and to world-sheet current algebra and space-time Yang-Mills invariance. 

2.2.3 Light-cone gauge quantization 

Quantization in the light-cone gauge'O proceeds through the correspondence principle 
from the Dirac brackets in the reduced phase-space Hamiltonian formulation in that 
gauge. Hence, we have the commutation relations 

(Nq-, P+) = -ila, {zi(O','I'), ...i(q','I'») =ilabiib(q - 0"), (2.96) 

or equivalently in terms of the mode expansion (Ia = 1): 

• open string: 

[Nq-,P+) = -i, (Nq',pi] =ibii , (2.971.) 

[Q~,ai",) =nb'ib,,+m.o, (2.97b) 

• closed string: 

biiI~q-,P+) =-i, I~qi,Pi) == , (2.98a) 

{Q~,~l =nbii',,+m.o =(a:.,~l, (2.98b) 

with the adjointness properties: 

(q-)+ = q-,(P+)+ = P+,(qi)+ = q',(pi)+ = pi, (2.99a) 

(Q~)+ =Q~", (~)+ =ci". (2.99b) 

The structure of these algebras, and of the corresponding spaces of states should 
now be obvious. Fock vacua 10,p',p+ > are eigenstates of the momentum operators 
pi and P+, , are annihilated by the operators Q~,o!.(n ~ 1) , and are normalized by 
< O,p',p+IO,p'i,P'+ >= ,(0-2)(,' - p'i)'(p+ - y+). All states are obtained from these 
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vacua by tbe action o( tlae creation operators o~'Ucr_III(n ~ I). Note again the structure 
(or dosed strings as compared to that of open strings. 

In contradistinction to old covariant quantization. the present apace of atates does 
not have any state o( negative norm. All atales are phyaical ones, and correspond to 
transverse string excitations only. 

The light-cone coordinate operators are determined from the constraints. 1I(:nc(~, 
we have the operational relations: 

• open string: 

q+ 0, o! = J2;;iP+1".0, (2.IOOa) 

- - - 1 (L.L r)q = q, °111 = 1ft":": " - 00".0 , (2.l00b)
y20'P+ 

• closed string: 

I 
q+ =0, o! = '2-/2dP+6I11 ,o = O!, (2.IOla) 

- - - 2 (L.L r I....... 2 (-L.L r J
q =q ,0" = co::; III - 00".0 ,0" = 1ft":": " - 00".0 ,
y2a'P+ y2a'P+ 

(2.101b) 
_ I &:""": 

with 0 0 = iiO = '2Y2a'P-. (2.IOlc) 

It is understood that the transverse Viraaoro generators L~,r! have been normal or­
dered, with the same choice of normal ordering as in the conformal gauge. Here, fl.a" is 
the ensuing normal ordering subtraction constant for the Virasoro zero-modes. 

Note that the transverse Viraaoro generators satisfy the Virasoro algebra with a 
central extension c(n) = (D - 2)n(n' - I) to which only transverse fields :r'«(1, T) 
contribute. 

From the previous relations, we have the mass formulae 

• open string: 
00 

,2-N.L N.L-" i i°M - - a, - L,..,0_"o",
111-' 

• closed string: 

!0'M2 = N.L +N.L -20 N.L = N.L2 •• (2.102a) 

00 • i .L 00....l....lN.L = E o~.o.t N = EO_1110,,' (2.102b) 
••1 ,,-, 

For the dosed string the level matching condition for the right.and lert-moving sectors 
follows rrom the ract that the light-cone gauge fixing conditions do not fix the origin in 
the parametrization in (1. 

Since the light·cone gauge does not preserve space-time covariance explicitly. it 
may happen that quantization and normal ordering are not compatible with implicit 
Poincare covariance. Since the little group of the light-like vector nil is an explicit 
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aYllunetry in the light-cone gauge, only the algebra involving the gelwrators M-i and 
MO(D-I, needs to be checked. Actually, since only 0; ,ii; are given by normal or(lcred 
coml.oaite operators, only tile commutator (M-i, AI-i) could be anomalous. wlwreas 
it should vanish to maintain implicit apace-time Poincare covariance. An explicit all(1 
tedioua calculation shows30 that this commutator ia indeed anomalolls, ItIIle!!s we II/we: 

V -2 =24, 0=1. (2.103) 

It is oilly under th('sc conditions that pbysicalstates may be characteri1£" by their ma..'1s 
and their -spin". Since in the light. cone gauge, all physical states transrorm explicitly 
in representations o( the SO(0 - 2)" rotation subgroup of the little group of the vector 
nil, it is straightforward to identify the -spin" (or massless states. For massive states 
however, with 01' > 0, only under the conditions (2.103) do the 
SO(D - 2)" representations combine into representations o( SO(O - I), which is the 
rotation subgroup or the corresponding little group. 

This type of consideration alone actually leads to a restriction (or the first excitation 
levelonly40. For example, in the case or the open Itring, we then have the states a~ .In > 
with o'm' = (1 - 0). These (0 - 2) slates may transform covariantly under the (ull 
Lorentz group. and not only under SO(D - 2)" ,only ir they transform as a massless 
vector state in D dimensions. Hence , Lorentz covariance requires40 

0 = I, which implies 
in turn that the physical ground state is a tachyon. For states at higher levels however, 
the counting or physical components is always such that the corresponding states could 
be combined into irreducible representations ofSO(D-l). Only the explicit calculation 
of the full Lorentz algebra can ensure that indeed the space or states is organized into 
irreducible but non-linear representations of the Poincare group. and that this occurs 
only if a = I and D = 26. 

There exists however an heuristic argument40 for the value D = 26, which does 
not require the rull calculation. The value for fl.a" rollows rrom normal ordering in the 
transverse Virasoro zero-modes, and is thus given by the formal series: 

1 00 

a = --(D-2)En. (2.104) 
2 .-1 

Using (·function regularization, we have 

00 00 -I 
En =En~!_1 =(-I) =12' (2.105) 
".1 " ... 

leading to 
D-2 

a=-- (2.106)24 . 

Therefore, the necessary condition for Lorentz covariance a = 1 implies the critical value 
D = 26. Clearly, such an argument does depend on which regularization of the series 
is used. Only the (ull calculation of the commutator (M-i, M-jl gives an unambiguous 
answer. Nevertheless, ,.runction regularization happens to give the corred result, and 
is used as an easy check on results. Later in chapter 4, we shall justiry the use o( this 
regularization rrom the point of view of modular invariance. 

With the critical values (2.103), let us brieRy describe the first (ew excitation levels, 
first ror the open string. From the mass formula, we find again the physical ground 
state to be a scalar tachyon. At the next excitation level, we have the massless states 
o~llnipi,p+ > transforming as 050(24'. i.e. as a massless space.time vedor state, with 
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24 COIllI)Ollcllts. At thc s(~C:()lId (~xcitation levd Ni = 2. we have massive state!.'1 with 
Q'm1 =1. corresponding to Q~,ln > and Q~I~lln > and transforming as 
(0 +ttl +')SO(l",' Clearly, they combine into a massive 2-illdex symmetric tra(:el(~s.'1 
tensor of 50(25) , with 324 components. 

i
For the closed string, the physical ground-state is also a scalar,tachyon with 

tt'rn = -2. At the next level. we have the massless states Q~IQ:.In > transforming 
as (CD +8+')SO(24)' and thus corresponding to the graviton. the antisymllletric tcnsor 
state and the dilatoll, with respectively 299. 274 and 1 components. 

Clearly, positive lIorm physical states in the conformal and in the light-cone gauge 
(IUantizations arc in I-to-l correspondence. as guaranteed by the no-ghost th(.~rem (see 
(2.94». 

It is possible to introduce a function which counts the number of positive norm 
physical states at each excitation level. i.e. a generating function for level degeneracie~. 
Let us first consider the open bosonic string. 

In the light-cone gauge. we have the mass formula 

Q'M' = NJ. -1- (2.107) 

Let us then introduce the generating function for the degeneracies d" at the excitation 
level NJ. = n: 

ClIO ClIO 

/o(q) =E d"q'("-I) =E a,.q'Q'm!, (2.108)
,,=0 ,,=0 


where qis a complex or real number such that Iql < 1. We have: 


/o(q) =Trq1(NJ.-I) (2.109) 

where the trace is taken only on the nOli-zero modes Q~(n :F 0). The calcul'ltion of the 
trace is straighlforward17 (the reader may like to first do the calculation for a single 
harmonic oscillator) , and one finds: 

1 rr 1 ] D-' R.::.U 
/o(q) = q2 I.I! (1- q''') = q 12 '1'-D(T), (2.110) 

with '1(T) being the Dedekind 'I-function of number theory and the theory of modular 
forms: 

ClIO 

'1(T)=q*n(l-q'''), q=eilr 
1'. (2.111)

_=1 
Expanding (2.110) in powers of q for D = 26. one obtains 

/o(q) =q-1"(T) =~[1 +24q' +324q4+320Oq' +2565Oq8 +...J, (2.112)q 

thus giving the degeneracies at each excitation level. These numbers may of course be 
checked by explicit construction of the associated physical states. It may be shownl5 
that the degeneracy numbers increase exponentially as the level increases. 

For the closed bosonic string, the degeneracy number at excitation level NJ.. = NJ. = 
n is simply given by d!. The corresponding generating function is thus: 

ClIO ClIO 

/,7;(lql) = E d!lql"("-I) =E cl!lqIQ'm!, (2.113)
,,=0 ,,=0 
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wh(!rc 11/1 is a mal lIumb(!r suc:h that Iql < l. Fm c()nv(~lIi(!nn!, It!l liS introducc! the 
com••lex llumber 

q = Iqlr"", -I" :$ 0:5 1". (2.114) 

The generating function may then be expressed in t(!rms of the corre<;pondillg function 
for the open strillg, as: 

« dO 1« 110 D/c(lql) =1_« 2~ l/u(qW = _.. 2l1' IqJWi'1 2- (T)fl. (2.115) 

lienee, for D = 26, we have 

.. dO 
(2.116)/c(lql) =1-lr 2'K I'I(T) r"'· 

We shall make use of these results when discussing modular invariance of 1-loop parti­
tion functions in chapter 4. 

2.3 BRST Quantization 

As was discussed extensively, conformal symmetry is the remaining reparametrization 
gauge invariance of the system in the conformal gauge. Any breakdown of conformal 
symmetry would thus imply breakdown of reparametrization invariance, and lead to a 
depence on the world-sheet parametrization used to compute physical quantities. 

It seems that such a breakdown of conformal invariance is indeed obtained. since 
the central extension, or conformal anomaly, of the Virasoro algebra docs not vanish. 
not even for the critical values D =26 and Q =1. In other words, reparamctrization 
invariance, which is the fundamental symmetry leading to the constraints ~~Q) = 0, 
which guarantcc at the (Iualltum level the decotll)lillg of uuphysical and zero· norm 
states from amplitudes, seems to be broken by quantum anomalies! Does the theory 
still make sense? 

Since the days of Feynman. de Witt. Faddeev and Popov"· t we know that such 
a question can be meaningfully addressed only when taking into account the ghost 
sector"l following from gauge fixing. This is usually done by considering the configu­
ration space path-integral and its gauge-fixing, and using the Faddeev-Popov trick41. 
Such an approach however, does not always give a meaningful answer. In the general 
case of open algebras of constraints"l. i.e. when the structure coefficients of that alge­
bra are functions on phase-space, one has to resort to more general Hamiltonian43 or 
Lagrangian"· methods developed by Batalin. Fradkin, Vilkovisky and others. 

In the spirit of the Hamiltonian approach adopted in, these lectures, we shall apply 
the general Hamiltonian methods leading to BRST quantization"5 of gauge invariant 
systems, namely the Batalin-Fradkin-Vilkovisky (BFV) formalism32."1.a. 

Actually, although we shall not need this method in its full glory, let us briefly discuss 
it independently of string theory, not only to give a flavor of its fundamental aspects 
but also because it provides today the most general approach to the quantization of 
gauge invariant systems. Moreover, such a brief discussion should help to dcmystify 
BRST quantization. 

2.3.1 The BFV Hamiltonian formalism 

For simplicity, we shall consider the cascof a gauge-invariant systcm with bosonic phase­
space degrees of freedom only, and a set of irreducible bosonic first-class constraints 
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;0 (i.e. constraints which are linearly independent locally on phase-space, and with 
vanishing Poisson brackets when the constraints are imposed). The generalization to 
Grassmann (or anticommuting) degrees of freedom and/or to reducible constraints is 
rather straightforward, and follows the same general approach as the one discussed 
belowl'·42.43. 

Time-evolution on phase-space is obtained from a first-class Hamiltonian31 

liT = /I +"0;0' (2.117) 

where H is a specific first-class Hamiltonian, and ~o are Lagrange multipliers for the 
constraints ;01' We have the algebra of constraints 

{;o,;,} = Col;." (2.118a) 

{R,;o} = v/;" (2.118b) 

where generally Col and Vo' are structure functions on phase-space. 
The corresponding Hamiltonian equations of motion also follow from a first-order 

action. This action is invariant under infinitesimal variations generated by linear com­
binations C';o of the constraints. For phase-space degrees of freedom, these variations 
are given by the corresponding Poisson brackets, and for the Lagrange multipliers, we 
have3'J·42: 

6,),0 = i* +),"elC,~ - elV,o. (2.119) 

The algebra of constraints thus characterizes, in the Hamiltonian formalism, the algebra 
of the local gauge invariance of the system. (The reader may like to compare this general 
discussion with the previous analysis for the bosonic string). 

In the BFV approach, the original phase-space is extended in two steps32,n,..,. First, 
to render the Lagrange multipliers ),0 dynamical degrees of freedom, one introduces 
bosonic conjugate momenta 1'., with the Poisson brackets: 

{),o t I',} =6;. (2.120) 

We then have the set of constraints O. = (001 ,00 ,), with 

GOl =1'01t Oot = ;." (2.121 ) 

and the algebra: 

{G.,O,} = C.fG" (2.122) 

{R,O.} = V. '0,. (2.123) 

In order to compensate for the use of degrees of freedom which are not all independent, 
one then introduces a set of degrees of freedom of opposite statistics, i.e. Grassmann 
variables. (In the general case, for Grassmann odd constraints, the corresponding 
Lagrange multipliers are Grassmann odd, hence also their conjugate momenta, and 
the additional degrees of freedom which one introduces are then Grassmann even, i.e. 
bosonic). These BFV ghosts come in conjugate pairs ".,1'., with the Poisson brackets 

{,,-,1',} =-6:, (2.124) 

and the properties (".)- ="., (1'.)- = -1'•. (2.125) 
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The OFV extended phase-space (EPS) thus consists of all these degrees of freedom. 
namely the original phase-space variables IA together with ~o t 11'0."· and 1'•. On this 
EPS, one also introduces an integer grading, by defining the ghost number as follows: 

'P.degree of freedom (2.126) 
ghost number -1 

Oy counting Grassmann even and Grassmann odd degrees of freedom with plus 
and minus signs respectively, the reader may check that indeed the total number of 
locally independent degrees of freedom on EPS is the same as in a reduced phase-space 

approach. 
One of the fundamental results of the Hamiltonian BFV formalism

4
'J.43 is the follow­

ing. Auociated to the algebra of constraints ;0' there exists a quantity QB, the BRST 
charge, which is uniquely determined"', up to canonical transformations in EPS. by the 

properties: 

• Qs= QB, 

• QB is Grassmann odd, 

• Q. has ghost number (+1), 

• QB is nilpotent, i.e. {QB,Q.} = O. 

