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Abstract 

We study in a general treatment the influence of a class of perturbations acting 
on the atoms of an atomic Interferometer. An exact expression for the resulting 
shift of the interference pattern Is given for an arbitrary number of laser zones 
with travelling or standing waves. The assumption made is that the two-level 
model is appropriate for the description of atoms and that the perturbations 
can be neglected in the laser zones. As an important application we calculate 
the influence of acceleration, rotation, and space-time curvature on the Ramsey 
interferometer and the atomic fountain. The measurabiUty of the respective phase 
shifts is discussed. 
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The idea of using lasers as beam splitters for atomic interferometers was developed 
by Borde [1] in 1989. Due to momentum conservation atoms can gain or loose a 
momentum of k if they absorb or emit a photon with wavevector k. This effect 
can be used to split and recombine an atomic beam. The interaction with a laser 
beam which is tuned to be nearly in resonance with a certain atomic transition can 
be described within the two-level model of atoms. This was used to calculate the 
complete fringe pattern in the Ramsey spectrometer which consists of two pairs of 
counterpropagating laser waves [2]. The atomic fountain device [3] may be treated 
as an effective two level system. 

There are extended efforts to study the influence of electromagnetic fields of laser 
beams on moving atoms with the intention to design mirrors and beam splitters in 
an atomic interferometer. In the following we study the complementary problem: 
Using a black box approach for the laser zones we treat exactly the influence of a 
class of perturbations acting on the atoms when these are moving through the dark 
zones between the lasers in the Interferometer. Our intention thereby is to treat 
the induced shift of a fringe pattern for a set up with an arbitrary number of laser 
zones with standing or running waves. We restrict to two level atoms and strive for 
a result in terms of a recursion formula which allows us to work out the influences 
of the different parts of the perturbation to any desired order of magnitude. This is 
of particular importance if these terms differ largely in magnitude. In this case one 
must be able to control all the mixed terms which may occur in order to obtain the 
phase shift for a particular experimental speCification up to a given accuracy. In this 
sense we generalize our calculations in Ref. [4]. 

There are at the moment two potential applications of our general scheme. The 
perturbations may be unwanted, for example when the atomic interferometer is used 
as a frequency standard. In this case one has to know the structure of their influence 
in order to eliminate it. On the other hand, the perturbation may go back to the 
influence of acceleration, rotation, and space-time curvature. In this connection 
the intention is to examine whether such an inertial or gravitational influence on 
quantum matter can be detected in the laboratory using atomic interferometry. In
terferometry with neutrons [5, 6), electrons [7], and atoms [8, 3] is at present the 
only possibility to examine this effect. Its relevance for gravitational theory has been 
discussed in [9]. For space-time curvature we have studied the measurability by a 
Ramsey interferometer in Ref. [10). For the influence of acceleration on the phase 
shift there is a difference between neutron and atomic interferometry. For neutrons 
the beam splitters are realized with a single crystal, and a series expansion of the 
WKB phase is needed [11, 12, 13}. We will show below that for atom interferometers 
where lasers are used as beam splitters the phase shift due to acceleration alone has 
only one part: the first order contribution. 

The paper is organized as follows. In Sec. 2 we will explain the general scheme for 
the algebraic calculation of the shift. The idealization of the laser beams is addressed 
in Sec. 3. The elaboration of the complete phase shift is contained in Sec. 4 and will 
be applied to the Ramsey interferometer and the atomic fountain in Sec. 5. On this 
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basis the measurability of space-time curvature is studied in Sec. 6. A quick direct 
calculation of the phase shift if only acceleration is present is given in Sec. 7. We will 
use natural units (Ii = c = 1) unless otherwise stated. 

2 General scheme 
In the two-level model the Hamiltonian of the atoms in the atomic interferometer is 
given by 

H lot = Hem + H"lorll - rI. EUr, t) , (1) 

with 

j;1. 
Hem 2M+ HIJ (2) 

i
Hatolll H·I--f (3). 2 

where x, p, and M are the center of mass position and momentum, and the mass 
of the atom, respectively. HA = Eala)(al + E/,!lJ)(bI is the internal energy operator 
restricted to the two atomic energy eigenstates la} and Il) of interest. We will assume 
En < E/,. r = 1'"la)(al + I'blb)(bl contains the decay factors I,,, 1'1, of the two states. 
The coupling of the atoms to the laser field in the laser zones is given in the dipole 
approximation by -d· E(x), where E is the electric field of the laser and II is the 
dipole moment of the atom. In a two level model one can set (aldla) = (bldlb) = 0, 
and (aldlb) ;: (bldla) = dab' 

Hp in Eq. (1) represents the influence of external potentials on the propagating 
matter states. Depending upon circumstances these potentials may either be regarded 
as external disturbances, the influence of which has to be known in order to be able to 
eliminate them in an experimental setup, or as the external potentials to be measured 
by matter wave interferometry. We assume HI' to be of the form 

