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Abstract 

At.omie ami ncnt,l'OU heam illt.(~l'fcl'Olllct.ry offer 1\ sensible technique for 
tests of the space-timc stnl(:tlll'C. Om: import.;U1t illgl'Cllient of the space­
t.ime stl'ndllre is givt~U hy t.hc nllll cones whidl arc relat.ed to local 
Lol'tmt1. invarian(:e. A possihle deviation frotH this st.l'lIct.urc described as 
splittiug of the llull eoucs gives rise to llon-Lol'cnt1. inval'iance effects. It is 
showlll that ill the non-relativistic limit t.his typkally alllouuts to a new 
type of spin-momcntum t:ollpling. St;u'tillg frolll (\ gelwralisatioll of the 
Dira.c I~(llta.tioll. ba..md ou fuudanwutal principles. rcaSOllS al'e given for 
this spedl\1 kind of (:ollplillg. The ollt.emne of this model theory is taken 
to propose! experiUl(~llts whkh lise a.tolllic helun interferomet.ry and give 
improved upper limits Oll possihl(! l1011-Lo)'{mt.z illvariam:e parameters. 
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1 INTRODUCTION 

Matter wave interferometry with atoms, neutrons, or electrons plays an important role for the 

experimental verification of the basic assumptions ofGeneral Relativity [1]. The great accuracy 

of these devices has already been used to test the principle of equivalence on the quantum level. 

~< 	 Local Lorentz intl4riance (LLI) is a fundamental ingredient of Einsteins equivalence principle 

and the basic assumption of Special Relativity {[2]). Although LLI seems to become manifest 

essentially in the high energy limit and atomic beam interferometry on the other hand works 

with cooled atoms with very low velocity, we will demonstrate that nevertheless atomic beam 

interferometry represents a powerful tool to set experimental limits on a possible Lorentz non­

int/ariance (LNI) of particles with spin t. There are two main topics in this paper: Our 

intention is to describe a simple direct and quantitative matter wave test for the fact that in 

each space-time point there is only one future mass shell and accordingly not more than one 

future null cone. To do so we firstly have to develop a theol'etical scheme by generalising the 

well known Dirac equation. 

1.1 Lorentz non-invariance (LNI) 

Tests of LLI are typically tests of specific model theories. They are based on the proposition 

and discussion of a LNI parametrised generalisation of a pru:ticular theory, whereby the gen­

eralisation reduces to the Lorentz invariant theory when the parametel's are vanishing. If the 

parameters are non-vanishing, they give rise to new physical effects depending on the parame­

ters, which are characteristic for the generalisation of the theory in question and can be tested 

experimentally. Setting upper bounds to these parameters gives a measure to what extent LLI 

is confirmed by these experiments. 

Known LLI tests are, for example. related to the violation of Lorentz inva.riance if different 

kinds of matter follow different propagation cones. The mutual orientation of these cones, if 

existing. depends on the reference frame and therefore breaks the Lorentz invariance. Such 

effects may occure in model theories with different propagation cones for particles and for 

electromagnetic field or for different types of particles. This is discussed in the so-called T H foP.­

scheme ([3]). The Mansouri-Sexl-scheme provides a kinematical framework for studying LLI. 

For further details see the review {(2)}. 
Alternatively, breaking of Lorentz invariance can also occur in principle for a single matter 

field if it is multicomponent: The different components may define different propagation cones. 

This leads to polarisation depending propagation. Such type of propagation is given by double­

breaking media, where the speed of light depends on the polarisation direction (Nicols prism). 

A breaking of Lorentz invariance of this kind may be caused by a generalisation of the Dirac 

equation. Because of the relation 
-y(IJ".() =g'W 	 (1) 

the Dirac matrices are deeply related with the metric of space-time and accordingly with the 
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local null cones and t.he causal structure. It is t.herefore to be expeded that modifications of 

equation (1) will lead to a splitting of t.he mass shell and conesl)ou<iingly of the future null 

cone causing Lorentz llon-inval:iance. 