The expression of the BRST charge is of the form 

-G 1, ce _-n +" " (2.127)QB = " • - 2''''' c6 r. more, 

where "more" stands for additional terms necessary for nilpotency when the structure 

coefficients are functions rather than constants. 
The nilpotency property of Q. is a very strong condition indeed, since QB is a 

Grusmann variable. This property embodies in one single equation all the information 
concerning the algebra of constraints and the associated Jacobi identities"'. Moreover, 
it only depends on the algebra of constraints, and not on any particular choice of 
gauge-fixing conditions. Hence, corresponding to gauge transformations induced by the 
constraints on the original phase-space, we now have BRST transformations on EPS 
generated by the BRST charge. It is the nil potency property which now characterizes 

the gauge invariance of the system. 
Note also that the ghost sector and the BRST charge only depend on the algebra 

of constraints, and in no manner whatsoever on how this algebra is explicitly realized 
for a given system, i.e. for a given set of phase-space degrees of freedom ZA· Any 
gauge-invariant system with the lame Hamiltonian gauge algebra has the same ghost 
sector and BRST charge, leading thus to an identical discussion of BRST quantization. 
This remark is fundamental in the construction of all string theories. 

Time evolution on"EPS is obtained from a BRST invariant effective Hamiltonian, 
i.e. having a vanishing Poisson bracket with the BRST charge, of the form: 

(2.128)Hell = HB - {'t,Q.}. 
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Here, I/B is a particular "nST invariant lIamiltouian, oCt he form 

HB =H +,tv. 'P_ + "more", (2.129) 

whcre "morc'" stands for additional terms nt..'Ccssary for DRST iuvariance whcn thc 
structure coefficients are not constants. 

The function \II is a pure imaginary Grassmann odd function on EPS of ghost number 
(·1). Its role is that of gauge-fixing the system, And has thus to be chosen appropriatcly"O 
according to the structure of the space of gauge orbits of the sy,tem32,46. However, 
the Fradkin-Vilkovisky theorem42,"'" (which is another fundamental result of the DFY 
approach) establishes that two functions \fI, corresponding to gauge equivalent sections 
of the space of gauge orbits"&, lead to an identical physical description of the gauge 
invariant system (this does not mcan"e, as is usually stated"2."3, that the description of 
the system is independent of \fI). 

In order to recover the same physical description as in the old covariant approach, 
it is necessary that the physical solutions to the equations of motion in EPS have zero 
ghost and BRST chargesl2."2. This requires a choice of BRST invariant and zero-ghost 
charge boundary conditions on EPS32,"2. Clearly, the system may then also be described 
starting from some BRST invariant first-order action on EPS32."2. 

Finally, BRST quantization simply corresponds to the canonical quantization of 
the BFY Hamiltonian formalism. Quantum physical states are then defined as DRST 
invariant states of zero-ghost charge (up to possible ordering constants). 

2.3.2 The BFV formalism for bosonic strings1t•20• 

Let us apply this general discussion to the bosonic string. We have the phase-space 
degrees offreedom :t"(O', T) and r",(O', T),with the Poisson brackets (2.49). Associated to 
the Lagrange multipliers ~:I:(O', T), we now have the conjugate momenta :11":1:(0', T), with 

(A"(O', T), r'l'(O", T)} = 6:,6(0' - 0"), '1, 'I' = +, -. (2.130) 

The full set of constraints G.(4 = 1,2,3,4) is thus 

Gt = J"_,G2 = 'I"+;G3 = ;':',G" = f<:), (2.131) 

The BFY ghost sector is then given by Grassmann odd fields '1.(0', T), P,(O", T) 
(4 =1,2,3,4), with 

{'1
0 (0', T), P,(O", Tn = -6.6(0' - 0"), (2.132) 

('1-)- ='1., (P.)- = -P_. (2.133) 
From the two-dimensional reparametrization algebra. (2.52) and the expression 
(2.127), it is straightforward to obtain the BRST charge: 

rr 

QB =1 dO'('1t:ll"_ + '12r+ +'13;~Q' +'1";':' - '13lJ.'13P3+ '1"lJ.'1"P,,]. (2.134) 

In particular, we then have 

{P3,QB} = -f<!\ {P",QB} = -;'{', (2.135) 
with 

;<J) = f<;) +f~', (2.1361.) 
f~) = -20.'13P3 - '13lJ.P3, (2.136b) 
f~) +20.'1"P" +'1"0. p", (2.136c) 

The quantities f~' may be sbown to satisfy the same algehra as the bosonic constraints 
f':'. lIence,the total quantities f<J' are the Hamiltonian generators of world-sheet 
reparametrizations for all EPS degrees of freedom, with f':' generating such tra.ns­
formations for the bosonic coordinates :t" and J"", and f~' generating those for the 
DFY ghosts. In the conformal gauge, the Fourier modes of f<J' will thus a.lso be the 
generators of conformal transformations, as was shown for the constrains f':.'. 

In the present case, since the first-class Hamiltonian H vanishes identically, the 
BRST invariant effective Hamiltonian is simply given by 

Hell = -lo''l dO'{\fI,Qs}, (2.137) 

where \fI is some function on EPS. 
This is not the place to discuss the problem of the appropriate choice for \fI20. Let us 

only mention that there does not exist any choice of \fI such that a global and complete 
section of the space of gauge orbits is 'obtained20. In other words, the bosonic string 
sufl'ers20,"7 from a Gribov" problem. 

Actually, we are only interested here in gauge-fixing the system to the conformal 
gauge, which is done as follows20. Let us consider for the function \fI: 

1 _ 1 _ 
\fI = pPt(>. - 1) +pP2(>.+ -1) +P3~ +P"A+. (2.138) 

The corresponding effective Hamiltonian and first-order action are then easily obtained. 
In these expressions, redefine then J":I:, PI and P2 by PJ":I:,fJPI and fJP2 respectively. 
Only then take the limit fJ ..... o. 

Through this series of manipulations, the degrees of freedom ~:i:, J":I:, '11.2 and P3,,, 

become auxiliary fields, which are determined by the dynamical degrees of freedom 
:tIl, r,., '13, 'I" and Pit p~9,20. In particular, we have 

~- = 1, ~+ =1, (2.139) 

showing that the system has indeed been gauge-fixed to the conformal gauge. 
Usually, the choice \fI = P3 +P" is believed'" to correspond to the conformal 

gauge.This however is not correct32, Indeed, it does not lea.d to the constraints L~Q) = 0 
for classical solutionr2. Only the procedure described above20,32 leads to conformal 
gauge-fixing within the BFY formalism. 

On the other hand, the procedure just presented is actually singular, since it "'squeezes 
out" part of EPS by taking the limit {:J ..... 0, It may be shown however20•32."e, also at 
the quantum level, that all the associated singularities in some sense "factor out" from 
the system, and may be ignored. Of course, one looses by this procedure any local 
information concerning the integration measure over the space of gauge orbits20,32,,,e. 

In order to make contact with the usual notation15•16 , let us redefine the dynamical 
fields as follows: 

c- = '13,c+ = '1",6_- = -2i'l"P.,6++ = -2iJ"P2• (2.140) 

With the procedure outlined above, we then obtain for the first-order action: 

Sell =1T:l dT r dO'(z"J",. - (;~) +f~» +2i 6__(07 +lJ.)c- + 2i b++(Or - o.)c+], 
71 10 'I" J" 

(2.141) 
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(or the BRST charge: 

r d [ _,,(III, :+ ,,(a' i -a -1. i:+a:+6]QB = Jo a e ,,- +e ,,:+ + 2-.: C .e (I__ - 2-.: C ire ++, (2.142) 

and for the ghost charge: 

Qe = 2~ L- da(e-6__ +e:+6++). (2.143) 

For the Poisson brackets, we now have: 

{z"(a, T), -.:.,(a', Tn =6:6(a- a'), (2.144) 

{e-(a, T), 6__(a', Tn =-2;'-.:6(a- a') = {e:+(a,T), 6++(a', T)}, (2.145) 

with 
{6:t:I:.Q.' = -2ir,~", (2.146) 

and 

,t) = ;;128.c=l6:t::t: +c=l8.6:t::t:). (2.147) 

The corresponding BRST invariant boundary conditions in a are20: 

• open strings: 

8.,;"(a = 0. r; T) I: 0, (2.148a) 

(c- - c:+)(a =0, -':;T) = 0 = (6 __ - 6+:+)(a =0, -.:; T), (2.148b) 

• closed strings: 
periodicity in a -+ a +-.:. (2.149) 

Note that the expression for the BRST charge now explicitly depends on the choice o( 
the conformal gauge. Actually, when solving for the conjugate momenta r '" the action 
(2.141) and the BRST charge (2.124) precisely correspond to the Lagrangian BRST 
formulation of the theory, first discussed in Ref. 26, and also derived by the usual 
Faddeev-Popov path.integral approachl •11• The (h,e) ghost system is the correspond­
ing Faddeev-Popov ghost sector due to reparametrization in variance. As emphasized 
previously, this ghost system alway. appean for any two dimensional reparametrization 
invariant system which i. gauge-fixed in the conformal gauge. 

To conclude this classical Hamiltonian BRST approach, let us give the solutions to 
the equations o( motion in the conformal gauge. Obviously, the solutions in the bosonic 
lector are those given previously. Only the ghost sector needs to be considered. 

For open strings, we have 

c=l(a,T) = Ec,.e-'''(f':i:·', (2.150a) 

" 
6:t::t:(a, T) = E 6.e-'''(f'b'. (2.150b) 

" 
Then ,r' -1.. E L,i'e-ift(f':t:., I: - T a C (2.151)-2-.:,," , - , " 
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with L1a , given previously, and 

L~) = 2)n - m)6.+mc-"" L~T) = L~III) + L~c). (2.152) 
m 

One also obtains: 

= E(L(III' + !L(C»)c (2.153)QB " " 2" -'" 
(2.154)Qc = Ec_"6,,, 

" 
and the corresponding Poisson brackets lead to 

{c.., 6m} = -i6,,+m,o, (2.155) 

(2.156){6",QB} = -iL~T'. 

Similarly, for closed strings, we have 

e-(a,T) = ! ECne-2'''(f'-'',c:+(a,T) =! Ec.,.e-2i"CT+.). (2.157a) 
2 " 2 ft 

6__(a, T) = 4E 6"e-2."Cf'-", 6:+:+(a, T) == 4E I"e-2i"(T+.). (2.157b) 

" " 
One also obtains 

,,!) ! E LCIr:'e-2i"Cf'-", k = T,a,c, (2.158a)== -.: " 
" 

,~) ! E ~Ir:'e-2i"Cf':+'), I: = T,a,c, (2.l58b)= 
r " " 

with the same expressions for L11r:) , v,.1r:) as for the open string, in terms of right-and 

left-modes. Finally, we have: 

_ 't""'{IL(III) I L(e,] mill' lr(c»)_ } (2.159)QB - L..J ,,+ 2' " C- ft + lUft + 2'L" c_" , 
(2.160)Qe = Ele_"6,, +c_"I,,), 


" 

and 

{c,.,6",} = -i6":+",,o ={c.,6..}, (2.161) 

{6.,QB} == -iL~T), {6,.,QB} =-iJ},.". (2.162) 

Hence. the separation into left-and right-modes obtained for the non·zero mode bosonic 
sector, with each moving sector identical to the structure which appears for the open 
string, extends to the ghost sector as well. 

Finally, it should be clear that the Virasoro generator L~·),L!..) satisfy the usual 
algebras (2.70) and (2.75) of conformal transformations. 
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2.3.3 nRST quantization 

BRST quantization in the conformal gauge simply follows by canonical quantization 
from the previous classical BRST formulation. In the bosonic sector, this leads of 
course to the sallie (lualltulIl algdml of nmulltltatiou relations for q". 1'''. c.t:, Ci: as iu 
the old covariant quantization. III this ghost sector, we now have the allticommutation 
relations: 

{c,ub".} =/)"'+ ....flt {cn.b... } =/)"+.,,.u. (2.163) 

wilh 

c! =c_" , c! =(:_". (2.164a) 

b! =b_" , ii! =ii_",. (2.164b) 

Hence, except for the bosonic zero-mode sector, the quantum operator algebra for the 
closed string theory and thus also the space of states, is essentially the tensor product of 
those for the open string, with however the important feature that in the ghost sector 
the right-and left-moving ghost modes anti commute rather than commute with one 
another, since 

{~,c".} = 0 , {~,ii...} = 0, (2.165a) 

{b",c".} =0 , {b""ii...} =0. (2.165b) 

For the sake of definiteness, let us restrict the discussion to the open string (or one of 
the two sectors of the closed string). 

In the bosonic sector, the ground-states of the space of states are the states In, p > 
introduced in the old covariant quantization. The space of states is now considerably 
enlarged through the ghost sector, which is represented as follows. 

The algebra of ghost zero-modes 

{eo,ho} =1, c: = 0, ~ =0, 4' =eo, bt = ho, (2.166) 

is represented on a two dimensional space spanned by two basis vectors 1- > and 1+ > 
such that: 

eol- >= 1+ > , eol+ >= 0, (2.167a) 

hol- >= 0 , 601+ >= 1- >, (2.167b) 

< -1+ >=< +1- >= 1 , < -1- >=< +1+ >= o. (2.167c) 

For the non-zero mode ghost algebra, let us introduce a ground state also denoted 
In > , such that: 

b",ln >= 0, ~In >= 0, n 2: 1, (2.168a) 

< nln >= 1. (2.168b) 

Thus, the space of states is spanned by the ground states In", ± > and their bosonic 
and ghost excitations, obtained through the action of the bosonic and ghost creation 
operators a~n'c_" and b_n{n 2: 1). 

The complete definition of the quantum system also requires a choice of normal 
ordering. In the bosonic sector, this choice is as before. In the ghost sector, one again 

chooses to hring all tbe creation operator ('-.It b_,,(n ~ 1) to the ldt uf all aunihilation 
operators c". b,,(n ~ I). For the zero-modes, we must have 

I (2.JG!»: rill", := ilrubu - IJufil}. 

Qc 2(eo6o ­

This leads to 

QH "(/(lI) I/IC')L.J: ,-" +9 '-It CIl : -aril. 
" ­

(2.170) 

1 00 

boCo) + Elc-.b. - b_"t1t), (2.171) 
,,:1 

L(T) (2.112)= {b",Qs} = L~Of' + L~' - OOn,o,
" 

where all composite operators L~") are understood to be normal ordered quantities. 
Here again. "aft is a normal ordering constant. Obviously, similar expressions apply for 
the closed string, with left-moving modes then also contributing. 

The question of quantum conformal in variance in the conformal gauge way now 
consistently be addressed, either by computing the central extension in the Virasoro 
algebraof the total Virasoro generator L~T), or equivalently by checking gauge invariance 
of the quantum system, namely by checking nilpotency of the quantum BRST charge. 

Using techniques of conformal field theory (see for example Ref.l9) , one obtains: 

lLr',L!:'] = (n - m)L~1", + 112Dn(n2 -1)o",+m.O, (2.113a) 

[L~c),L~'] (n - m)L~!", + 112(-2603 +2n]on+m.0, (2.l73b) 

lL~T),L!!)] (n - m)L~1J", + :2(D - 26)03 +(2 +240 - D)n)o,,+m.O, 
(2.113c) 

and 

1{Qs,Qs} = 2Q~ =E 12(D - 26)n3 + (2+ 24a - D)n +2(a -1)]: c_,,~: 
" 

= E{[L~T),L!!,») - (n - m)L~1}",) : c_,,~:. (2.114) 

Hence, quantum conformal invariance and nilpotency of the quantum BRST charge are 
obtained under the same conditions, namelyl261 

(2.115)D=26. 0=1. 