- 1\1 R ... (- :;"\H = 1\1 - OIO",·I'/·l'1II W· . (4)p a· .1' +""2 - ,r x PJ 

Here and in the remainder we use the convention that any index of HOlOm which 
appears a second time in the same formula has to be summed from 1 to 3. The 
first two terms may be regarded as the first terms of a Taylor expansion of some 
scalar potential. The third term represents an angular momentum coupling. In the 
applications discussed below Hp will represent the influence of gravitation and of 
the rotation of the reference system. In this case (j = const. is the acceleration, w= 
const. the angular velocity, and R0/0m = const. are the components of the Riemann 
tensor with respect to the Fermi coordinates of the observer [10]. It is the aim of this 
paper to give a general treatment of the resulting shift of the interference pattern if 
Hp is switched on. 

The general arrangement for an atom interferometer using lasers as beam splitters 
consists of an atom beam passing a sequence of :Y lasers with standing or travelling 
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Figure 1: All partial beams of an atomic beam passing the Ramsey device as 
they are predicted in the rotating wave approximation. The vertical arrows 
denote the running laser waves and their direction. Dashed lines correspond 
to excited atoms. The atoms are initially deexcited and travel freely for times 
Tj between the lasers. Beam I and II are able to interfere. 

waves and moving free of laser influences in the dark zones between the lasers for 
time intervals Tj • The free evolution is governed by the Hamiltonian H = Hem + H atom 

of Eq. (1). Because His time independent the corresponding time evolution operator 
is simply exp[-iHT;) in the ith interval of free evolution. Denoting the evolution 
operator which describes the result of the interaction with the ith laser by UL(i) the 
complete evolution of the state of the atoms is given by 

I¢(tf}} = UdN) exp[-iHTN_tlUdN - 1)··· Ud2) cxp[-iHTdUd1) cxp[-iHTollt/1o} (5) 

where I¢o} is the initial state of the atoms and t f is the final time. 
During its evolution the ingoing atomic beam is split into many partial beams 

with different momenta and different internal states which can interfere under cer
tain conditions. As an example Fig. 1 shows the partial beams for the Ramsey 
interferometer. Note that the word partial beam is introduced for simplicity rea
sons to denote in a suggestive way parts of the splitted wave function with certain 
momenta. A partial beam characterizes a particular history of excitations and deex
citations. Eq. (5) shows clearly that there is no concept of a path in configuration 
space in the quantum evolution. In the following we single out two partial beams 
I and II resulting at the final time t f in I~'l) and 1~'1I} and study the corresponding 
interference pattern. 

A formal description of the partial beams can be made if we decompose the state 
vector into its deexcited part and its excited part. The Hilbert space of our problem is 
the direct product of the two dimensional internal Hilbert space and the one of the 
center of mass motion. We can therefore write 
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with Itt1a) = la)(all,b) and similar for Ib). Independent of the details of the atom's 
interaction with the lasers in the laser zones the transition from the ingoing matter 
state to the outgoing one can be described phenomenologically by 

Udi) (~i (Ji) (7)
II 6; 

where i = 1"", N denotes the number of the laser zone. The components of this 
matrix are in general operators containing ;r and 11. A more specific form will be 
given for idealized laser zones in the next section. The physical meaning of the 
components is clear: O'i occurs if an excited atom remains excited, t5i if it continues 
to be in the state la). If (Ji arises we know that the ith laser has the atom excited, 
and "Yi describes the process of deexcitation. For a particular partial beam passing a 
splitter i only one of the components of Udi) will become effective. It is therefore 
obvious that each total partial beam is specified if we write down the corresponding 
sequence of components. Consider for instance the two interfering beams I and II 
of Fig. 1. Beam I corresponds to the sequence /31')'2!3ao.1 and beam II is described by 
616263/34' 

To concentrate in the calculation on the relevant terms the general scheme in this 
paper will be the following: for some configuration of lasers and two given particuJar 
partial beams I and II resulting in l,p[) and 11/'/1) there is already an interference pattern 
if the external potentials vanish (Hp = 0). This pattern is assumed to be known. 
We do not address the question which pairs of partial beams lead to a detectable 
pattern. They may for instance be specified as those with the smallest washing out 
by Doppler broadening. If we now switch on the disturbance Hp these fringe patterns 
are shifted. The corresponding terms in the calculation depend on ii, w, or RO/Om • We 
are only interested in this phase shift. In 14'/) and 1~111) the contributions which 
are already there in the undisturbed case can be isolated as complex factors. If not 
otherwise stated our convention when working out I~'/) and I~"II) will therefore be to 
omit contributions to these factors whenever possible. Thereby we must keep certain 
contributions in order not to loose terms of Hw Finally the resulting phase shift 
caused by switching on Hp is obtained in restricting in (~'dl;'/') to those parts which 
contain the constituents of Hp. 