1.2 Reasons to consider LNI 

There may be many physically very different reasons t.o consider LNI of massive particles. They 

appear typically the case in schemes in which the metric is considered ,\8 a derived structure. 

We shortly describe 3 reasons: 

(i) One possibility to derive the space time geomet.ry from funda.ment.al physical experiences 

is a constructive axiomatics of space time. The procedure is t.o discover and to describe the 

geometrical structure of space-time by means of the behaviour of appropriat.ely selected physical 

syst.ems (called primitive objects) in particular physical effect.s (t.aken as basic experiences) (4). 
Following a scheme of a constructive axiomatics of space-time geometry which is analogous to 

that of Ehlers, Piralli and Schild who base their axionmt.ics on light. rays and test particles (5), 
the use of the concept of free matter waves as primitive element.s in a space time axiomatics 

leads to Riemanlliau geometry, see [6], [7] and [4]. In this approach plane matter waves are 

considered as a part.icular limiting case of wave mechanics defined hy a general field equation 

in a differentiable manifold. As field equation for the vector valued (~oUlplex field the most 

general linear system of partial differential equatiol1s of aI'bitmry order was derived from first 

principles. In addition t.o such fUlldaluelltal assumptions like a det.el'millistic alld local evolution 

of fields and the validity of a superposition principle the demand of local Lorentz invariance 

is one of the assllmpt.iollS in constructive axiomatics. DeulIuulillg Lorentz illvm'iallce rises the 

necessity of independent tests of it 'H validit.y. ThiH is what. we are looking for ill the present 

paper. 

(ii) Anot.her heul'ist.ical expla.uation for a local disturbalwe of Lormlt.;I, illvariallCe can be 

given by a.n induction scheme of local eausal st.1'llct.m·(! ba....ed on t.ll(~ famous Madl principle, 

Due to this principle the inert.ial propert.ies of a lo(:al systmu .u·e induced hy all masses of the 

sUll'olUlding universe. This construction starts from a sufficiently large symmetry group of 

Illotion for t.he whole of c08micalmasses (called by P};uu:k t.he telescopic group). For a small 

local system we have t.o Hum Itp the mot.ion of all sunolludillg cosmk"l bodies. As a result the 

local Lorentz invarimlce arises as the symmet.ry grollp of the lontl syst.<:ln. In this way local 

Lorentz invm'iauce can be induced for small subsystems by the ....t.rudurc of the cosmos as a 

whole fS), This is in full rumlogy to the induction of Glllilei iuvarialK(! in incrtia frec mechanics 

[9) [10], But in the real cosmical situation t.he sYlUllletry may be brokcll by inhomogeneous 

matter dist.ributions leading t.o t.he breaking of Lorent.z illvarimu:e. This (:ould be t.he case on 

t.he earth due to the inhomogeneous gravitational potential produced by t,he masses of our 

galaxy [11]. Despite t.he fact. that. such an iuduct.ion scheme is not. realized ('Ollstructively we 

Call look for po,,'lSible consequences of such a Machiall inductioll. It. will change the kinematical 

Pal't of the equat.ions of mot.ion [12]. This can be realized wit.h a gellcl'lui;l,ed Dirac equation 
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described below. 
(iii) In high energy physics models of LNI Yang Mills theories have been constructed which 

have the Lorentz invariant theory as a low energy limit. This makes Lorentz invariance a 

derived property and possible deviations from the Lorentz inva.riant. theory can be tested by 

such model theories. The postulate for different metrics for weakly interacting particles is in 

the same spirit (see Nielsen et ai, [13], [14]). 