That these two properties are equivalent may be seen from the relation '(2.1 12), which 

leads to the following when Q~ =0 : 

[L~T),Q8) =0, (L~T),L!!,») = (n - m)L~1Jm' (2.116) 

Thus, nilpotency of Qs or cancellation of the central extension in the total Virasoro 
algebra are one and the same expression of conformal invariance in the conformal gauge. 
The critical values (2.175). which we found in the old covariant approach, are precisely 
those which ensure reparametrization invariance of the quantum system. 
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We still have Lo define physical states in the present formalism. First or all, since 
QB implemcnts gauge transformaLions, two states which differ I,y a sLate of the form 
QBlx > must be considered as rel)resenLing the same quantum state. Thus, gauge 
equivalent states rail into cohomology classes of the DRST chArge. Morcov(~r, physical 
stales musl be DRST or gauge invariant states, namely 

QBI'" >=0. (2.171) 

lIence, physical stales correspond to DRST invariant cohomology class(!s of QB, or ill 
other words the coseL KerQB/lmQB. Since the null class is always IlIlST invariant 
ror a nilpotent DRST charge, we only need Lo consider the non-trivial DltST invariant 
classes. The answer to this problem is the following50• 

All states in non-trivial DRST invariant classes are or lhe rorm 

I'" >= 1"'(:.,; - > +I"'t.); + >, (2.178) 

(up to a state QBlx > of course), where ''''~) > are states with bosonic excitations only 
and of stridly positive norm, i.e. transverse physical staLes in I-to-1 correspondence 
with states in the light-cone gauge. 

In order to restrid the choice further, it is userulto require that pbysical stales have 
ghost number (-1/2): 

Qcl'" >= (-1/2)1'" >, (2.179) 

so that we finally have 

I'" >= 1"'(0,; - > . (2.180) 

The BRST invariant condition (2.177) then becomes 

(Co[L~o) - 1) +E
00 

c.."L1°'}I"'(o); - >= 0, (2.181)
"., 

which clearly shows that the Virasoro conditions defining physical states in the old 
covariant approach are indeed recovered. 

In conclusion, within BRST quantization, physical states correspond to BRST in­
variant cohomology classes ofthe BRST charge of ghost number (-1/2). Such non-trivial 
classes are in 1-to-1 correspondence with physicalstat.es of strictly positive norm both 
in the old covariant approach and in the light-cone gauge approach. 

3 FERMIONIC STRINGS 

Our discussion so far has been very detailed, and emphasized the fundamental features 
or the quantization or bosonic Itrings in the conformal and in the lighl-cone gauge. The 
reatlOll is that thelle basic propertiCi are generic or any string th(~ry, lit) that it should 
now be easy to understand how any of their extensions and generalizations are to be 
used in the construction or any string theory. In this chapter, one such extension will be 
considered in some detail, not only because it provides an example of a generalization 
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or the slrucluws encountered so rar, hut also hecausc it I)lays all importallt I"()h~ ill tIl(! 
fOlIslruclioll of "realistic" slring tlworics. 

Bosonic slrings obviously lack an important feature: their space-tilll(! Sp(:clnllll docs 
not coutain any rermions. Such states can be obtained within string theory through 
two main approaches. where one introduces additional worhl-shed degn~s or rn~­
dom. In the first approadl, the so-called spinning string2:1 or Ncvcu-Sdlwarz-Ralllond 
(NSIl)I.52 formulatioll, one introduces world-sheet Majorana spinors trallsforming as 
space-time vectors. III the second approach, the so-called superslring or Green-Schwarz 
formulalion53, olle inLroduces world-sheet scalars transforming as space-lime Majorana­
Weyl .pinors. In the laller approach, the construction of the theory explicitly realizes 
a space-time global supersymmelry, while in tbe former approadJ such a symmetry 
is only acltie\'ed by some specific projection of the spectrums.., necessary ror (Iuan­
tum consistency55. It is widely believed however, that the two approaches arc actually 
equivalent", but this has not yet been proved in full generality. 

By lack of space, we shall not consider here the superstring approach. Let us only 
mention that recent progressiT has been made in the covariant quantization of these 
theories (for their quantization in the light-cone gauge, see for example Refs. 15,11), 

s8
and that they have been used in the construction of four dimensional slring theories . 

A,. was shown in the previous chapter, reparamelrizalion invariance and the cor­
responding constraints, which are the equations of motion for an intrinsic metric, are 
essential in oblaining a consistent quantum theory. In the conrormal gauge, they are 
necessary in establishing the decoupling of unphysical and zero-norm states rrom phys­
ical amplitudes. In the lighl-zone gauge, they are essential for obtaining space-lime 
covariance. Thus, by enlarging the system through the introduction of world-sheeL 
spinors, we need at the same time to have an additional world-sheet local symmetry, 
leading to new constraints necessary to ensure consistency of the quantized system. 
The candidate for this additional symmetry is obviously a supersymmet ry23. Hence, 
by extending the previous bosonic construction in the linear formulation to a two di­
mensionalsupergravity theory with local supersymmetry23, we should expedlhat the 
necessary constraints would follow as the equations of motion of the supergravity sedor. 

Indeed, the action for the spinning string23 is that of a two dimensional N = 1 
minimalsupergravity theory, with D matter multiplets (z"«() , '\"(~)) coupled to a su­
pergravity multiplet (e!«(), tPo«()), where e!«() is a world-sheet zweibein or graviLon, 
tPo(O is a world-sheet Majorana gravitino and the N = 1 superpartners ,\J1(~) of the 
bosonic coordinates are world-sheet Majorana spinors. Here, a = 0. 1 are lhe usual 
world-sheet coordinate indices, and d = 0,1 are the corresponding Langent space in­
dices. In the following, we shall uselT the Majorana representation or the Dirac algebra 

in two dimensions, namely 

o I 5 0 I (3 1)(0 -1) (0 1) (1 0)
p = 1 0 ,p = 1 0 ,p = -p p = 0 -1' . 

with 
(p., P') = 2,," , (3.2) 

(3.3)
" 0 I . 

In this rcJ)resentation. a Majorana Sl)inor is a rcal spinor. 
As for the bosonic string. the spinning string action is not. only invariant under lo­

cal world.sheet diffeomorphisms and supersymmetry transformations, i.e. local super­
reparamelrizations, but also under local Weyl rescalings of the graviloll supermultiplct 

•• = (-1 0) 
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and the associated fermionic transformatioll, i.e. SlIl)er-Wcyitransforlllatiolls (for mow 
details, see for example Refs. 15,17). As a consequence, the corresponding Weyl modes 
of the graviton and gravitino do not couple in the classical action, and will not ap­
pear in the canonical quantization oC the theory. They do couple in a path-inLcgral 
quantization22 unless conditions analogous to those discussed Cor the bosonic string 
arc satisfied. Moreover, the graviton multiplct is only an auxiliary multiplet in two 
dimensions, whose equations of motion are precisely the constraints' 5•lT as.'IOCiatcd to 
supcr-rcl)aramdrization and SUI)cr-Weyl invariancc and gellt--rating tlW8C transform,,' 
tions. 

These local gauge invariancai allow Cor gauge-fixing the system to the SUI)erCOnrOr­
mal gaugc, defined by 

e:(e) = e~()c5: , .poU) = e:({)p.xU), (3.4) 

where x({) is a Majorana spinor. In the ,uperconCormal gauge, the system still possesses 
aloeal gauge invariance under 8uperconCormai transformations. The corresponding gen­
erators are then simply the Fourier modes oC the constraints, as we showed in the case 
of the bosonic string. The important point which makes this possible is that the super­
conformal gauge-fixing preserves an explicit global N = 1 world-sheet supersymmetry. 

3.1 Old Covariant Quantization 

3.1.1 The superconformal gauge15•JT 

In the superconCormal gauge, the action oC the spinning string reduces to 

0S = 4~~ JJ1{ [q 880 z"88z" +iX"c5:p·80 l,,1, (3.5) 

where 

q08 = (-1 0) (3.6)o 1 I 

..\" = (;~) , (3.7) 

and X= X+ po for a spinor X. 

This action is invariant under the N = 1 global supersymmetry defined by 


c5z" = iil.\" , c5l" = c5:p·80 z"q, (3.8) 

where q is a constant infinitesimal Majorana spinor. For the Majorana representation 
given in (3.1), the action (3.5) becomes 

S = 4~~ Jcf{ [z"(8: - 8:)zp - i..\H8,. - 8.,).\+1' - i..\~(8,. +8.,)..\-,,1 ' (3.9) 

.thus leading to the equations oC motion 

(8: - 8~)z" = 0 (3.10) 

(8,. - 8.,)..\~ = 0, (8,. + 8.,).\~ = o. (3.11) 

Hence, as for the bosonic string, the system has reduced in the superconformal gauge to 
a set of "rree" massless fields, which have to satisfy a set oC constraints to be discussed 

below. Note that the sCI.aratioll into right. and left-movers extends to tlw ferllliolli(: 
lIector, where ..\~ and ..\~ corresl)Ond to leCt· and right-moving Majoralla-Weyl spinors 
respectively. 

The boundary conditions in a in the bosonic sedor arc as specified previously. For 
the Cermionic lIlatter fields. we have Cor Ol)cfl strings: 

..\~(a = 0, T) = ..\~(a = 0, T), (3.12a) 

..\~(a =~,T) (..\~(a =~,T), (3.12b) 

whcre ( = +I corresponds to the ltamond (R) sectorS I , and l = -I to the Neveu­
Schwarz (NS) sectorS2 or the spinning string. For closed strings, we have 

..\"(a = ~,T) = A.\"(a = O,T) (3.13) 

with A = -1, A =l, A = -p", A =1 respectively Cor (N,NS), (R,NS), (N,R), (R,R) 
sectors, where the first entry corresponds to the right-moving modes and the second to 
the left-moving modes. 

Actually, R boundary conditions preserve the global supersymmetry (3.8), whereas 
NS ones break it. As we shall see, such a breakdown of world-sheet supersymmetry is 
related to the presence of space-time tachyons in the physical spectrum. 

Corresponding to space· time Poincare invariance oC the system, we have locally con­
served world-sheet currents whose charges are the total energy- and angular-momentum 
of the string. In the superconCormal gauge, on findslT for the energy-momentum current 

x" -z'" 
(3.14)P! =2~a' ' P~ = 2~a' ' 80 P: = 0, 

thus showing that the total energy-momentum of the spinning string 

P" = foft dO' p! , (3.15) 

is entirely carried by the bosonic coordinates. On the other hand, fermionic degrees of 
freedom do contribute to the angular-momentum of the system. Indeed, one finds17 

M!" 2:0' {(x"z.. - z..z,,) +~i["\!'\.. - ..\;..\,,)} , (3.16a) 

M!II 2:0' {(-z~Z., +z~z,,) + ~i('\;,'l., -l;,'.\,,)} I (3.l6b) 

with 

80 M"" =0, (3.17) 

and • 
M"" = fo dO'M!,. (3.18) 

Note that the boundary conditions in 0' Cor open spinning strings are such that there 
is no flow oC energy- nor angular-momentum at the end points. 

Local world-sheet reparametrizations and supersymmetry transformations are gen­
erated by the two dimensional matter energy-momentum tensor Toll and supercurrent 
Jo respectively, which are given in the superconformal gauge by 15,17. 

TaiJ = OoZ"8I1Z" + iiX"\P0811 +P880).\" 

-~7Joll [q.,68.,z"86z" +~iX"p"O.,.\,,] , (3.19) 

Jo 8I1z,,"Po..\" , (3.20) 

37 38 

http:e:({)p.xU


where 

I' = if,' , 'G ="op6:,·. (3.21 ) 
They obey the local conservation equation: 

lJoTolf =0 • BoJo =o. (3.22) 

III fad, as a COIlS(:f)lICIICC of 8l1pcr-rcparametrization and BUI)cr-Weyl invarialll:e, the 
c(llIations of lIIolion for the gravitoll lIIultil,let 8iml,ly reducc to the COlllltraillt 
cquationsl$·11 : 

TGif =0, JG = 0, (3.23) 

which must be satisfied by any solution to the free field equations (3.10) and (3.11). 
In the case of open spinning strings, we have the same mode expansion for bosonic 

coordinates as in (2.23), and for fermionic coordinates : 

Al(u, T) 	 = ..;;;"L..., ~e-;'(1':b), 	 , (3.24a), 
with (c;'t = 	~f (3.24b) 

Here, the fermionic modes c: are integer-moded and denoted d: = c: (9 = n E Z) (or 
a R sector, and half-integer moded and denoted 11: = c: (9 = r E Z+ 1/2) (or a NS 
sector. 

The Fourier modes of the constrainta tben lead to the super Virasoro constraints 

L1X)=0, JJX) =0, 	 (3.25) 

where the super Virasoro generators are given by 

L(X) 	 L~o) +L1.\) , L~.\' = ~E (9 - ~n) c!-,c." , (3.26)" 
JJX) = 	 E c:-",o",,.. 

f 

(3.27)
'" 

Here, the superscripts (X), (0) and (A) atand (or the contributions o( tbe maUer su­
permultiplet, of the bosonic modes and o( the (ermionic modes respectively. The su­
percurrent modes JJX)are integer moded and denoted JJX) =FJX) for a R sector, and 
balf-integer moded and denoted JJX) =G!.X) (or a NS sector. 

These quantities L~X) and JJX ) are the generators of N =1 superconformal trans­
formations, which is the remaining Buper-reparametrization in variance of the system in 
the superconformal gauge. 

For closed spinning strings, the mode expansion (or bosonic coordinates is u in 
(2.26), and for fermionic coordinates we have: 

A~(O', '1) =v'idE c;'e-2i,(1'-.) , A~(u,T) =v'idEc;e-2if(1'+.' t (3.28)
f 	 , 

with the following notation : 

right-left sector c: c: 
(NS.NS) r E Z+ 1/2II: ':
(NS,R) nE Z~;r,: (3.29)
(R,NS) d" 6" 
(R,R) d: it 

" " 
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The Fourier modes of t.he constraints (3.23) lead t.o thc super Virasoro cOllstraints : 

L~X' =0 L!:' =0, (3.30a) 

JJx, =0 :r.x,=O, (3.30b), 
wit.h tbe same notations and definitions u in (3.25), (3.26) alUl (:J.27). now in tcrms 

of right- aud lert-moving modes. Note tbe by now familiar fact of douhling of fcnlliollic 
and nOli-zero bosonic modes, when comluuing closed strings to opcn strings. 

The old covariant quantization in t.be 8upercollformal gauge would require the cor­
responding Hamiltonian formulalion of the system. Compared to the bosonic string, 
there are essentially two new features whicl. arise here. The world-sheet Majorana 
spinorslead to sccond·class constraints, which may be solved by using Dirac brackets 
for these degrees oC freedom. The set of firat-clus constraints generating the gauge 
symmetries of the theory now consist of bosonic and Grassmannian constraints. The 
associated Lagrange mulUplets are respectively bosonic and Grassmannian variables, 
related to each other by localsupersymmetry transformation and transforming as com­
ponents of a supergravity multiplet. Superconrormal gauge fixing amounts to selting 
the bosonic Lagrange multipliers A+ and A- equal to 1. and the Grassmann Lagrange 
multiplies equal to zero. It should thus be clear to the reader how such an Hamiltonian 
formulation of the spinning string could be obtained, and we shall not give any other 
details here. 

In the superconformal gauge, we thereCore have the same commutation relations 
as before for the bosonic modes (aee (2.80), (2.81), (2.82», both for open and for 
closed atrings. For the (ermionic matter fields A*(u, T), we obtain the anticommutation 
relations: 

{C:,.c;,} = ,,""6,,+fJ,o • {C:"~} = ,,""6,.+n,o, (3.3la) 

with (c;')+ =~, . (c:)+ =~,. (3.3Ib) 

These results allow for the description or the corresponding spaces of stales. Let us 
first consider the case of the open spinning string. 