This convention has consequences. Because H"lmll commutes with Hem it contri
butes only to the omitted complex factor. Therefore Ill',) and ItI'lI) go solely back 
to the action of Hem in the dark zones and to the respective components of Udi) of 
Eq. (7). 

For example, for the two beams in the Ramsey device of Fig. 1 we find 

0'4e-iHcm T3 /Jae-illcm 

I~'II) (J4e-illcmlJt5:le-ill,w (8) 

In this case both partial beams are excited after the passage of the fourth laser. In 
many devices such as the Ramsey interferometer the number of excited atoms after 
the evolution is measured. The observed quantity is therefore (~'bl~'b) and it contains 
beside other contributions an interference term of the form 2 Re (tI,,ltI,II)' In the 

Ramsey device almost all the other interference terms, i.e. those between other 
partial beams, are washed out due to the Doppler effect [2]. This entails that the 
signal consists of some background and some sinusodial variation coming from the 
interference term. The phase of this variation can be calculated by evaluating (tI,11l,bII)' 
The phase shift originating from Hp of Eq. (1) can be read off directly. This is the 
general scheme of the paper. 

Our aim is to give a general expression for (11'111/'/1) for any two given partial beams 
for an arbitrary laser configuration provided the lasers can be idealized as follows. 

3 Idealization of the laser beams 

We need the knowledge of the evolution operators Udi) which refer to laser zones 
with travelling or standing laser waves serving as beam splitters. If the complete Ha
miltonian Htot of Eq. (1) including Hp is taken into account the related microstructure 
of the time evolution will lead to Udi) which are in the exact version complicated 
functions of the operators of position and momentum, of the ingoing matter state, 
and of the duration T of the laser influence. Because we follow two given partial 
beams I and II we have in fact Ul(i) and U/,' (i). Our main idealization is then that 
the influence of the perturbing Hamiltonian HI' over the interaction time T in the 
laser zone is so small that it may be neglected when elaborating the final interference 
pattern. This is to be expected if T is very short compared with the times of flight ~ 
between the lasers. We assume it therefore to be justified to describe the influence of 
the travelling or standing laser waves in Id'/) as a momentum transfer at one instant 
of time of the form 

o:f = exp[illf f j ••r} (9) 

where ki is the wave vector of the respective laser wave and II! = 0, ±1, ±2, .... The 
position operator is the only q-number which appears here. We have corresponding 
expressions for /3/, "Y!' 6f, and for the beam II. According to our convention any 
amplitude is omitted because it does not contribute to the phase shift which goes 
back to Hp. The same is the case for the laser phase omitted in Eq. (9). The restriction 
of the laser influence to the momentum transfer which will be justified theoretically 
below is reasonable. It is this feature which is used for the construction of optical 
beam splitters as proposed, for instance, by Pfau, Adams, and Mlynek [14] in the 
context of a three-level atom in a constant magnetic field. 

The time evolution of a partial beam is now given by 

=e;n~kN·i'('-ifl< ... TN_1 (10) 

and similarly for ItI'lI) with H"", of Eq. (2). For I~'/) in Fig. 1 we have, for example, 
n{ I, n~ -I, n~ 1, n~ = 0, and kl k2 -rl -k.1• 

The approximation made above which leads to the idealization of the laser zones 
by beam splitters acting instantaneously can formally be obtained by taking the 
limit to very small T and very large Rabi's frequency n,d. Eo . (~'Ij in such a way that 
X := T!lab remains fixed characterizing the respective experimental set up. To justify 
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the structure (9) assumed above we give an exact calculation of the output of a laser 
zone for the extreme limit I --. °(" const.). The electric field E may thereby be 
given by Eo cos[wt - k· i + <,?] (running wave) or Eo cos[wt] cos[<,? - k· :r] (standing wave). 
<p is some constant phase. For I < l/lkl there is one common result for running and 
standing waves. The SchrOdinger equation with the full Hamiltonian given by Eq. 
(1) has the formal solution 

r00 	

H(t,,)llI'(O)} (11)) 0 o.I¢(I)} = E(-i)n in dt)· .. dt" 
n=O 0 

whereby the simplifying convention of Sec. 2 has not been used. We now repa
rametrize the variables of integration by ti = Ail and perform the described limit. 
Exploiting 

~~6 ,H(ti = lAd = - \ ('os[; k· .r] (1 1) (12) 

which is valid for both running and standing waves it is easy to perform the sum in 
Eq. (11). Remembering that the square of the Pauli matrix (1) occurring in Eq. (12) 
is the identity matrix we arrive at 

0I'¢(O+)} = {(1 1) cos(<,? - k· ;if)] + i (1 1) sinh cos(:p k I¢(O)}. (13) 