1.3 LNI induced by a generalised Dirac equation 

In the present paper we do not intend to establish or support a particular theory giving reasons 

for a breaking of Lorentz invarirulce, Illsteadwe calcul{de phellorntmologicallg possible effects 

of a LNI model theory in order to confront it with experiments thus ru.ling out a complete 

class of these genemlised theories, We do this in discussing effect.s of null-COlle splitting in the 

framework of a generalized Dirac equation. 
In our phenomenological approach we start with the ge1lemlised Dimc equation (GDE) 

0= i;Yl'(x)apip(x) - M(x)ip(x). (2) 

At this level ;Yl' are arbitrru-y complex 4 x 4-111at.rices whkh are not. llecessarily fulfilling (1). The 

mass matrix M is a complex 4 x 4-matrix. too. The ;Y-mat.riccs as well as mass mat.rix M may 

be responsible for creating LNI effects, (2) is invru'iant uudcr coordiuate transformations. For 

position dependent transformations ip I-t ip' = 8ip. 8 E GI( C, s). ;Yl' transforms homogeneously, 

;Yl' ...... ::y'1' = 8;Y1' 8- 1• while the mass matrix M t.ransforms inholl1ogeneously. M I-t M' = 
8 M 8-1 - i8;YJ~al'8-1• For the usual Dirac equat.ion ill Riemmm space tbe mass mat.rix consists 

of the connection -!(DI'h~)ht1"1b a.nd the SCalIU' mass m. 
In order to describe physical propagation phenomella t.his first. order system has to be 

hyperbolic. A geomet.rical chal'act.erisatiou of hyperbolicity of a part.ial differential equation is 

that there is one solution within a. cone for a 6·1ike source itt t.hc vertcx of the COlle ([15)). This 

will give consequences for the chru'acteristics to be treat.ed iu ch.2.2, 

We dout know if this very general equation C,Ul be aU.ached to any reasonable physical 

interpretation within the scheme of first. or second qUII.lltisation. We t.herefore specify this field 

equation in dema.nding certain properties known froUl the original locally Lorentz invru'iant 

theory which we Wallt to be kept, This reduccs the llllluber of unspecified parameters in ;Y and 

M considerably. We will thereby end up wit.b a pru,ticular type of generalisat.ion of the Dirac 

equation which shows as new feature essentia.lly the split.ting of t.he umss shells mid light cones. 

This seems to be a very prominent and typical breaking of LLI. The final step then consists in 

the outline of a clean experimental test t.o put upper limit.s on the remaining LNI parameters, 

Clean tests are experiments. by which LLI Call be veryfied as directly as possible. For an 

exanlple see the Phillips experiment [16) which will be discussed below. Experiments which 

are as theoryloaden lIS high energy experiment.s. cml uot. he reganl(!d 1\8 being fundamental 
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for this purpose, because it is very difficult to distinguish uni(lllely LNI from unconventional 

modifications of other parts of physics. 

1.4 Outline of this paper 

In what follows we st.art with (2) and introduce a paramet.risation of t.he generalised Dirac 

matrices. Then we look for some minimal nontrivial ansatz for t.he generalised Dirac matrices 

in order to describe possible experiment.al consequenccs of the null cone split.t.ing. Our ansatz 

is characterised by t.he requirement.s that. (i) for oscillat.ory init.ial values t.he helicity should be 

conserved (as it is the case for the usual Dirac e<luat.ioll in Millkowski space) and (ii) there is a 

coordinate system so that the characteristics. i.e. the null ('one, appear isotropic. The general 

lllass matrix will be reduced by requiring that in the WKD limit. t.hc Hamilt.on operator should 

commute with the helicity operator and an addit.ional demaud ('oll(,(!l'1lillg helicity states. In 

the following we exploit step by step these requirement.s. 

In the second part of this paper we discuss t.he experimeut.al eOllsequences of the special 

type of null cone splitting specified above. Especially t.he possibility is analised to t.est these 

structures with the help of atomic beam interferometry. On this cxperimental basis we give 

estimates for t.he validity of LLI. Readers interested in cxpcrilncnt.al eonsequellces only can 

start with chAo 

Unless otherwise sta.ted we use t, =c = 1. 