In the Ramond sector, the Fock vacuum is a space-time spinor lu(p», with u(p) 
being aD-dimensional spinor. Buch tbat 

o:lu(p» = 0, ,"'u(p» =0 • n ~ 1 (3.32a) 

o~lu(p» = v'idP"lu(p», (3.32b) 

~Iu(p» 	 = I~i1"U(P» , (3.32c) 

where 1" are the D-dimensional Dirac matrices which satisfy the Clifford algebra 

h",l"} = -2,,"" • 1"+ = 1°1"1°. (3.33) 

Indeed, the fermionic zero-modes t/G satisfy the algebra 

{t/G,J:;}=,,"", {4,ct,:}=0 • n,&O, (3.34) 

10 that they are represented by 

t/G = ~(-1)L:'•• '...4·"1". 	 (3.35) 
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All other statL'S are obtained by the action of the creation operators o~ru d'!.n 
(n ~ 1) on these Fock vacua. Clearly, all states in the Itamond sector are SI)aCe-time 
fermion •. In particular, the ground-state spinor transforms under Lorentz transforma­
tious as : 

M''''lu(I)) = v'2d[p"q" - p"q"lIu(p» + IE""u(p», (3.36a) 

where 

E"" =- ~ih", ")''') (3.3Gb) 

is the generator of Lorentz transformations in the spinor representation. The first term 
in (3.36a) corresponds to the orbital contribution. 

In the Neveu-Schwarz sector, since there are no fermionic zero-modes, the Fock 
vacua are momentum eigenstates IO;p) annihilated by a:, II: (n ~ 1, r ~ 1/2), and 
transforming as space-time scalars. Hence, all states in the N S sector are space-time 
bosons. 

In the case of closed spinning strings, except for the bosonic zero-mode sector, the 
space of states is essentially obtained as the tensor product of spaces ofstates of the open 
string, with the subtlety that the right. and left-moving fermionic modes anticommute. 
We thus have for the Fock vacua and the space-time spectra in each sector: 

sector Fock vacua space-time spectrum 
(NS,NS) In,p) space-time bosons 
(R,NS) lu(p}) space-time fermions (3.37) 
(NS,R) lu(p») space-time fermions 
(R,R) lu(p), u(p») space-time bosons 

where u(p) and u(p) are independent D-dimensional spinors associated to the right­
and left-moving sectors respectively. 

Let us remark that all these spaces of states, both for open and for closed strings, 
have states of negative norm, due to the fact that 900 = -1. 

The definition of the quantum system is complete only when a normal ordering of 
quantum operators has been specified. As usual, all position and creation operators 
are brought to the left of all momenta and annihilation operators. For the fermionic 
zero-modes in the R sector, we must choose : 

. d"d" .- !(,1",1" - d"d"). 0 0'- 2 "'0"'0 0 0 . (3.38) 

Defining then the super Virasoro generators by the same expressions as given before, 
but now understood to be normally ordered, it is possible to compute the corresponding 
N = 1 super-Virasoro algebras, both in Rand N S sectors, using techniques of conformal 
field theory (see for example Refs. 17,19). We only give here the results for the open 
string or for the right-moving sector of the closed string. Similar results obviously hold 
for the left-moving modes. 

RamQnd sector 

{F!X" F~X)} = 2L1~~ + ~Dn2b"+,,,.o, (3.39a) 
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I ) .(X) (:1.:191,)ILiX" F.!.X)I ( in - m fn+fIA' 

)l (X) 103c[LiX),L~)1 (n - ~n+m + 8' (:I.:J9c)m n O,,+m.O. 

wll(~re 

[Li.\', L~') =(n- m)Li~", + 1~0 [~n3 +n] b,,+m.O. (3,40) 

N(~ye!l·Schwarz sector 

(X) 1 2 1{G!X',G~X)} = 2Lr+. + iD(r - 4' )br+•.o, (3.41a) 

(3,41 b)[L!f),G~X») = (~n - r) G1~L 
(LiX" L!:)) (n - m)L~~ +~Dn(n' - 1)b,,+m.0. (3.41c) 

where 

(Li.\),L~)) = (n - m)Li~... + ;4 Dn(n' -1)b,,+m.O. (3.42) 

As for the bosonic string, we obtain central extensions to the N = 1 superconformal 
algebra, thus showing that short distance quantum effects in the matter sector of the 
theory (seem to) break the super-reparametrization invariance of the spinning string. 
Note that each Majorana-Weylspinor contributes a value (+1/2) to be central charge 
of the total Virasoro algebra. 

It should be obvious that the quantization in the superconformal gauge explicitly 
preserves space-time Poincare covariance. Indeed, one may show that the Poincare 
algebra is obtained at the quantum level, and that it commutes with the super Virasoro 
algebra. Hence, all physical states may be characterized by their mass and by their 
"spin", as was explained for the bosonic string. 

In a R sector, physical states are defined by the super-Virasoro constraints: 

F!X)ltP) = 0, L!f)ltP) =0 , n ~ I, (3.43a) 

(FJX) - JG+)ltP) = 0, (L~X) - "+)ltP) = O. (3.43b) 

In a NS sector, we have 

G!X)I.p) =0, LiX)ltP) =0, r ~ 1/2, n ~ 1, (3.44&) 

(L~X) - "-)ltP) =0 (3.44b) 

Here, "+ and Q_ are subtraction constants following from normal ordering in the 
sU8er. Virasoro zero-modes. Note that we introduced a normal ordering constant for 
Fo X). On the one hand, this does not seem necessary since FJX) does not suffer from 
an ordering ambiguity. On the other hand, it seems necessary since we have (FJx,), = 
L~X). As it turns out, "+ indeed vanishes (see the no-ghost theorem below). Note also 
that the constraint which involves FJX) generalizes Dirac's equationSI • As usual, the 
constraints in volving the Virasoro zero-modes lead the mass formulae. For open strings, 
we have: 

R sector a'M' =NR -"+, (3,45a) 
where 

00 00 

NR = L:a~"an,.+ L:n~"dn,.. (3,45b) 
11::1 n::1 
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NS sector Q'M' = NNS - 0_, (3.46a) 

where 

NNS 
00 00 

= E Q~"Q",. + E rb~r6r,.,
".. r_,/' 

(3.4Gb) 

I;'or closed strings, we have: 

!Q'M'
2 

(N ­ a) +(N ­ a) , (3.47a) 

N-o N -a, (3,471.) 

where N, Narc Na, NNS, NR, NNS, and a, i areo+,o_,a...,a_ depending on wlletbcr 
we have a Ror a NS sectorin each moving sector. The level matching constraint (3.47b) 
has the usual geometrical mean ina in terma of constant shifts in 0'. 

For the spinning string, the results of the no-ghost theorem$9 lead to the critical 
values : 

1
D = 10, 0+ = 0, 0- =2 . (3.48) 

These are the necessary conditiona for t.he absence of negative norm physicalatates and 
(or the correct cut and pole singularities in one-loop amplitudes. The values (3.18) may 
be checked by explicitly constructing t.he first few physical excitation levels. Let us give 
those of strictly positive norm. 

In the Ramond sector of the open spinning atring. the physical ground-state is at 
excitation level NR = O. It corresponds to a massless space-time spinor lu(p» with 
Julp) = O. At the next excitation level NR = 1, we have the states o!.lu(p» and 
d~,lu(p», which Ir.ad to a musive Rarita-Schwingcr ("spin I") sLate. AlIsLatea in Lhil'l 
sedor are space-time fermions, with a double degeneracy of the Rcgge "trajectories" due 
to the space-time chirality of the spinor u(p). 

In the NS sector of the open st.ring, the physical ground atate is a space-time scalar 
tachyon IO;p), with am' = 1/2. At the next. excitation level NNsI, we have the 
massless states ~I/,IO;p >, giving a mauless vector atate. At the second excitation 

level NNS = 1, we have the musivestates o!.,n;p >,~./,6~1/,ln;p >. with Q'm! = t, 
leading to a 2-index antisymmetric tensor atate. Allstatea in this sector are space-time 
bosons, with two types of Regge -t.rajectories". Those corresponding to an even number 
of fermionic excitations, to which the tachyon belongs, and those with an odd number 
of fermionic excitations, to which the massless vector belongs. 

For the closed spinning string, t.he discussion is very similar. In the (N,NS) sector, 
the physical ground-state 10, p) is a .calar tachyon with 101m2 = -1. At the next exci­
tation level, we have a massless graviton, a massless 2-index antisymmetric transverse 
tensor and a massless dilaton, obtained from ~Il,~./,Ini pl. 

In the (R,NS) sector, the would-be spinor tachyon lu(p») is not a physical state, due 
to the level matching condition. The phyaical ground-state has Nn = 0, NNS = 1/2, 
and thus corresponds to the massless statea f,,6~l/"U(P»), with pu(p) =0 and f:. p =O. 
Since the condition ,iu(p) =0 is not obtained, we have a massless spinor ("'pin 1/2") 
and a massless Rarita-Schwinger ("spin 3/2") state. 

The discussion in the (NS,R) sector is similar, by exchanging the right- and left­
moving sectors. Finally, in t.he (R. R) sector, the physical ground-state lu(p), li(p» is 
massless, with pulp) =0., ,til(p) = 0, and corresponds t.o all completely antisymmetric 

space-time ten8ors, appearing in the tensor producL of the two 81)aCe-time spinors uhl
) 

alld Ii(p). ­
Clearly. the Regge Iltrajectories" of tile closed string also have a double "degen.'r­

acy", associated either to the chirality of the spinor in a It sector or to tile! parity or 
the f(~rmion excitation ntllJlber in a NS sector, ill each or the two 1II0\'illg st.'dors. 

3.1.2 Light-cone gauge quantization 

I.et us brieny describe how the same results arc obtained in the light-cone gallge. For 
the spinning string, the light-COile gauge fixing conditions are11 (in addition to the 
superconformal gauge conditions) : 

%+(0',1") = 20'P+l", l+(O', 1") = o. (3.49) 

The super-Virasoro constraints LLX ) =0, J~XJ =0 may then be solved for explicitly, 
by expressing the light-cone components %:t:{O', T) and .\:1:(0',1") (or equivalently Q;, 0; 
and C:' ~) in terms of the transverse components %i(O', T), li(O', T), (or equivalently qi, 

Q~, 0:.. ~,c!) and the two integration constants 41- and P+. 
From the corresponding Dirac brackets, we then have the usual commutation and 

anticommutation relations for the transverse modes 41 , pi, o~, O"!., c!. ~ and q-, P+.
'Thus, the Fock vacua for a NS sector are aimply states IO,pi ,p+) annihilated by Q~ and 

b! (n 2: I, r 2: 1/2). For a Rsector, they are SO(D - 2)" spinorslu(pi, p+») annihilated 
by Q~ and d'" (n 2: I), .ince the fermionic zero-modes di. satisfy the Clifford algebra 
{di..41 = 6i;. By construction, all states have atrictly positive norm, and correspond 
to transverse excitations only. 

At the quantum level, when solving for the light-cone coordinates in terms of the 
tranaverse ones, normal ordering constanta appear in the expressions Cor the zero-modes 
no and no. This then leads to the mass formulae. For ollcn atrings, wc ha.ve : 

(3.50)Q'M' = NJ. - a, 

with 
00 00 

J. ,",I i ,"," 0= 0+, (3.51a)R sector: N = L.t Q_"O" + L.t nd'_"d'n , 
".1 ".1 

00 00 

J. ,",I i '"' ii 0=0_. (3.51b)NS sector: N = L.t Q_.o" + L.J rb_rbr 1 

,,:l r.l/2 

For closed strings, we obtain: 

~Q'M' = (NJ. - a) + (NJ. - a), (3.52a) 

(3.52b)NJ. -a NJ. -i, 

wit.h an obvious meaning for the notation (u in (3.47». Here again, the level matching 
condition (3.52b) follows from the fact that the light-cone gauge fixing conditions do 
not fix the origin in 0' parametrization for closed strings. 

Due to the necessary normal ordering of composite operators, the Lorentz algebra 
may not be realized aL the quant.um level due to quantum anomalies. Here again, only 
the commutator [M-i, M-j) needs to be checked, and can be shown to vanish only if 
we haveeo : 

(3.53)D = 10. 0+:-': 0, 0_ = 1/2. 
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The values for the subtraction constants are easily understood40• For definiteness, 
let us consider the open string. In the Ra.mond sector, the ground state Ju(p») has 
2(D-2112 components and a mass a'm2 = -0+. This state may transform covariantly 
under the full Lorentz group only if it is massless, i.e. only if 0+ =O. In the NS sector, 
the same argument applies to the first excitation level b~I/210;p), which has CD - 2) 
components and a mass a'm2 ::: 1/2 - 0_. We must have 0_ =1/2, thus also implying 
that the physical ground state is a space-time scalar tachyon. 

If we now use our favorite40 (-function regularization for t~e evaluation of a+ alld 
a_, we obtain : 

00 001 1] 2)(D
-a+ (D - 2) E -n - E -n ::: ---[(-1) - (-I)J =0, (3.54)

[ q;:1 2 ,,;:12 2 

-a_ ~ 1 00 11 (D-2) -1 D-2(D - 2) L.., -n - E -r =--(((-1) - -(-I)J =--.[n=1 2 .=1/2 2 2 2 16 

(3.55) 

In each of these expressions, the first term is the contribution of the bosonic zero-point 
fiuct uations, and the second term that of the fermionic ones. They cancel in the Rsector 
but not in the NS sector, due to the global N = 1 supersymmetry which is preserved 
by R boundary conditions but broken by NS boundary conditions. This breakdown 
of supersymmetry is responsible for the appearance of a space-time tachyon in the NS 
sector. If we now set a_ =1/2, we find indeed D =10 from (3.55). 

The reader is invited to check that all statea of strictly positive norm obtained in 
the superconformal gauge, both for open and for closed strings, are indeed recovered 
in the light-cone gauge, and that all massive states indeed transform as irreducible 
representations of the covering group Spin(9) of SO(D - 1) = SO(9). Note also that 
the same types of "degeneracies" of Regge "trajectories" as in the covariant approach 
appear in the light-cone gauge. 

3.1.3 GSO projection and space-time supersymmetry 

The physical space-time spectrum of spinning strings contains bosonic and fermionic 
states. Actually, we have to think of the complete spectrum of these theories as the 
direct sum of the spectra in the different sectors. 

We saw however that in the NS and (N,NS) sectors, one obtains space-time scalar 
tachyons, causing problems for unitarity. Moreover, the massless "spin 3/2" states 
also lead to problems, unless they couple to a conserved current of "spin 1/2", i.e. to a 
space-time supersymmetry current, in the same way that gravitons couple to a conserved 
energy-momentum tensor. Gliozzi, Olive and Scherk (GSO)54 were the first to realize 
that by taking advantage of the double "degeneracy" of Regge "trajectories", there 
exists a consistent truncation of the spectrum of the theory, in which these problems 
are avoided, namely such that: 

• tachyons are no longer physical states, 

• the numbers of space-time bosons and fermions are equal at each mass level54, 

• the spectrum is space-time aupersymmetric61 . 
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The corresponding truncation is called the GSO projection. In the next chapter, 
we shall find a more geometrical understanding of it, from the point of view of two 
dimensional reparametrization invariance. Actually, it i. the only projection making 
the theory quantum consistent to all orders of perturbation theory". 

To discuss the GSO projection, let us first consider the open spinning string. The 
quantity which distinguishes between the "degenerate" Regge "trajectories" is essen­
tially the fermion number F, given in the R sector by 

00 

(3.56)F= Ed':.."dnlA , 

.=. 
and in the NS sector by 

00 

F= E b':..rbr,.. (3.51) 
r:=I/2 

Of course, the same definitions apply in the light-cone gauge, where one then sums only 
over transverse components. 

Finally, let us introduce in the R sector the string chirality operator 

(3.58)r = ")'u(-lt t 

where ")'11 is the space-time chirality operator 

")'11 ::; ")'11 = ")'0")" ... ,',) • (3.59) 

(In the light-cone gauge, we would have r ::: ")'9( _1)F with ")'9 =")'•... ,s). 

GSO projection of the open spinning string is then (not yet completely) defined by 


the conditionsl4 : 


• R sector: rJfJ) = +lfJ), (or r = -1), (3.601.) 