This form of the evolution operator is not very illuminating (what is the sine of 
the cosine of the position operator?) but it can be written in a more appropriate form 
if one represents cos[<,? k. i)] as (exp[i<,? if· xJ + l'xp[-i<,? + if· ;r])/2 and writes down 
the Taylor series of the remaining sine and cosine. In this way we find, e.g., 

... 00 (-I)m (\:)2111 1/1 (2111) _
cos[xcos(<,? - k 0 x)] 	 E -(2)1':"'2 L I (~xp[2il(k. of- (14) 

01=0 nl. 1=_." + 111 

A resummation of the r.h.s. leads us to 

cos[\ cos(<,? k. i)] E
00 

exp[2ir(k ..r- ),. \) (1S) 
r=-(X;, 

where 
V)211'1 00 ( I 

J2Irl(X) = ~ L -I} h/2)11 	 (16)( 
1=0 

are Bessel's functions. A similar calculation can be done for the sine in Eq. (13). The 
time evolution in its final form is then given by 

I¢(O+)} { ( 1 1 ) Ili;oo exp[2ill(k ..r - \)+ 	 (17) 

1 ) 	 00 

i ( 1 	 + (-l)"hll+lL\)}~ 
7 

, 

This expression makes the physical effect of the laser waves rather obvious. Since 
exp(ink. i} corresponds to a change of uk in the momentum of the atoms the atomic 
beam is split into many partial beams which are weighted with Bessel functions. 
For even n there is a momentum transfer without excitation and deexcitation. It 
depends on the apparatus parameter ,\ which Bessel function and accordingly which 
momentum transfer n is predominant in Eq. (17). Note that in the extreme limit of 
Eq. (17) also for running waves excitation with n < 0 and deexcitation with n > 0 is 
possible. Such processes are explicitly removed in the rotating wave approximation 
because they are far from resonance with the atomic transition. In the limit of very 
short interaction time between lasers and atoms the resonance condition has not to 
be fulfilled. Seen in this way the result (17) makes it plausible that for very short 
(running) laser pulses atoms could get the "wrong" momentum transfer. 

Having justified the structure of Eq. (9) we stress that the calculation should not 
be misunderstood as an adequate treatment of the influence of extremely short laser 
pulses on atoms. This is due to the fact that for short laser pulses the contribution of 
non-resonant electromagnetic waves cannot be neglected. An important implication 
is that for too short pulses also atomic states which are not described in the two-level 
approach can be excited by the laser waves. Since a very short pulse may not extend 
over one wavelength also the shape of the pulse becomes important. Nevertheless 
the result (17) is a good approximation if the pulses are not too short and if the flight 
times T; in the dark zones are much longer than the interaction times Ii between 
the atoms and the lasers. Its range of validity may be constrained to situations 
where the rotating wave approximation and of course the two-level approximation 
are applicable. 

4 	 Phase shift for arbitrary interferometer configurati
ons 

In this section we will be concerned with the calculation of the phase shift between 
two partial beams I and II caused by HI} of Eq. (4) in an atomic interferometer with an 
arbitrary number oflaser beams serving as beam splitters. In a first step the expression 
(10) can be brought into a more convenient form if we insert the identity operator 
in the form exp( -iHcmt) exp(iHcmt) for certain times t and make use of the equality 

exp(-B) exp(A) exp(D) ('xp[c-IJAc lJ ] 	 (18) 

which is valid for any operators.4 and D provided the exponentials make sense. We 
get 

11h) = e-iIIcnol N eill~,oN ••• !I'U) 	 (19) 

where tj := Ej:'~ Tj, and the operators ri are defined by 

1'; := rille", I, f; . .fe-illc,..I, • 	 (20) 
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This approach is similar to the one used by Borde [15] for the calculation of acce
leration and rotation induced shifts in the Ramsey device and for a Mach-Zehnder 
interferometer. 

The essential step in the derivation of the phase shift is now the calculation of 
these operators by means of the well known formula 

• -+ _ ' ?O (it)" ,
exp[ttHcm]k . :.r exp[-ltHem] = L -,-, /\;< (21)

,,=0 !" 

with Ko = k· X and /(8+1 = [Hem I /(8]' It is not difficult to prove by induction that 
each /(s can be written in the form 

/(8 = ill {Us' x+ J~J \~ . 1} + lr~, . ti} (22) 

where Us, ¥S, and Ws are c-numbers and do not depend on the acceleration ii. This will 
turn out to be the reason for the independence of the accelerational phase shift of 
the initial state of the atoms. The c-number vectors obey the recursion law 

(Us+da = Cnbc(Us)b(W),. + RonOI/(\~.)/) 
(v'+da cabc(l7:.)b(W)e - (U,.)" 