• NS sector: (-I)FlfJ) = -lfJ). (3.60b) 

The latter condition projects out in the NS sector all states having an half-integer 
value for a'm2, thus including the tachyon. Only states with integer values for a'm' are 
retained. The physical ground state is then the massless vector state with 8 components. 
At the next excitation level with a'm' = 1, we have the positive norm states among 
b~3/210; p), b~1/2~'/2~1/2In; p) and a~lb~I/210iP) leading to the 50(9) representations
(fttGl)SO(9)t and having (84 + 44 =128) components respectively. 

In the R sector, the ground state spinor lu(p» decomposes into right- and left­
handed components U:I;(p) = lCl ± ")'ll)U(P)' The GSO projections retain states at 
all integer values of a'm2 , but only half the original number. At the massless level, 
the condition r = +1 (resp. r = -1) implies that the physical ground-state of the 
truncated theory is a right-handed (resp. left-handed) massless Weyl spinor, with 16 
real components. 

A Majorana condition on u(p) would reduce this number further to 8, i.e. the same 
number of components as in the bosonic sector, which is a necessary condition for hav­
ing space-time supersymmet.y. The remarkable fact is precisely that Majorana-Weyl 
spinors exist in Minkowski space-times only of dimension D =2(mod 8)54, which in par­
ticular includes D =10. Hence, the complete GSOprojectionconditionsarede/inedby(3.60)togeth 

In the R sector, the physical ground-state is then a right-handed massless Majorana-
Weyl spinor, with 8 physical components. At the excitation level a'm2 = 1, we have the 
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states o~.lu+bl» and '-I lu-(p», combining into a massive Majorana llarita.Sdlwiuger 
·spin 3/2" state, with 128 components. 

That the number of bosonic and fermionic physicalatates (of positive lIorm) ia the 
same at each mass level may best be seen by compuLing the corresponding degeneracy 
generating fundions!·. In the R sedor, we have: 

00 

InCq) =E dn(n)q'o'ml = E 
00 

dnCn)q'" =dTrq'N~ (3.61a),,=0 

C" ..0 

00 + q2") a - dIT - (3.6Ib)- ••1 I - q2" 

= d[l + 16q2 + 144q· + 96Oq6 + ...1, (3.G1c) 

where q is a complex number such that 'ql < I, d" is the degeneracy at excitation 
level NI;. =n, d is the number of physical components of the ground·state spinor u(p) 
(d = 8 for a Majorana-Weylapinor oD-,hell), and the trace in (3.61a) i, taken over all 
non-zero bosonic and fermionic modes. 

In the NS sector, let UI distinguish the atates with an even and an odd number of 
fermionic excitations. We then have: 

I~s = Tr!(l ± (-1 )')q2(N".-1/2) (3.62a)2 

= l. IT 1 2" a {ii(I + q2"-I)1 ± IT (1 _ q2"-I)a} I (3.62b)
2q "•• (1 - q) ".1 ,,=1 

leading to the series expansion. : 

I~s(q) = !(I + 36q2 + 402q4 + 1964qtl + •..) , (3.63a)q 
INs(q) = 8[1 + I6q2 + 144q4 + 960qtl + ...J • (3.63b) 

Comparing (3.61) and (3.63), it becomes clear that only the GSO projection as 
defined above may lead to a apace-time .upenymmetric apectrum. To show the equality 
of fR{q) and INs(q), it i. useful to express these functions in terma of Jacobi theta 
functions defined as follows : 

'.(ziT) = i E(-I )"9("-1/2,, e2ilf(.-1/2,. 


" 

00 00 

= 2q'/· sin rz II (I - q2") n(1- q2"e2i")(1 - q2"e-2ilU), (3.64a) 
...1 ••1 

'2(zIT) = Eq("-'/2)1 e2i_(,,-1/2). 


" 
 00 00 

2ql/. cos rz IT (I - q2") IT (1 + q2"e2ilf')(1 + q2"e-'Iin), (3.64b)".. ".. 
GO 00 

'a(ZlT) E q'" e2i••• = II (1 - q2") IT (1 + q2"-le2i"')(l + q2n-l e-2in), (3.64c)" ".. ..1 
00 00 

04(zIT) = E(-I)"q·'e2ilfft• = IT(I-q"') IT(l_q2,,-le2ilf·)(1_92,,-le-2'••), 
••• ,,=1 

(3.64d) 
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where as before we set t = ein• In Lhe following, we shall only 1I1.'C(1 the vahu,:s 
Oi(1' = OIT) (i = 1,2,3,4), which will be denoted al Oi (i = 1,2,3,4). Theil, one 
finds: 

I
In(q) -d O· 

:I (3.65a)
16 ,,12' 

_ 1 I 
I~s(q) (3.65b)- 2,,12fO~±0:I, 

where ,,(T) is the Dcdekind ,,-funelion defined in (2.111}. 
That the GSO projection leads indeed to a SI)aCe-time spectrum with the same 

number of bosons and fermions at each mass level now followss• from the Riemann 
identity ('I =0) : 

':+~=O:+O:. (3.66) 

Moreover, it has been ahowntl• that the apectrum then transforms under a D =10 
N =1 aupersymmetry algebra, with in particular the massless states falling into a 
D = 10 N = 1 Yang-Mills supermultiplet, i.e. a massless vector and a massless 
Majorana.Weylspinor. From that point of view, the Riemann identity (3.66) is an 
expression of space-time supersymmelry. 

For closed spinning strings, GSO projections are defined in a similar waylT, Here 
however, we have two choices in the relative chirality of the two Majorana spinors in 
the two moving sedors, thus leading to two different theories. The first is the Type Ila 
fermionic string, defined by 

• u(p),u(p) : Majorana spinors 

• r =+1 r =-1 (or vice-versa) (3.67) 

• (-1)' =-1, (-1)" = -1 


and the second is the Type lib fermionic string, defined by 


u(p), u(p) : Majorana spinors • 
• r =+1, r = +1 (or r = r =-I) (3.68) 

• (-1)' = -1 t (-I)" =-1 

Here, as usual, quantities with and without a bar correspond respectively to the lefl­
and right-moving secton. 

It .hould be dear that in both cases, the Dumben of space-time fermions and bosons 
are equal at each mass level, and are liveD by the square of the corresponding degen­
eracy numbers of the open spinning atring. Moreover, in each theory, the space·time 
spectrum transforms under a space-time .upersymmetry. For the Type Iia theory, this 
is the non-chiral D = 10 N = 2C1 lupenymmetry, and for the Type lib theory, it 
is the chiral D = 10, N = 26 supenymmetry, with the massless states falling into 
the corresponding graviton supermultipleta. In both cases, the (NS,NS) sector leads 
to the massless graviton, 2-index antisymmetric tensor and dilaton, transforming as 
(CQ + B+-)50(8) and having respectively (35 + 28 + 1 = 64) components. In the (R,R) 
sedor, .ince the two Majorana spinors u(p) and u(p) have different relative chiralities 
in each theory, we have different bosonic Itates. For the Type 1130 theory, we have the 
states (0+ D)SO(8) with (8 + 56 =f.4) components respectively. For the Type lib 
theory, we liave the states (. + B+ :I:)$O(S) with (1 + 28 + 35 =64) components re­
spectively, where 0 is a self·dual 0 anti-selfdual tensor depending on the chirality of 

.1 
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tile spinors u(p) and u(p). From the (R,NS) and (NS,R) sectors we obtain the massless 
fermions. In the type (Ja theory, we have a Majorana spillor and a Majorana Itarita­
Schwinger "spin 3/2" gravitino, none being Weyl f(!rmions. III the Type lJll theory, We 
Ilave a left-handed Weyl spinor and a right-handed U.a.rita-Sc.hwinger "spill 3/2" grav­
itillo, nonc hc!ing a Majoralla f(~rlllioll. III hoth Call(~N, t1w nlllllllC~r of ('()IIIPCUU!lItli iLW 
2(8+ 56) = I :l~. resp(~c.livdy. ClmLrly, the spectrulli or tll(~ Typ(~ JI,L lllC'ory is 1101I.(:himl, 
wlll'real! that ur t1w Typc! Ill, tll(~)ry ill illd(~d c1liral. 

3.2 nnST quantization 

So far in our discussion, we have not taken into account the necessary ghost sector 
associated to superconformal gauge fixing. In principle, to be faithfull to the Hamil­
tonian approach adopted in these lectures, we should again use the nFV Hamiltonian 
formalism for the DRST quantization of the spinning string. 

However, as long as one is not primarily interested in that aspect of the theory, such 
an analysis can be avoided by taking advantagel9 of the explicit world-sheet global 
N = 1 supersYllllnetry remaining after superconformal gauge fixing. We simply need to 
find out how to supersymmetrize the BRST quantization of the bosonic string, which 
is most efficiently done by means of world-sheet superfieldsI6•19• 

Indeed, matter fields (xl.l, -',.) correspond to such superfields, and the gbost sector 
now follows from a ghost superfield1s•19• The fermionic components of the ghost su­
perfield are the (h, c) ghost system associated to the bosonic constraints of world-sheet 
reparametrization invariance. Its bosonic components are the ghost system associated 
to the fermionic constraints of world-sheet local supersymmetry, the so-called (fJ,7) 
system of superghosts. 

Since we have in the superconformal gauge, the action (3.9) for the matter fields, 
and the part of the BRST invariant action associated to the bosonic constraints and iLl 
ghost system (see (2.141», it is rather easy to guessl9 what the BRST invariant action 
and the BRST charge for the spinning string should be in the superconformal gauge. By 
lack of space, and since we do not really need the details of BRST quantization in the 
remainder of these notes, we shall not develop these considerations any further, despite 
the fact that the superghost system plays an important role in string theoryll, and 
is essential in one general approach to string theory constructions62•63• The interested 
reader is invited to apply the approach sketched above and work out for himself the 
BRST quantization of the spinning string in the superconformal gauge. Details can be 
found in Refs. 15, 16, 19. 

For later purposes, it suffices here to state some of the results following from such 
an analysis. As for the bosonic string, superconformal transformations of the spinning 
string in this BRST formulation are generated by total super-Virasoro generators L1T ) 

and J~T). Now, they not only include the contributions L1X ) and J~X) of the matter 
fields considered previously, but they also include the total contributions L1B) and JJB) 
of the ghost sector. In particular, the total ghost Virasoro generators L1B) are given by 
the sum of the (b, c) contribution L~) obtained for the bosonic string, and a contribution 
L1'l) from the (fJ, 7) superghost system. 

The moding of the ghost supercurrent modes JJB) is the same as that of the fermions, 
namely integer for a Ramond sector and half-integer for a Neveu-Schwarz sector. Indeed, 
the matter supercurrent JQ in (3.20) satisfies the same boundary conditions as the 
matter fermions, hence so do the superghosts (fJ, 7) associated to the gauge invariance 
generated by Jo , and the ghost supercurrent coupling to them. Hence, the contribution 
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of the superghost system to the central extension of the total Virasoro alg(~hra clej)ends 
011 the ferllliollic houndary COll(li1ioll.....or the Virasuro algehra gCII(!ralt!d hy I.i'll, 01J(! 

fillds u ,I9 : 

• fl s('dur : c(n) = 11713 
- 2u, (:um) 

• NS:wdur: c(u) = II"l +u. (:1.10) 


If we now acid up all cOlltriblltions to the total central extension of the total Vimsoro 

algebra, which, as for the bosonic string, includes the subtraction collstants a+ alld a_ 

following from normal ordering, olle obtainsU •19 : 

3
• Rsedor: c(n) = 2"(D -10)03 +24a+o, (3.71) 

• NS sector: c(n) = ~(D -10)n3 + G(2 - D) +24a_] n. (3.72) 

Hence, conformal invariance, and thus reparametrization invariance, is maintained 
at the quantum level only if we have,the same critical values as obtained previously 
from different considerations 

1 
D = 10, a+ = 0, a_ = 2"' (3.73) 

Recall that within the present quantization approach, super-Weyl invariant is explicit, 
since the superconformal modes of the world· sheet graviton and gravitino decouple. 
In Polyakov's path-integral approach22, super-reparametrization invariance is explicitly 
preserved, but super-Weyl invariance is only realized if we have the conditions (3.73)22. 
Otherwise, the superconformal modes are dynamical fields. 

Actually, with the critical values (3.73), not only does the central extension of the 
total Virasoro algebra vanish, but so do all the central extensions of the total N = 1 
super-Virasoro algebra generated by L~T) and J~T)15.19. Moreover, the total quantum 
BRST charge is then also nilpotent"', thereby ensuring gauge invariance, namely super­
reparametrization invariance, of the quantum spinning string, 

That all these considerations are related and all lead to the critical values (3.73) is 
not surprising, considering the fact that the super-Virasoro generators L~T) and Jr) 
are given br anticommutators and commutators of the band fJ ghosts with the BRST 
charge, as was the case also for the bosonic string. This is the reason why it is enough 
to consider for example, the total central extension of the Virasoro algebra to determine 
the critical \'alues for gauge invariance. 

As a last comment, let us say that physical stales are again defined as BRST in­
variant states of definite ghost charge. Indeed, as for the bosonic string, the non-trivial 
BRST invariant cohomology classes of the BRST charge, both in Ramond and Neveu­
Schwarz sectors, are in 1-to-l correspondence with positive norm physical states in the 
old covariant or light-cone gauge quantization, with however a degeneracy due to ghost 
and superghost zero-modes~·6S. In the NS sectors, this degeneracy is two-fold since 
only the (h,c) system has zero-modes. But in the R sector, this two-fold degeneracy is 
itself infinitely degeneratelS due to the (fJ,7) bosonic zero-modes. Hence the necessary 
restriction on the ghost number, to obtain a 1-to-l correspondence with the physical 
content of the theory. 
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4 THE PRINCIPLES OF STRING THEORY CONSTRUCTION 

Now that we have described and understood the structure, the origin and tlae mean­
ing of the restrictions which appear for bosonic and spinning strings, we may actually 
infer a general description of the requirements that any string theory shoul<l m«~ct. So 
far, we have concentrated on the restrictions following from local gauge illvaria.u:c, 
i.e. invariance under infinitesimal gauge transformations. As we shall discuss. adcli· 
tiollal requirement also follow from global gauge invariance, i.e. invariance ullder gallg«! 
transformations not connected to the identity transformation. 

The formulation of the basic rules for string theory construction that we arc about 
to present, actually grew out from the construction of ten dimensional heterotic strings 
with space-time supersymmetry·. and their toroidal compactification". 

4.1 Quantum Consistency Constraint. 

4.1.1 Local world.sheet invariances 

As is now clear, string theories are two dimensional field theories of quantum gravity 
coupled to matter fields. which are reparametrization invariant in the world-sheet. The 
constraints which follow from this gauge invariance are the vanishing of the generator8 
of local diffeomorphisIllS. i.e. local world-sheet reparametrizations connected to the 
identity. 

This world-sheet gauge invariance may be extended to .ome larger symmetry. in­
cluding reparametrization invariance, as is the case for example for the spining .tring 
where we have world-sheet .uper-reparametrization invariance under a local N = 1 
supersymmetry. Other extensions are also possible. 

Such local world-sheet .ymmetries are essential in obtaining a consistent quantum 
string theory. In the conformal gauge, the existence of such symmetries at the quantum 
level guarantees that negative and zero-norm states decouple from physical states and 
amplitudes, as is necessary for unitarity (actually, we only established this property at 
the level of the physical spectrum, through the no-ghost theorem, but it may be shown 
to be also true for tree level amplitudes"). In the light-cone gauge, the existence of 
local world-sheet symmetries i. essential for the space-time Poincare covariance of the 
space of states. 

Moreover, world-sheet local gauge invariances seem to be related in a very profound 
and natural way to .pace-Ume local symmetries. Indeed, string spectra always contain 
the associated massless gauge boson., such as the graviton, Yang-Mills bosons and 
gravitinos, and the corresponding quantum field theories are known to be consistent 
only if such massless particles couple to the associated conserved space-time current •• 

Hence. it is vital for quantum consistency of a string theory that its local world-sheet 
symmetries be preserved at the quantum level. A. we know, this leads to restrictions on 
the number of world-sheet degrees of freedom, since the associated quantum anomalies 
must vanish. 

Gauge in variances of string theories require gauge-fixing, with the ensuing ghost 
sectors. In the conformal gauge, as was discussed in detail, the ghost sector associated 
to world-sheet reparametrization invariance, which is a symmetry for any string theory, 
is the (6, c) ghost system. Its contribution to the central extension of the total Virasoro 
algebra is 

c(n) = -2003 +2n. (4.1) 

Ifin addition we have local N = I 8upersymmetry ita the world-sheet, the corresponding 
(P,..,) stlpergbost system contributes the following values to the total cClltral extellsion. 

R sector: c(n) +11,,' - 2u, ( 4.2) 

NS sector: c(n) +IIn3 +n. (4.:1 ) 

Similarly, for allY other local world-sheet gauge iuvariance of lhe th('ory, on4~ mU:Jl 
take into account lhe corresponding contributions of the associated ghO:Jl sector to the 
centra.l extension in the conformal gauge. 

In this gauge, the rema.ining world-sheet degrees of freedom, nalliely the maHer 
fields which couple to the two dimensional quantum gravity sector, dcfine a confor­
mal field theory, with the corresponding Virasoro algebra and central extension. Local 
reparametrization invariance at the quantum level, requires that the total central ex­
tension of the total Virasoro algebra. which includes the subtraction constant due to 
normal ordering, and the contributions from aU the ghost sectors, vanishes identically. 
Clearly, this determines the value of the total central charge for the matter fields, and 
the value of the normal ordering constant. The .ame values should ensure that any 
other local world-sheet symmetries of the .ystem are then also realized at the quantum 
level. This may be checked by computing the central extensions of the full symmetry 
algebra in the conformal gauge, or equivalently, by checking that the corresponding 
BRST charge is indeed nilpotent. 

In order to describe a .tring theory in a 0 dimensional Oat Minkowski space-time, 
we must have as world-sheet matter fields D scalar fields %"(0',,.), giving the space-lime 
position of the string. In the conrormal gauge, each of these scalar fields contributes to 
the central extension of the Virasoro algebra by 

3 (4.4)c(n) = n - n. 

For string theories with space-time fermions in the NSR formulation, we need a world· 
.heet local N = Isuper.ymmetry such that the D scalar fields have as superpartners 
D world-sheet Majorana-Weyl spinon A~(O'."), In the conformal gauge, each of these 
spinon contributes as follow. to the central extension of the Virasoro algebra: 

1 
R sector: c(n) = in3 +n, (4.5) 

NS sector: c(n) = ~n3 - ~n. (4.6) 

The remaining world-sheet degrees of freedom, if any, are then considered as inter­
nal degrees of freedom, which in the conformal gauge define a conformal field theory 
contributing to the Virasoro algebra with the corresponding central extension: 

(4.7)c(n) = Ciften3 +Pi"en. 

Hence. for a theory having only world-.heet reparametrization invariance, so called' 
N = 0 .upersymmetry, quantum gauge invariance requires that the central charge of 
the internal conformal field theory and the subtraction constant in the total Virasoro 
algebra be given by: 

(4.8)Ci"e = 26- D, 

(4.9)
CJ 24

I 
1(D - 2) - Pi"e). 
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For a theory having N = 1 world-sheet supersymmetry, the corresponding values are: 

3 
Calli' = 2(10 - D), (4.10) 

R sector: a+ 2~(-.o!C]' (4.11 ) 

1 3
NS scctor: a_ = -(-(D - 2) - .o.-;c}. (4.12)

24 2 

Clearly, the value for the subtraction constant determines the lowest mass values of 
the physical spectrum. We have the following contributions to this normal ordering 
constant: +fi from a scalar degree of freedom, - h from a Majorana-Weyl spinor in 
the Ramond seclor and +:a from a Majorana-Weyl spinor in the Neveu-Schwarz sector. 
These are also the values given by,-function regularization of the corresponding infinite 
series. Note again the breakdown of N =1 supersymmetry for NS boundary conditions. 

The same restrictions on Call' and the subtraction constant may be obtained in the 
light-cone gaugeM. Indeed, the transverse string coordinates together with the internal 
degrees of freedom define a conformal field theory, with a central extension such that 
the full Lorentz algebra is realized at the quantum level, i.e. such that the commutator 
[M- i

, AI-i) vanishes identically. For example, the total central charge of this conformal 
field theory must be c = 24 for a string theory with N = 0 supersymmetry30, and 
c = 12 for a theory with N = 1 supersymmetryoo. These restrictions then lead again 
to (4.8) and (4.10). The same applies to the normal ordering constants, which however 
may also be determined by considering the would-be massless physical states, as was 
explained for bosonic and spinning strings"o• 

With the string theories discussed in the previous two chapters, we have a situation 
where there are no internal degrees of freedom. From (4.8) to (4.12), we then recover 
of course the same critical valuCl. Historically, thc values D = 26 and D = 10 were 
believed to correspond to critical values of the dimension of space-time for which these 
theories could be consistently quantized. Now, they are seen to correspond to upper 
bounds on the dimension of space-time. Indeed, in order that the internal conformal 
field theory be unitary, we must have'·69 Call' ~ O. 

However, in the present formulation oC string theory, there is no dynamical argument 
which could single out any particular value of D. String theories may be constructed 
for space-time dimensions ranging from 26 to 2. In particular, the case D =4 requires 
Call' = 22 for N = 0 supersymmetry, and Calli' = 9 Cor N = 1 supersymmetry. If the 
classification of the corresponding conCormal field theories were known, one could then 
give the complete list of all possible four-dimensional string theories. 

From the present point of view, the problem of decoupling oC conformal modes 
of the two dimensional gravity sector becomes somewhat academic. Indeed, in the 
conformal gauge, when these modes are dynamical fields, they simply correspond to 
some conformal field theory, and as such they may be regarded as some internal degrees 
of freedom. The study of the corresponding conformal field theory may be nonetheless 
important.27 .28 

The reader may have been wondering why we restricted all our attention to N =0 
and N = 1 world-sheet supersymmetry, and',did not consider local N ~ 2 supersym­
metries. The reason is that the corresponding possible70 dimensions of space-time are 
D ,$ 2, which does not leave much room for describing strings vibrating in transverse 
space dimensions! Nevertheless, the corresponding conformal structures find important 
applications elsewhere9 

, and also in string theory as we shall comment upon later. 
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In conclusion, the requirements discussed in this section determine the necessary 
and sufficient conditions for maintaining I at the quantum level, the local world-sheet 
gauge invariances of string theory, namely local reparametrization invariance and its 
cxtensions. Thcy are also necessary, hut not neccssarily sufficicnt as wc sha.1I discuss ill 
the next section, for full quantum consistency of the theory. 

The corresponding world-sheet structures can he used in the construction of opcn 
and of closed string theories. For closed strings however, we have the additional feature 
that different such structures may be used in each moving sector. Except for the space­
time bosonic zero-modes q" and p,. giving the space-time position of the center-of-mass 
and the total space-time momentum of the string, all other modes indeed separate into 
right-and left-moving modes, including the internal degrees of freedom. Hence, we have 
the following broad classification of closed string theories7

, depending on the number 
of world-sheet supersymmetries in each moving sector: 

sector 
string theory right left dimension 
bosonic N=O N=O D:5 26 
heterotic D ,$.10 N=1N=O 
Type II D,$ 10N=1 N=1 

4.1.2 Global world-sheet invariances 

Global world-sheet reparametrizations, which are not continuously connected to the 
identity transformation, but should also be symmetries of the quantum string theory, 
faU into two classes: orientation preserving and orientation reversing diffeomorphisms. 
If only the former symmetries are imposed on the system, one is describing an oricnted 
string UI(..'Ory. Otherwisc, we havc an unoriented string theory. Let us first discuss this 
latter situation. 

In the case of a closed string, an orientation reversing reparametrization, such as 
U - 11' - u, clearly exchanges the right-and left-moving sectors. Hence, all states which 
are symmetric under this transCormation remain physical for unoriented closed strings. 
For example, the massless 2-index antisymmetric tensor is always projected out from 
the spectrum. 

For open strings, the orientation reversing diffeomorphism (u - 1f - u) clearly 
changes the phases of bosonic and fermionic modes. These phase factors may be com­
pensated for by coupling open strings to gauge degrees of freedom, by introducing 
Chan· Paton factor7l. These Chan-Paton Cactors may intuitively be thought to corre­
spond to charges attached at the end points of the open string. This was originally 
suggested by Chan and Paton for U(n) groups?·, by viewing these charges as a quark 
and an anti-quark in the Cundamental representation of U(n). 

Actually, this idea is easily generalized72 by associating to each state of the open 
string some representation of some algebra. However, this may not be done arbitrarily, 
since the correct factorization of tree-level scattering amplitudes must be obtained72 • 

Indeed, the gauge quantum numbers of intermediate states must be such that they may 
couple to those of the external states. This tree-level consistency requirement may be 

•73solved72 , with the following result: 

• only the Lie algebras associated to U(n),SO(n) and USp(n) are allowed, 

• all mass Icvels even in Q'm2 must be in the adjoint representation, 
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• 	 all mass levels odd in Q'm2 must be in the following representations: 


- U(n): adjoint representation 


-	 SO(n): ctl +. 
-	 US,>(n):8 +. 

Moreover, U(n) gauge degrees of freedom may only be introduced for oriented open 
strings, and 50(n) or U5p(n) ones for unoriented open strings (tbis re~nlt agrees witl. 
one's intuition). 

When considering string interactions, where open strings interact at their end I)oints, 
it is clear that both open and closed string secton of a same theory must be included 
in the description of Lhe spcctrum. Indeed, a single open string may interact at its OWII 
end points to form a dosed string, or a closed string may break to form au open string. 
Hence, the possible situations are: 

• 	 open and closed oriented strings, 

• open and closed unoriented strings, 

• 	 closed oriented strings, 

• 	 closed unorienled strings. 

Therefore, there exist the following D =26 bosonic theories: 

• open and closed oriented strings, with gauge group U(n), 

• open and closed unoriented strings, with gauge group SO(n) or U5p(n), 

• closed oriented strings, 

• closed unoriented strings. 

The first two classes correspond to the Veneziano Modelft , the third to the Extended 
Shapiro-Virasoro ModeF' and the fourth to the Restricted Shapiro-Viruoro Model". 
All these theories have space-time scalar tachyons, a feature incompatible with unitarity. 

Since the open spinning .tring has only one space-time supersymmelry, we have the 
following D =10 supersymmetric string theonesD : 

• 	Type I open and closed unoriented super.tring, with gauge group SO(n) or 
U5p(n}, 

• 	Type I closed unoriented superstring, 

• 	 Type Iia closed oriented superstring, 

• 	Type lib closed oriented superstring. 

The dosed string sedor of the first two classes is obtained by truncation of the the 
type lib superstring under tllC orientation revening diffeomorphism symmetry. Indeed, 
the space-time supercharges associated to the two moving sectors must have the same 
chirality. Hence, the first two cases have N =1, D =10 space-time supenymmetry, 
whereas the last two cases have N =24 or N =2", D =10 supersymmetry. 

These are thus the restridions following from the requirement of quantum invari­
alice ullder orientation reversing world-sht.'Ct dilft.'OlIIorphisms, by considering qUl\ntll1ll 
consistency at trcc-Ievel. Dy considering higher loop amplitudes however, furllH.!r re­
strictions arc imposed. 

In the case of open strings, this is well known5• Indeed, when cOllsideriug 
J-loop amplitudes with external open string states of zero-norm, such amplitudes l1\ust 
vanish identically, i.e. all null states must decouple. In the case of Type I superstrings, 
this question has been investigated for external massless gauge bosons5 a.nd gravitolls7t1 

, 

with the conclusion th..tsuch a decoupling occurs only for the gauge group SO(32) = 
SO(2'0/2). Although such a decoupling has not been established yet for all other null 
states, including massless and massive fermions, it will most probably also occur for 
the same gauge group only. 

In the case of open bosonic strings, the same question has been investigated for 
arbitrary external open string states, with the conclusion38•n that such a decoupling 
can never occur because of the open string tachyon, but that otherwise, except (or 
this non-vanishing tachyon contribution, decoupling would require the gauge group 
50(228/ 2)1', independently of any regularizatiorf'l·n. 

Hence, higher loop unitarity restricts open string theories to those of unoriented 
open and closed strings with gauge group SO(2D/2), up to possible tachyon contribu­
tionr'-", in which case the theory is ill-defined anyway. 

In the case of unoriented closed strings, not much is known along these lines. In 
the cue of oriented closed strings however, it is widely. believed that modular invari­
ance (which is discussed below) and the absence of tachyons are sufficient conditions to 
guarantee decoupling of all null states. This has been established explicitly for massless 
bosonic .tates in the case of ,uperstrings, and from the point of view of the correspond­
ing low-energy effective field theory83. General arguments support this conjecture.6J 

It so happens that the SO(2D/2) unoriented open .tring theories can be obtained 
from oriented closed string theories by a Z,,-orbifold construdion in the world-sheet19 

• 

Thus, this leads to the idea38,n that all consistent open string theories are unoriented 
, string theories which are obtained through such a construction from an oriented closed 
.tring theory. Moreover, quantum consistency of these open string theories, with in 
particular decoupling of all null states to all orden of perturbation theory, would then 
simply follow from modular invariance to all orden of the corresponding oriented closed 
string theorr',n,19. Since a Z,,-orbifold structure may be defined in two ways, one 
may believe that one of these structures would lead to a theory of unoriented open 
and closed strings, and the other structure to a theory of unoriented closed strings 
only. In addition, more complicated theories may possibly be obtained through other 
abelian (and non-abelian?) orbifold structures on the world-sheet, thus corresponding 
to theories of strings with more than two end points38,'''. ' 

lienee, this opens the way to the construction of new open (and more complicated?) 
string theories in less than 26 or 10 dimensions, including .. dimensions80

, by considering 
any consistent closed oriented .tring theory. This is certainly an interesting possibility, 
in particular with regards to the possible gauge symmetries. Much however remains to 
be done in this direction. 

In the remainder of t.hese lectures, we shall concentrate on the construction of ori­
ented closed strings, i.e. theories for which the world-sheet has a well-defined orienta­
tion. In string perturbation theory, scattering amplitudes are obtained by considering 
a world-sheet corresponding to a surface of given topology, to which the external states 
are attachedu • The topology of the surface i. characterized by its genus g, which counts 
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the numbcr of holcl! in the surface, or thc numbcr of handles attachcd 011 thc sphere (of 
genus g=O) to obtain the surface. In the case of oriented closed strings, the space of 
global difTeomorphilms is non-trivial when the world-sheet has a topology more complex 
than that of the spherc, namely when its genus is grcater tban zero, 9 > O. 

Let us introduce somc terminologyll. Dillo denotes the space of all world-sheet 
difTcomorphisms continuously connected to thc identity transformations; thcy thus prc­
serve the oriclltation. Dill denol«!S the space of all oricntation prescrving difT(..'OJnor­
phisms. Thc quoticnt Dill/Dilla =Oil then forms a group, the group of all discon­
nected componcnts of Dill, known as the modular (or mapping class) group. This 
group is dcfincd for each genus 9 separatcly. 

By imposing the constraints discussed in the previous section, we are assured tbat 
Dillo is a symmctry of the quantized theory. IIowever, requiring that string theory 
is fully reparametrization invariant still imposes the additional constraint of modular 
invariance under 0 , to all orders in the loop expansion. 