(Ws+tla ;; (¥S)a (23) 

with the initial condition 0'0 k and f:'o lITo = O. In general the solution of this 
scheme cannot be given in a closed form, but it is possible to calculate the operators 
Tj to any wanted accuracy. When this has been done the operators Ii of Eq. (20) are 
given by 

Tj ;:: pj . at + iJi • ji + Pi • iJ (24) 

with well defined flit Vii and Pi. This is the first step in the evaluation of Eq. (20). The 
specification of flil Vii and Pi follows in Eqs. (27), (28), and (30). 

The rest of the calculation is only a repeated utilization of the famous Baker
Campbell-Haussdorf formula which gives again exact results because the operators Tj 

have the simple form (24). In a first step one can prove by induction that 

N , .\'-1 

einNTN ••• einlrl := exp[L ('xp[~ L L lIillj("; ,i;j Vi '/7j )] (25) 
i=! ;=1 j>; 

holds. This can be used to rewrite the expression (19) in a more convenient form. 
After the same is done for 11J!1I) the interference term (~"d~cl/l) is quickly calculated to 
be 

exp {i fJn{' - n!)(}; 'ii} x 
.=1 

'fj N-I 

exp 
{ 

:!:. L L{n[ln;' - . iij Vi . 
2 ;=1 i>i 

9 

+0. ~ JI-.V(1/.l n l + nil 1111 2n ll nl )} x2 ,L.,,' J I J I)') 

1.)=1 

( 1/'01 cxp {i t,(11;1 - U:)j1i .;r} cxP {i t(uf' lIf )Vi . fi'} (26) 

where we have reintroduced Ii and c for convenience. In realistic situations we will 
have Ikl ~ Eb - Ea. Doppler shift and recoil are still contained. To read off the 
phase shift induced by Hp of Eq. (4) one has to work out Pil Vi, and Pi explicitly for 
the interferometer situation in question and to substract from the phase given in 
Eq. (26) the corresponding expression for ii =0, W =0, and ROlUrn = O. Eq. (26) is 
the main result of this paper. It may look somewhat complicated but this is only 
due to its great generality. In particular, this form is well suited for the application 
of algebraic computer programs. After specification of the magnitudes of ii, w, and 
flo'Om in HI' it is now in the expression (26) where one has to make shure that the 
iteration (23) above has led to the respective contributions of the desired order. An 
example will be given in the next section. 

We remark that in two physically important special cases closed expressions for Tj 

can be given from which the respective Pil Vii and Pi can be read off. If the rotation 
vanishes we find 

Ti =(ki}t(cos[tjN])/mxm + ;;f(kd/(N- 1 sin[f;l\'])/mP", + (f;)/(S-:.?(cos[t;N] l))/mam (27) 

where the matrix N is defined by (N2 )lm := ROlOm • Surely this is a formal expression 
defined solely via its expansion which contains only even powers of N. In this sense 
we need not to care for the existence of N. 

In absence of curvature the result for the operators is 

Tj (kj)/(exp[tiO])/mXm + ~~(ki)/(CXP[t/)])IIIIP'" + (f;),(O-2(exp[tiO] - l))lmam 

-(kd/(O-1 exp[tiO])/mamtj (28) 

where the matrix 0 is defined by O/f/! E'mkWk. 

A short discussion of our result (26) will close this section. First, it is obvious that 
the accelerational induced phase shift is completely independent of the initial state 
Il,bo) since the acceleration aoccurs only in the first row of Eq. (26). The independence 
of this shift from the initial momentum of the atoms for the atomic fountain was also 
noted by Kasevich and Chu [3]. Second, there are state dependent shifts as the last 
row indicates. In order to get an impression of their form we assume that the initial 
state is la) ® IG) where IG) denotes a Gaussian wavepacket (in momentum space) with 
mean momentum (p'; and half width a in all directions. Setting.4:= Ei{nf' n{)fli 
and jj := Ej(nfl nOvj we quickly find that the state dependent part of Eq. (26) 
contains a phase factor and a factor modifying the amplitude: 

_ i _ - a'l. -. 3-.)
eXI) fiB' . (1~ - .:1 • lJ} t'Xl>{, - -G lJ'l. - - -1-}, rJI 2' 8a:.?" , (29) 

10 



We will see in the next section that for the Ramsey interferometer only the term 
jj. (f/) contributes to the phase shift to the desired order in our applications since the 
term A· jj will be entirely of higher order. 