Actually, it is enough to impose this invariance for vacuum amplitudes only. Modu­
lar invariance for scattering amplitudes should then follow by factorization. Moreover, 
it seems to be a fad that modular invariance of the I-loop vacuum amplitude and 
the correct spin-statistics relation (namely, that space-time bosons and fermions con­
tribute with opposite signs in loops) are sufficient conditions for modular invariance to 
all orders55•81 • 

For this reason, we shall restrict the discussion to I-loop vacuum amplitudes, or 
partition functions, for closed oriented string theories. The corresponding world-sheet 
has gcnus 9 = I i this is the topology of a torus. By using local difTeomorphisms and 
Weyl rescalings, it is always possible to map this torus into a parallelogram, with a flat 
metric, in the upper-half complex plane (t, with opposite sides identified, and defined 
by two vectors attached at the origin and ending at 1 and T = Tl + iTz(ImT2 > 0) 
respectively (the parameter T should not be confused with the world-sheet coordinate 
T). There is thus a torus associated to every point in (t. The opposite however, is 
not true. A same torus may correspond to different points in (t. Indeed, modular 
transformations leave the torus invariant but act non-trivially on (t. 

The modular group of a given compact memann surface is generated by so-called 
Dehn twists82.83. For the genus 9 == 1 case, there are two such Dehn twists, obtained 
as follows. For each of the two homology cycles of the torus, cut the surface along this 
cycle, twist it by 2r and glue it back together. Clearly, this is a global diffeomorphism, 
leaving the torus invariant, but not the associated parameter T. Indeed, cutting along 
the cycle corresponding to O'-parametrization, we have the Dehn twist acting on T as: 

T:T-T+l. (4.13) 

For the Dehn twist along the other cycle, we have 

S: T _ -lIT. (4.14) 

Hence, the modular group 0, == I of the torus is generated by these two transformations 

Sand T. It is isomorphic to the group PSL(2Z) == SL(2, Z)/~, since it acts on T as: 


aT+b 
T - --d' a,b,c,d E Z; ad - be = 1. (4.15)

cr+ 
Let us introduce here some more termi nologyll ,83. For a Riemann surface of given 
topology g, let us consider the space of all metrics (of Euclidean or Minkowski signa­
ture) defined on this surface. The quotient of this space of metrics by the semi-direct 

product Dillox Weyl, with "Weyl" representing Weyl transformations, is then called 
Teichmiiller space. Generally, the modular group 0, acts non-trivially on Teichmiiller 
space, whose quotient by 0, is called modular space. Modular space parametrizes all 
possible conformal, complex or geometrical structures of the corresponding Riemann 
surface. In particular, we just saw that for 9 = 1, Tcichmuller Sllace is the ullpcr-half 
complex plane (t and that modular space is simply Q~'" I PS L(2Z). Let liS choose the fol­
lowing fundamental domain of the modular group in Teichmuller space, to repr(..'Sentcd 
modular space: 

1 1 
F = {T E C: ITI > 1'-2 ~ ReT < 2,lmT > OJ. (4.16) 

Modular invariancethus requires that the transformations (4.13) and (4.14) leave I-loop 
vacuum amplitudes invariant. To express these amplitudes, all the machinery of path­
integralsll•z..,s2 is not really necessary, if one recalls that the I-loop vacuum amplitude 
of a single relativistic bosonic or fermionic degree of freedom in ordinary quantum field 
theory is given by: 

1 1
=f 2/n det(-O +mZ] = =f2trln(-O +mZ), (4.17) 

where the upper (resp.lower) sign applies to a boson (resp. fermion). Through a proper­
time representation, this quantity is given (up to a factor) by: 

oo dt1 L _em!A(m2) = ±_ -(4rtrD/ 2e ,.2 (4.18)
2 0 t 

where t measures the total proper-time in the loop, and p2 is some mass scale. Note 
that in this expression, the trace over the zero-modes, namely the loop momentum, has 
already been taken. 

For a mass distribution p(mZ) of states of the same statistics, given as 

00 mZ 
p(m2

) = E d..6( 2" - (on + fJ»), (4.19) 
..",0 p 

where 0, fJ are rational numbers, and the degeneracies d.. are defined by the function 

I(q) = f: d..q2(Olft+/J),q E C, Iql < 1, (4.20) 
.=0 

the total contribution to the I-loop vacuum amplitude is then: 

oo 
A = ±!L dT3 (8r2T3>-D/z/(e-·"'). (4.21)

2 0 TZ 

Here, we set t = 2rTz. 
Let us now consider the case of a closed string. Typically, for bosonic and fermionic 

states, we have the mass formulae: 

!o'mZ = (on + fJn) +(om +fh), (4.22a)
2 

on +fJn = om+fJL' (4.22b) 

where o,Pn,/h are rational numbers, such that ,o-l(Pn - PL) is an integer, and 
n, m arc positive integers (it is always possible to choose the factor 0 to be the same 
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in each moving sector). The values on and om are the eigenvalues of the excitation 
level operators Nand N (or NJ. and NJ.) in each moving sector, namely the Viruoro 
zero-modes with the contribution of the bosonic zero-modes subtracted away. To each 
moving sector, we associate a partition function: 

00 

IR(q) = T rq2(NJ.+Ila' = E ellt(n)q2(''',+Il.), (4.23a)
".0 

:l 00 

h(q) = Trq2(11 +Il", = E elL(n)q2(aft+IlLl, (4.23b)
ft-o 

with the traces taken over all non-zero modes. As was explained (or the closed bosonic 
string after (2.113), the level matching condition (4.22b) is easily implemented in the 
partition (unction for the theory, whicb then has the expression: 

1

w ell '1/
I(q) = - IItUqle' '2a)h(lqle;II2o). (4.24) 

-w 21' 

When substituted in (4.21) , we thus obtain (or the corresponding I-loop vacuum am­
plitude: 

1 1/2a
A =:1:-0(81'2>-DI2[ eI~ 1 elTI D~2_I/It(eiwr)/£Cei""'), (4.25)2 o T, -1/2a T, 

where 

l' =1'1 +iT2, 1=21'01'1' (4.26) 

On the other hand, we have: 

IIt(eifIT)J£(cifIT) = Treiw.,.Pc-ft",H', (4.27) 

where 

P = 2(NJ. +flit) - (NJ. + flL») = 2((L: + flit) - (I; + fld), (4.28a) 

H' = 2(NJ. + flR) +(NJ. + flL») = 2(L: + flR) +(I; + flL)] _ o'(P)'. 
(4.28b) 

Hence, P is the generator of translations in t1, and H' the generator of translations in 
l' with the bosonic zero-modes subtracted out. The physical meaning o( the expression 
(4.25) is thus clear. As the closed string propagates freely before annihilating itself, it 
propagates for a total proper-time value (proportional to ) (I'T2) and twists on itself by 
an angle (proportional to) (1'1'1). The (actor (4.27) precisely computes the corresponding 
partition function. We recognize in 1'1 and 1'2 respectively the real and imaginary parts 
of tbe modular parameter l' of the associated torus topology. When multiplied by the 
factor T:-DI2, which corresponds to the trace over the bosonic zero-modes (Pi) • the 

, partition (unction (4.27) is then integrated in (4.25) over all possible values of 1'1 and 1'" 

i.e. over all possible geometries of the torus associated to tbis I-loop vacuum amplitude. 
We thus conclude that the I-loop vacuum amplitude o( a closed string theory is 

given by the expression (up to a factor): 

f elT~:T2 T:-DI2Trq2(N~+IlIt'92C"R~+Pd , (4.29) 

where 
iwr q =e , l' =1'1 +iT2, (4.30) 

and the integration is performed over lOme domain of Teichmuller space. Modular 
invariance requires on the one hand, that the integrand in (4.29) be modular invariant, 
namely invariant under the Sand T transformations of the modular parameter, and 011 

the other hand, that the integral in (4.29) be performed over the fundamental domain 
F defined in (4.16), as otherwise the same geometrical configuration would be included 
more than once in the amplitude. 

It is easy to see that jnvariance under T in (4.13) only requires that 

N + flit =N + Ih (mod 1) (4.31 ) 

This is the constraint expressing in variance under constants shifts in «(T - (T +(To). For 
the transformation Sin (4.14), it is easy to show that we have 

elTl elT2 -elTl elT2 , (4.32)-;r- T 
T2 (4.33)T2 - ITI2' 

Hence, jnvariance under T - -111' requires that the factor 

TtDI'Trq2(N J.+Ila)q2(NJ.+Il,) (4.34) 

be modular invariant. 
By restricting the integral (4.29) to tbe (undamental domain F, the usual short· 

distance divergence at T2 - 0 is excluded. Thus, string theories have a much better 
short-distance bebaviour tban ordinary quantum field tbeories of particles. This re­
striction due to modular invariance is one of the reuons (or the possible finiteness of 
string theories. However, the point l' - 0, a short-distance limit, is related to the point 
l' - ioo, a large-distance limit, through the modular transformation T - -1/T. This 
is the simplest example of a duality property between large distance and small distance 
physics in string theories. 

The fact that the large distance point 1'2 - ioo is included in the integral (4.29) 
implies that its expression is ill-defined for tachyonic theories. Indeed, we have 

",I i...,..",1 - ..",,,,1q =c C • (4.35) 

Actually, this divergence has no physical meaning31·'IT. It is only a consequence of 
the fad that tbe proper-time representation used in (4.18) is not adequate'l8·77

,i8 when 
m' < O. It may be shown-,ff that the correct result is obtained by inserting in (4.29) 
a (actor c-w",,,, with '1 ~ -mlach on' and then taking '1 - 0 once the integral is 

completed. However, modular inva~ance is then explicitly broken. But after all, this 
is not 10 surprising. Modular inMance is believed to be essential in the quantum 
consistency of string theories. For example, it should guarantee that all null states 
decouple to all orders of perturbation tbeory, which is necessary (or unitarity. For a 
tachyonic theory, unitarity is certainly not obtained, and as we discussed, null states do 
not decouple either. Thus, if modular invariance indeed implies unitarity, a tachyonic 
theory can never be modular invariant. For these reasons of unitarity and modular 
jnvariance, a tachyonic theory can never be considered to be a consistent quantum 
theory. 

Finally, let us remark here that the factorization of the partition function (4.29) 
into right-and left-moving contributions generally extends to all orders of perturbation 
theory. This property is known as holomorphic factorization.1I 
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4.2 Examples of Modular Invariance 

4.2.1 The D=26 closed bosonic string 

As a first example of the principles of string theory construction at work, let us re­
consider the simplest of all string theories, namely the closed oriented bosonic theory 
studied in chapter 2. In this case, all world-sheet matter fields are bosonic coordinates 
z"(a,r), taking their values in some Minkowski 8pac~time of D dimensions. From 
our discussion above, we know that quantum local reparametrization illvariance in the 
world-sheet requires the values (see (4.8) and (4.9»: 

D-2
D = 26, a = 24 = 1. (4.36) 

These values immediately lead to the description of the space-time spectrum whicb we 
gave in chapter 2. 

Let us now consider the global constraint of modular invariance, and, as an exercise, 
assume tbat the values (4.36) are not specified. The contribution of one scalar degree 
offreedom z"(O', r) to the partition function (4.29) in one moving sector is simply: 

1 co 1 -1- n = [q2(pO-h),,(r)] , (4.31)
q21JO A=I (1 - q2A) 

where po is the contribution to the ordering constant "a" from one scalar field in one 
moving sector, and "(T) is the Dedekind ,,-function defined in (2.111). Hence, the I-loop 
vacuum amplitude is: 

JdTl~r2 r~-D/2 [q2(P!.-h)q2(~-t)](2-D) 1,,(T)PI(2-D). (4.38)
T2 

Under modular tranCormations, the ,,(T) function transforms as follows: 

T:T-T+I ,,(T) -+ e,·.,12,,(r), (4.39) 

S: T - -lIT ,,(T) _ (-iT )1/2,,(T). (4.40) 

Hence, modular invariance under T -+ r +1 requires 

fJ? = /4 (mod 1), (4.41) 

whereas invariance under T - -lIT requires 

1
fJ? = 24 = /4. (4.42) 

Therefore, mod ular invariance requires that each scalar field contributes a value 1/24 to 
the subtraction constant. This is the value also following Crom local reparametrization 
invariance, and from (-function regularization. From this point of view, one may say 
that this type of regularization is compatible with modular invariance, so that it may 
consistently be used to obtain the correct values for the subtraction constants. Intu­
itively, the reason for this compatibility is that (-function regularization does not require 
any mass scale, and thus should preserve conformal, Weyl and modular invariance24• 

Note however that modular invariance does not fix the value Cor D; the quantity (4.38) 
is modular invariant for any value D, provided we have the values (4.42) for the order­
ing constants.It is only local reparametrization invariance, through the requirement of 
a vanishing total central charge of the Virasoro algebra, which fixes the value D =26. 
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111 conclusion. the I-loop partition function for the oriented closed string in 26 
dimensions is: 

I dTldT21,,(r)I_4'. (4.43)
iF rr 

Thus, modular invariancedoes not impose any additional constraints than those follow­
ing from local reparametrization or conformal invariance. From that point of view, tbe 
dosed bosonic string is a consistent theory. However, we know that the values (4.42) 
lead to the existence of a tachyun, which manifests itself in (4.43) by the fact that the 
factor 1,,(T )1-4' diverges as (e"·"lI) when T - ioo. This divergencess indeed corresponds 
to a at ate with io'm2 = -2. As we discussed in the last section, such a situation leads 
to the breakdown of modular in variance, a consequence of the fact that the theory is 
not unitary. 

4.2.2 The D=10 closed spinning string 

Let us now consider the case of the spinning string discussed in chapter 3. The mat­
ter fields are then D N = 1 d = 2 chiral supermultiplets (z",.\"). Local super­
reparametrization invariance requires 

1 
D = 10, aR = 0, aNS = 2' (4.44) 

In our analysis of modular invariance, we shall use these values, altho~gh the reader 
may like to repeat the argument with D, aR and aNS unspecified. 

The contribution of a single scalar degree of freedom to the partition function in 
one moving sector is: 

Tr 2(NJ.-tJ __1_ nOlI 1 __1_ (4.45)
q - ql/12 ,,=1 (1 - q2,,) - ,,(T)" 

Here, we used the fact that the corresponding subtraction constant is 'Ii, For the 
Majorana-Weyl degrees of Creedom, we have to distinguish between Ramond and Neveu­
Schwarz boundary conditions, with the conesponding subtraction constants (--Ii) and 
(+la) respectively. In the Ramond sector, we then have the following contribution to 
the partition function for one Majorana-Weyl degree of freedom 

112 ]1/200 1 Ll 

Trq2(NJ.+h l = qts n(l +fl") = Vi q (4.46) 
".1 

[ 

In the Neveu-Schwarz sector, we obtain 

T rq2[NJ.-fiJ = q-t II00 (1 +q2"-I) = ['2.] 1/2 , (4.41) 
A.I " 

and if the contributions are weighted by the fermion number ( _I)F, we have 

00 [' ] 1/2Tr(_Itq2(N.L-*1 = q-t n(l- q2A-I) =...! . (4.48) 
,,~I " 

In these expressions, " is the Dedekind ,,-function, " are the theta functions Oi(OIT) 
defined in (3.64), and the quantities NJ.. and F represent the contribution of the corre­
sponding degrees of freedom to the respective quantum operators, with the trace taken 
accordingly over the associated subspace of the space of states. 
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It should thell be clear that the corresponding parUtion function has the form: 

(4,49)f dT~t, ::I'1(T)I-'4 [116dnO~ - ORO~ - IlRO:] ["6dLO~ - OLO~ - IlLO:] 

. lIere, dR and dL count the degeneracies of the ground state spinors in the rCSI)ec­
tive Ramond sedors. This degeneracy is 8 ror an on-shell masslcss Majorana-Weyl 
spinor, 16 for a massless Majorana or Weylspinor and 32 for a massless Dirac sllinor. 
The quantities nR, 0L, Iln and Il£ correspond to the ·projectors" t [OR +ilL(-I )F] and 

I [OR +ilL(-I)F] in the respective Neveu-Schwarz sectors, with F, F being the fermion 
numbers. For Pn = 0 or Il£ =0, we have no projection, hence a possible tachyon state. 
Tbe case (0 +P)n.L =0 corresponds to aso projection; the tachyon is then avoided. 
In order to count correctly the number of states at each mass level, we must have 
lOR,£! + IIlR,LI = I. Finally, the relative minus sign between Rand NS contributions 
is due to the fact that space-time bosons and rermions should contribute with oppo­
site signs to the I-loop vacuum amplitude. Thus, the correct spin-statistics relation is 
obtained when OR and O£ are positive (with dn,d£ positive). 