5 	 Application to the Ramsey interferometer and to the 
atomic fountain 

It is now straightforward to apply Eq. (26) to two special devices, the Ramsey inter
ferometer and the atomic fountain. As specification of the experimental set up we 
may assume flight times T of about one second. The order of the initial velocity v 
, the laser wave vector k, and the atomic mass AI are about 'l' '" 1 m S-I, Ikl'" 107 

m- 1, and M ,....., 10-26 kg, respectively. If one applies such an atomic interferometer for 
the measurement of the influence of the earth's acceleration a, the earth's rotation 
w, and space-time curvature ROIOm of the earth or of some lead block we have the 
magnitudes a '" 10 m S-I, w '" 7 . 10-'') S-I, and ROlOm '" !) • 10-23 m-2, respectively. 
These specifications make it reasonable to work out iii, 0;, and (Ii of Eq. (24) by means 
of the recursion law (23) up to second order in the rotation and first order in the 
curvature. In the exponents of Eq. (26) we will take into account only phase shifts 
which are at least of the order of 0.1 rad. In detail we obtain 

-: -: -+ 1 '2:-+ .... 1 '2 '2 -:(ki)1 ti(k j x W)I + '2ti ((k; x w) x W)I '2 t ;(' ROlOtII(~';)1Il 
1 {-: 2 -: -+ 1;] -: __ 1 :J '2 -:

(z1.;)1 M tj(k;)/ - tj (k i X w)/ + 2t; ((Ai x w) X W)I at;e ROlOm(kdm} 

-+ 1 2 -+ ........ 1" .... _ _ 1 41 -+
1 3(p;)1 -2tj (kd/ + atj (ki x W)/ - gt; ((k i x W) X W)/ + 24 tj C ROlOm(ktlm· (30) 

The first apparatus we will consider is the Ramsey interferometer which is described 
in some detail in Ref. (2]. For our purpose the following facts are sufficient. First, 
in the Ramsey interferometer essentially only two atomic states are involved and 
the laser frequency is close to the transition frequency between these states. It is 
therefore allowed to use the two level model for atoms as we have done in the 
preceding sections. Four lasers serve as beam splitters, and their wave vectors are 
given by k kl = k2 = -k4 • The times of flight as they appear in Eq. (10) 
are given by To = 0, Tl Ta =: T, and T' := T'2' We introduced T and T' just 
to be in concordance with the usual notation in the literature. We will examine 
the phase shift between the partial beams I and II of Fig. 1 as it is induced by Hp. 
According to Sec. 2 these beams are characterized by the sequences {31f2/1;J0'4 and 
616263{J4, respectively. From this we can infer to the sequences {I/ f} = {I, -1, 1, o} and 
{n/I} :;;;; to, 0, O,I}. Inserting these values in Eq. (26) and use of Eq. (30) leads after 
some algebra to the expression 

exp {i[k. aT(T +T') - a· (k x w)T(T +T')(2T + 

+6~.f (c'lRolomklklll +3(k X w)2) T'2(2T +3T') 

11 

+~(((k x iJ) x iJ) . a- ~RolOlllk/(l",)T(T + T')(7T2 + 7TT' + 2T'2)]} 

X (tPol exp {i[c'lRO/OmXlkm ((k x iJ) x iJ) . i]T(T + T')} 

exp { 2~ [ (c'lR%mklPm 3( (k x iJ) x w) . 11) T(T +T')(2T +T') 

+4]1· (k xw)T(T + T')]}Il/Jo) (31) 

which contains only the phase shift due to HI} ::j:. 0. Again we have reintroduced n 
and c. The first order contribution due to rotation was measured with the Ramsey 
interferometer by Riehle et. al. [8}. For the measurement of space-time curvature the 
device of Sterr et. al. [16] may be better suited because of the longer lifetime of the 
respective excited state in magnesium. As announced the product of the two vectors 
A and jj entering Eq. (29) is of higher order in this case. A discussion of the leading 
terms of the phase shift was given elsewhere [10]. The order of magnitude, however, 
is the same as for the atomic fountain which will be estimated below. 

Next we turn to the atomic fountain as it was developed by Kasevich and Chu [3]. 
In this case 3 atomic levels are involved, two hyperfine levels and one excited level. 
The atomic beam is split and recombined by three laser pulses. Each pulse includes 
two counterpropagating laser beams (here denoted by a and b) with frequencies Va 

and Vb. They are tuned in a way that their frequencies are slightly smaller than 
the transition frequency between the two hyper fine levels and the excited level so 
that a two photon process induces transitions between the hyperfine levels. The 
momentum transfer for such a process is k,. - kip The splitting of the atomic beam is 
given in Fig. 2. 

It now seems that our scheme is not applicable to this experiment since it is only 
valid for two level atoms. However, as pOinted out in Ref. [3] the particular tuning 
of the laser pulses makes it possible to treat the hyperfine states as an effective two 
level system with an effective momentum transfer of k" kip This observation allows 
us to use the results of this paper for the calculation of the phase shift in the atomic 
fountain apparatus. 