Under modular transformations, we have: 

T:T-+T+I .,(T) -+ e,·/n'1(T), (4.50) 

II, -+ i·/·II" (4.5la) 

113 .... II., (4.51b) 

II. .... 113, (4.51c) 

S: T .... -l/r ,,(T) -+ (-iT)1/''1(T), (4.52) 

II, .... (-iT)1/211., (4.53a) 

113 -+ (-iT)'/'113, (4.53b) 

114 -+ (-iT)'/2I1,. (4.53c) 

Hence, invarianeeor (4.49) under T requires that: 

OR +Iln = 0, o£+Il£ =o. (4.54) 

This precisely corresponds to GSO projection in the respective NS sectors. With the 
requirement that 10R,£1 +IIIR,£1 =I. (4.54) implies that all On,£,IlR,£ take the values 
±1/2. The sign of these quantities is now fixed by modular jnvariance under S, since it 
requires: 

dn d£ 
(4.55)- IlR =16' -Il£ = 16' 

Therefore, modular invarianee of the I-loop partition function implies: 

I
dR = d£ =8, OR =o£ =2=-Iln = -ilL. (4.56) 

These are precisely55 the conditions imposed in the aso projections•• They ahow that 
this projection or the oriented closed spinning string indeed leads to a consistent string 

theory. Note tbat we also obtain the correct spin-statistics relation 55. In conclusioll, 
the I-loop modular invariant partition (unction of the tYI)e II spinning string is: 

f dTldT'I_I_ [04 - 04 +04] I'. ( ... 57) 
Tf 21,1'1' 3 • 

Note first of all that this quantity is finite, since the limit T -+ ioo is lIot singular. 
Indeed, the would-be tachYOII in the (Ns, Ns) sector is projeded out ill the difference 
(01- 0:). Moreover, this quantity actually vanishes exactly, due to the Riemann identity 
(3.66). This is a consequence of the space-time supcrsymmetry in each moving sedor. 

Note also that the discussion or modular invariance considered each moving sedor 
independently from the other. In particular, this implies that the chiralities of the two 
Majorana-Weyl spinors in the R sectors are not correlated. These chiralities may be the 
same or different, corresponding respectively to the Type lib and Type Iia superstrings. 
In lower dimensions, there exist examples of string theories where the right-and left­
moving sectors are related in a non-trivial manner through modular invariance. 

4.3 Spin Structures 

It is convenient to express these last results concerning the spinning string in an other 
language, by introducing a new geometrical concept: spin structures~~. In the quan­
tization of world-sheet spinors, we considered two sectors associated to Ramond and 
Neveu-Schwarz boundary conditions, corresponding respectively to having periodic (P) 
or anti-periodic (A) fermions when taken around the closed string in the ,,-direction on 
the world-sheet. 

Clearly, when the world-sheet has the topology of a torus, since fermions may then 
be taken around the two homology cycles of the torus, we have 2' = .( possible choices of 
boundary conditions. Thus, NS (resp.R) spinors then correspond to anti-periodic (resp. 
periodic) fermions around the homology cycle associated to "-parametrization. with 
periodic or anti-periodic boundary conditions on the other homology cycle associated 
to r-parametrization. We shall denote these choices by A,'H ' where the horizontal 
line corresponds to the boundary condition in the u-cyde, arid the vertical line to the 
boundary condition in the T-cycle. Hence, NS fermions correspond to Ali' and 'Ii' ' and 
R fermions to AO and ,0. These four possible choices correspond 
to so-called spin'structur:' of the toru555,8',I3. In the same way that a torus is endowed 
with a geometry (or equivalently a complex or a conrormal structure) by specifying the 
modular parameter T, the torus is endowed with a spin structure, which is necessary 
to describe rermions on it, by specifying these boundary conditions on a basis or the 
homology group of the torus. Let us only remark here that this notion o( spin structure 
extend. to compact Riemann surraces or higher genus, once a basis of the associated 
homology group is givens,,I3. 

Under modular transformations oCt he torus, it should.be clear that spin structures 
are mapped into one another as follows: 

63 64 

http:should.be


T:T-T+l 

pO-pO,
I) P 

AO-AO,
J' p

AO-I'D. 
A A

pO-AD, (4.58)
A A 

S: T - -lIT 

pO-PO,
P P 

AO-PO,
P A 

AO-AD,
A A 

pO-AD, (4.59)
A P 

Therefore, when considering modular invariant partition functions of string theories 
with world-sheet fermions, one must not only sum over the different possible geometries 
of the torus, by integrating over T in the (undamental domain F, but one must also 
stim over all possible spin structures o( the torus". From this point of view, the GSO 
projection of the previous section corresponds to summing over all geometrical data 
of the torus topology of the world-sheet (or the I-loop vacuum amplitude. At genus 
9 = I, the ,~ sector does not mix with the other sedors. At a higher genus, this is 
not the case anymore, so that it indeed participates non-trivially to the sum over spin 
structures necessary for modular invariance55• 

The transformations of spin strudures under the modular group are very reminis­
cent of the associated transformations of theta functions {see (4.51) and (4.53)). The 
relationship can be made exact. The ordinary partition function of a Majorana-Weyl 
fermion in two dimensional quantum field theory corresponds to having anti-periodic 
boundary conditions in the time direction82•83• Thus, to the spin structure A't, we 
must associate the contribution (4.47) in the NS sector, namely: 

AO : [~]1/2 (4.60)
A q • 

whereas the spin structure P't is associated to (4.48), since the insertion of the fermion 
number { _1)F precisely corresponds to changing the boundary condi tion in time: 

pO : [64]1/2 
(4.61)A q • 

This association is indeed compatible with the modular transformation under T of these 
quantities. From the transformation under S, we then have for the spin structureA~: 

(4.62)A9:[~r 
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Filially, we may tlms expect to have for the remaining spin structure 

pO : [~]I/2 (4.6:J)
I) '1 

This is indeed correct. 'fhe first three spin structures are known as even spin structures, 
whereas the last olle is an odd spin structure, since the corresponding partition functiolt 
vanishes identically (sc~{3.64)). This is due to the existence of fermion zero modes for 
tlw cUlsociatc(1 boundary conditions"'l. 

In terms of this notion of spin strudures, the partition function (4.57) of the Type 
II superstring may be rewritten symbolica.lly as: 

[HA9+p9) -HAg -Pg)] [HA9+ q r9) -HAg-r9)] 
(4.64) 

where the relative sign q = ±1 in the Ramond sectors corresponds to the Type IIa 
(q = -1) or to the Type lIb (q = +1) superstring partition function. In (4.64), the 
notation for the boundary conditions means that all 8 Majorana-Weyl spinors in each 
moving sector (in the light-cone gauge) have the same boundary conditions. 

&rn.Uk 
To conclude, let us remark that the notion of spin structure can be extended to 

arbitrary twisted fermions, where the phase faclors that fermions pick up when taken 
around homology cycles are now arbitrary rather than simply (±1) factors. The corre­
sponding partition functions may then be expressed in terms of general theta functions 
with characteristics. For more details, see Ref.83. 

5 COMMENTS AND CONCLUSIONS 

Unfortunately due to lack of space, we have to leave our discussion of string theory 
constructions here. It would be interesting to apply the general principles of the last 
chapter to the torus compactification of bosonic strings67 , or to the construction of all 
ten dimensional heterotic string theories",68,15, either in a bosonic or in a fermionic 
formulation, i.e. where the internal conformal field theory is realized in terms of free 
scalars or free spinors on the world-sheet. This is left as an exercise for the interested 
reader. He may find in Ref. 63 a useful discussion of torus compactification of bosonic 
strings, and in Refs. 15, 17, 82 a description of D = 10 heterotic strings, both in a 
bosonic or a fermionic formulation. For example, he may like to construct the D =10 
N = 1 supersymmetric heterotic strings66 with gauge group Ea x Ea or Spin (32)/Zz, 
and the D =10 non-supersymmetric tachyon-free heterotic stringS5,8S with gauge group 
SO(16) X SO(16), by considering all possible choices of spin structures for the internal 
world-sheet fermions and imposing modular invariance. 

A new fundamental structure that these theories realize is that of a world-sheet 
current algebra, namely a Kac·Moody aigebra3S, which leads to the existence of massless 
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vector states. corresponding to the gauge bosons of a space-time gauge symmetry or 
the theory. In a bosonic formulation, this structure is obtained through the 8O·cAlh~d 
Freukel-I<ac construction of level I representations of Kac-Moody algehras. using string 
vertex operators (ror more details, see Refs. 15, 17,35,66). In a fermionic formulation. 
the current algebra structure is obtained through a quark model type of constructioll 
(for more details, see Refs. 15, 35, 86). Hence, we have here another example of the 
general and proround relationship which exists between space-time and world-sheet 
local symmetries. 

Despite the necessity of ending these lecture no.les here, hopefulJy the reader will 
have found in the above discussion a useful introduction to and understanding of the 
principles of string theory construction. This should allow him to understand the 
literature on the subject and develop his own research. Clearly, the "name of the 
game" has become the following: pick your favorite dimension D of space-time (usually 
D = .. I), and use for the internal degrees of freedom some conrormal field theory with 
central charge c =26 - D or c =3(10 - D)/2, corresponding respectively to N = 0 or 
N =1 local supersymmetry in the associated moving sector. This internal conformal 
field theory should be such that the complete I-loop partition function of the theory 
is modular invariant, and consistent with the usualspin·statistics connection (and also 
free of tachyon-related divergences). Then, work out the physical spectrum and its 
space-time symmetries, and decide if it has a chance of resembling, in the massless 
sector, the spectrum of quarks, leptons and gauge bosons of the SU(3) x SU(2) x U(l) 
Standard Model, or some Grand Unification of it. Clearly, when such a string model 
is found, there is still a very large amount of work to be done""" before calling it a 
"realistic string theory". 

Originally, since string theory became the most prominent candidate for a unified 
quantum theory right after the wave of popularity of Kaluza-Klein theories''', people 
tended to think of the internal degrees of freedom as compactified degrees of freedom. 
For example, starting from a ten dimensional string theory, by compactifying six bosons 
and fermions on some internal compact space, such as a torus, a four dimensional theory 
may be obtained1•T2• When this was considered at the level of the low-energy effective 

.	field theory in ten dimensions, it led' to compactifications on Calabi-Yau manifolds"c,u 
when requiring N =I D =4 global supersymmetry. But clearly, this is only one possi­
ble approach. More generally, an arbitrary construction would not have such a simple 
geometrical interpretation (for example, when the right- and left-moving sedors are 
completely different); although conformal field theory in two dimensions is so particu­
lar that such an interpretation may sometimes be possible nevertheless. 

From this point of view, very large numbers of string theories in 4 dimensions have 
been constructed over the last years, using many different formulations for the internal 
degrees of freedom which do not always lead to different theories. Let us only mention 
here toroidal compactifications''', covariant latticeconstructions"·63, orbifolds'''', group 
manifolds", fermionic constructions",IO, tensor product constructions68.'I.,', etc .••• 

Clearly, the approach to .tring theory construction can be considered from a much 
more general point of view. A. was one of the main leit-motives of these lectures, string 
theories in the conformal gauge, and thus also in the light-cone gauge, are nothing 
but conformal field theories, where the internal degrees of freedom define a N = 0 or 
N =1 conformal field theory (CFT) with a given central charge.,·68. Thus, if a complete 
list or these CFT and of their partition functions was known, irrespective of explicit 
realizations or those theories in terms of two dimen.ional Helds, a complete clasl'lificatioJl 
or consistent string theories could be given. This is one among many other reallOliS for 
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the very rapidly expanding present research activity on the classification of COli formal 
field thcories in two dimensions'. Let us remark here that rroUl such a l)oil1t or view. tIll' 
calculation or string scattering Atnl)litudes to any order of perturbatioll th(:ory ht!colllcS 

an exercise in the calculation of correlation functions in conrormal field thcory9. 

As should be emphasized, the present approach to string theory constructioll docs 
not give any understanding as to why space-time should be four dimensional alld Oat. 
Only requirements of quantum consistency are imposed, which only lead to the upper 
bound D $ 10. The hope is that, by classifying all possible string theories, we could not 
only find out if there are potential I&realistic" theories, but moreover. such an approach 
could bring some new insight into the little understanding that we have concernillg the 
dynamics of these theories, especially in non-perturbative regimes7

•
68

• In this context, 
all present constructions should be viewed as the constructions of different classical 
string vacua of what could possibly be only a few fundamental string theories, still to 
be formulated. For example, all toroidal compactifications of bosonic strings are related 
to one another, via expectation values of massless physical states93 

• Dynamics in the 
spaces of moduli (or parameters) describing these different classical vacua, induced ror 
example by possible non-perturbative effects, could lead to some unique "ground slate" 
string theory. This is the general present ·philosophy" behind the approach discussed 
in these lectures. 

Clearly, since the number of possibilities for constructing string theories is so large, 
one may be less ambitious, and only consider the classification of possible "realistic" 
string theories, by imposing some additional general ·phenomenological" requirements. 
The obvious one is to choose D = 4. One may also require that the gauge symmetry 
group of the theory contains the group SU(3) x SU(2) x U(l}. with massless chiral 
fermionl transforming as a triplet and a doublet under SU(3) x SU(2). Under very 
general conditions, it has been shown" that such a requirement excludes all 
Type II string constructions, leaving thus only heterotic strings as possible candidates 
for "realistic" theories. 

One further constraint which one may Iike2 to enforce is that the four dimensional 
heterotic Itring theory has one global .pace-time supersymmetry. It has been shown9s 

that in the conformal gauge, such a requirement imposes the existence of a global N =2 
superconformal invariance in at least one moving sector of the theory. 

Hence, from such a point of view, Mrealistic" string theories should be obtained 
through heterotic string constructions using N =2 superconformal field theories with 
central charge c =9. The simplest such theories are obtained by tensor products or the 
corresponding members of the unitary discrete aeries'. Indeed, they lead to consistent 
string theories, which share many or the properties of Calabi-Yau compactifications or 
tcn dimensional heterotic strings, or the associated orbifold construdions92

•
OO

• Other 
constructions of N =2 superconformal theories with c = 9 are also possible97 

, leading 
to new types of string theories". Thus, the classification of all N =2 superconrormal 
field theories (with c =9) is very important in that respect, and it has indeed grown AI 

into a research field of its own over the past months". 
Clearly, although the main research activity in string theory emphasizes nowadays 

more the conformal field theoretical aspects of these theories, it is a field or research 
which is going to be with us for many more years, and as such any young theoretician 
should be familiar with its basic structure and properties. Not only is two dimensional 
conformal field theory a rescarch field in its own right, it also has important connections, 
many probably stilllo be discovered, with statistical mechanics in two (linumsiolls ali<I 
pure mathematics. Moreover, after more than five years since string tht.·ory i5 back at 
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the fore-front of theoretical particle physics, with 80 many people having worked on it 
from very different perspectives, not one single argument has been put forth which could 
make these theories less an appealing or even inconsistent framework for the unification 
of all interactions. 

As there is no other alternative known today, string theory still remains a fascinat­
ing and promising speculative avenue for the ultimate quantum unification of all our 
understanding of particle physics. The beauty of the mathematics involved makes it 
even more rcwarding. 
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