We will model the situation by three copropagating running laser beams with 
wave vector equal to the effective momentum transfer k = k,. - kb• From Fig. 2 we 
can read off the defining sequences of operators for the interfering beams. For beam 
litis 61{J2Ct3 and {nf} = to, I,O}. Beam II is described by jjl1:.!/:I:1 and {nf/} {I,-I, I}. 
Setting Tl = T2 T and To °the application of Eq. (26) leads us to the phase shift 

, [ - 2 -+ - _ 'I fw:t 'j
(tP/ltPlI) exp { l - k· aT +3a· (k x w)T' - 2MRolOmk/k/llT' 	 (32) 

7 (((k x iJ) x iJ)· (t - ~ROIOII/J.'tflIl/) r]} 
x(1/101 exp {i [-2l?ROlOm.l:/k", + ((k x Q) x w) . .r] T2} 

exp {;1 [(3((k x iJ) x iJ) . F- ('2RolOlIIJ.W",)T:J 
- 211. (k x }11/IO) 
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Figure 2: The interfering beams in the atomic fountain device understood as 
an effective two level system with running laser pulses. The horizontal lines 
represent the three laser pulses. The atoms are initially in the lower hyperfine 
level. The higher hyperfine level is denoted by dashed lines. T is the flight 
time between the laser pulses. 

The state-independent part of the phase shift can be directly read off from this expres
sion. Assuming that the center of mass state of the atoms is a Gaussian wavepacket 
we can apply Eq. (29) to calculate the state-dependent phase factor. For the atomic 
fountain it is simply given by the exponential in the last line of Eq. (32) if one replaces 
the operator pby the initial mean momentum (ji) of the wavepacket. 

In the case of pure acceleration (Le., ROlOm =w, =0) the complete shift reduces to 
the first term in Eq. (32) and agrees with the result of Ref. [3]. The last term in Eq. (32) 
describes the well known Sagnac phase shift. Because the earth's acceleration alters 
the motion of the atoms substantially it is modified by the second term in Eq. (32). 
The structure of this modification is easily understood if one considers a classical 
free particle with initial momentum ifo• In an accelerated frame of reference its 
momentum is changed according to j';(t) = ljo - Mitt. The replacement of the mean 
initial momentum (if; in the Sagnac phase shift by AIiiI' reflects this fact by leading to 
the correct structure of the modifying term. Corrections to the Sagnac phase which 
are of higher order in the earth's angular velocity are the first term in the last line and 
the first term in the second line. The latter can be understood in the same way as the 
modification to the first order Sagnac phase as a consequence of the modified atomic 
motion an the accelerated reference frame. The influence of space-time curvature 
on atoms, i.e., of the variation of the acceleration over the interferometer, can be 
splitted into two parts. The last term in the second line and the second term in the 
last line of Eq. (32) are connected to the motion of the atoms whereas the last term 
in the first line is only due to the non-vanishing relative acceleration experienced by 
two partial beams which are separated along the direction of the laser beams. Note 
again that the third line does not contribute to the phase shift to the order under 
consideration if the atomic wavepacket is sufficiently localized in momentum space. 

6 	 Measurability of the influence of space-time curva
ture on quantum systems 

A detailed discussion of the measurability of curvature effects with the Ramsey device 
was given in Ref. [10]. It is necessary to restate here some remarks on the physi
cal value of the measurement of the curvature-dependent phase shift. In general 
relativity the acceleration ii is tied to the particular observer who is accelerated with 
ii. Loosely speaking everything seems to be accelerated with acceleration -ii in his 
frame of reference. This implies that in the frame of a freely falling observer there is 
no acceleration at all. Acceleration is a non-inertial effect, tied to the observer, and is 
not connected with the structure of space-time. The latter is described by space-time 
curvature which is present in any frame of reference. A curved space-time implies a 
relative acceleration between nearby observers, Le. the distance between two freely 
falling observers changes and the acceleration of two nearby observers which are 
held in a fixed distance is different. 

It was suggested that one can use the atomic fountain as a gravimeter [3]. This 
is true in a twofold sense. If one varies the position of the whole device in order 
to detect the acceleration of the earth at two different points this is indirectly also a 
detection of space-time curvature since the variation of the acceleration over space 
is measured. This is, however, by no means the demonstration of how space-time 
curvature acts on atoms. Rather, the classical apparatus rests in two different frames of 
reference with two different accelerations. In both frames it is only the acceleration 
which causes the effect. On the other hand, a demonstration of the influence of 
space-time curvature on quantum mechanical systems requires the measurement of 
the curvature-induced phase shift in one particular frame of reference. This is the 
second and more fundamental sense in which the atomic fountain may be used 
as a gravimeter. While the influence of acceleration on quantum systems is a well 
established fact, the demonstration of the influence of space-time curvature is still 
lacking. 

In Ref. [10] it was shown that the Ramsey device seems not to be able to detect the 
influence of the earth's curvature on atoms. This is due to the great difficulties with 
the separation of the influence of the earth's curvature from the phase shift caused 
by the earth's acceleration and rotation which are much larger. As was suggested 
by Clauser [17] it may be that one can exploit special interferometer geometries to 
get rid of the disturbing shifts. On the other hand, provided the flight times in the 
Ramsey device can be enlarged to be of the order of one second, it should be possible 
to detect the curvature of two lead blocks which is of the same order of magnitude as 
the curvature of the earth and for which the problem of separation is trivially solved 
by removing the blocks. 

For the atomic fountain these statements remain essentially the same. But since 
the flight times are already in the desired order of magnitude for the existing expe
rimental set up [3] it should be no problem to measure with it the curvature of the 
lead blocks. For the existing atomic fountain the relevant datas are the following. 
The experiment is done with sodium atoms (M = 3.8 . lO-:w kg) which have an in
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Figure 3: A scheme of the proposed experiment to measure the influence of 
the space-time curvature caused by two lead blocks on the atomic fountain. 
The big arrows represent the three Raman laser pulses performed with two 
counterpropagating laser beams with frequencies WI and W'l.. The pOint 0 
denotes the origin of the coordinate system. 

itial velocity of 2.5 mls pointing upwards (see Fig. 3). The effective wave vector k 
used in the previous section is about 2· 107 m- I and is assumed to be parallel to the 
earth/s surface. For our estimations we will insert for the flight times the value of 
Tl =T2 =T = 0.25 s. With these data the purely acceleration-induced phase shift is 
of the order of 107 rad and the Sagnac phase is about 450 rad. 

In Ref. [10] we have calculated the curvature components of two identical lead 
blocks with a volume of 1.4 x 1.4 x 0.8 rna = 1.57 rna which corresponds to a mass 
of about 17 tons for each block. They are separated by a distance of 1 m, and the 
symmetry axis is tilted by an angle of 45 degrees with respect to the earth's surface. 
For this configuration the relevant components of the curvature tensor in the middle 
between the two blocks take the values ROIO:1 ;;:;;: 2.4. 10-23 m- '1. and 11.0303 ~ 8.5. 10-24 
m-

2 
if the atoms move initially in the :rl-direction and the lasers propagte in the 

x3-direction (for all details we refer to Ref. [10]). 
Bearing in mind that the acceleration ii is that of an observer resting on earth and 

thus is the negative of the earth's acceleration one obtains for the total curvature
dependend part of the phase shift in Eq. (32) the value of -0.8. It is therefore 
reasonable that the influence of space-time curvature on atoms should be measurable 
with the contemporary technology. 
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7 	 Acceleration induced phase shift and the equiva
lence principle 

Eq. (26) shows that the phase shift induced by the term Ma·.r in Hp of Eq. (4) is 
linear in i1 and independent of the initial state ItI'o} of the atoms. To provide a better 
and deeper understanding of this fact we present a quick direct calculation of this 
phase shift for the case w= 0 and ROIOm = O. The term Mii· .r represents either the 
influence of the motion of the interferometer with acceleration ii. or the influence of 
some linear potential for an interferometer at rest with respect to an inertial system. 
It is the content of the equivalence principle that the latter case, which is typically 
realized in a homogeneous gravitational field, is physically equivalent to the situation 
with acceleration. We may therefore restrict to this. 

For an accelerated interferometer the atoms move in the dark zones freely (con
stant velocity with regard to the inertial reference frame) whereas the lasers and 
their electromagnetic waves are dragged along with the interferometer. The conse
quence of the acceleration is that the atoms meet the lasers not at .i but at i - iit2/2. 
Equivalently, the Hamiltonian H'ol has the form 

--2
P - - 2Hlot = 2M + Holo", - d· E(.i! - at /2, t) . 	 (33) 

In consequence of Eq. (33) the idealized pointlike action of the lasers becomes 
now instead of Eq. (9) 

af = exp[illfki • Xl cxp[-infki • at; /2] 	 (34) 

and correspondingly for {Jf, if, and 6{. The modification amounts to a multiplication 
with a c-number which results in Eq. (10) in an additional ii-dependent phase factor. 
Because Hem of Eq. (33) does not contain a furthermore, and because we restrict 
according to the convention of Sec. 2 in (tt'/I#'II) only to those terms which represent 
the shift of the interference pattern when ii is switched on, we have 

. N 

(tJlrltt'lI) = exp[-~ 'L.{llfl -lIf)ki • iit;] 	 (35) 
;=1 

with the phase giving the shift. This simple expression is exactly the result which can 
also be read off from the a-dependent term in Eq. (26) in putting w= 0 and ROLOm = 0 
in Pi of Eq. (30). For an experimental discrimination between alternative general 
relativistic theories of gravitation it may be interesting to test small corrections in the 
acceleration [18]. Eq. (35) gives the term which contains ii for all laser configurations 
in arbitrary order of the corrections. 
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