2 Restricting the generalised ,-matrices 

As described in t.he introduction a genemlisat.ioll of thc usual Dirac t.hcory can be l'ealised by a 

first. order system of partial different.ial equations (2). At. first. we iut.roduce a parametrisation 

of the generalised Dirac mat.rices. We do not. use t.he generalizcd Dime equat.ion in its most 

general form but rest.rict. it. in requiring t.hat. certaiu physi{:al phenomcna st.ill should hold. 

Therefore, we use physicalargument.s ill order t.o rest.rid t.he possiblc pcrt.urbat.ions in a special 

reference frame. In t.his way we arrive at some 'miuimal' gellcralisat.ioll of t.he usual Dirac 

equation which st.ill describes some split.t.ing of t.he usual null (,OIlC t.hus giving rise to Lorentz 

non-inval'iance. 

2.1 Generalised Dirac matrices 

The matrices 91' of t.he GDE are not fulfilling any Clifford algehra. Of (:Qurse, from a phys­

ical point of view any deviat.ion of t.hese 9-lOatrkes frolll the 11811al Dime matrices fulfilling 

some Clifford algebra M'e small i . Nevert.heless. sill<:c t.he (:alcnlatiou bdow go t.hrough for ar­

bitrary deviations we make not. this rest.riction. Only at. the cud by comparing our results with 

experiments we t.ake small deviations. 

I To he more mathematical: For given :r~ there are other mn.trices -," fulfilling a Clifford algebra relation and 

for which 1I:r~ - 'l'~11 < 1 ,,·!tere II·" is some matrix 1101'10. e.g. the lUaxiUllllllllofm. 
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Also for non-Clifford ;:Y-matrices we can introduce a second rank t.ensor by glW := ttr( ;:Y#.l;:Y") 

which however has no physical meaning and is used for mathemat.ical convenience only. 

We can now introduce usual Dirac matrices in arbitrary coordinat.es by 1'(#.11''') = g#.l". Here 

g'''' is some non-singular second rank tensor with signature -2. Wit.h t.hese 1'-mat.rices we can 

introduce the Dirac algebra. that is. the complet.e set. of 4 x 4-matrices 

rA:= {1,i1'5.1'I',1'!}1'I',O'/I"} (3) 

where we defined 1'5 := iE#.I"pu1'I'1'''1'fJ'''((1 and 0'1''' := t",("'",("I. We cmpha..'!ize that the second 

rank t.cnsor gil" wit.h the mathematical properties of a metric as well as t.he matrices "'(I' are 

(Oil this level) of no physical importance. They are int.roduced just. for being able to have a 

complete set of 4 x 4-matrices available which are uscd t.o expand any 4 x 4 matrix. No physical 

propagation property is related to this tensor g#.l". 

To formalise the notion of 'deviat.ion' of t.he '1-mat.rices from 1'-mat.riccs fulfilling a Clifford 

algebra. we introduce t.he difference aud expand it. wit.h respcct t.o t.he Dirae algebra: 

9#.1 = 1'#.1 + E~rA = "'(I' + El'l + E~"'(" + E~O'(HT + f~"'(5'l''' + f/l",(5 (4) 

From t.he physical point of view the parameters E~ are assumed t.o be small but otherwise 

completely undetermined. The descript.ion of the generaliscd Din\(: mat.rices as a deviation 

from the usual Dirac matrices is of technical importancc. 

The deviation of t.he generalised Dirac matrices for example now appCl\rs in the anticom­

mutator 

9(#.1'1"1 Y#.I"I+E("{.J.II r·"} + !EI'E" {r.4 rH} (5),4T' 2 .·1 IJ • 

(9 ''' + 6g' '''(E#.I))1 + ~' 1f~"'('/' )r·1 (6).4. L...I.I 
..t 

' 

whereby E~" runs over the Dirac algebra (3) bllt the 1. It is It'' = 9' ''' + fig''''. The coefficients 

1f~" are a representation independent mea..'1ure of t.he deviat.ion of t.he '1-lllat.rices from a Clifford 

algebra. The last cquation should be t.he starting point. for des(:dbiug '1-lllatrices which do not 

fulfill a Clifford algebra. Then the f~ of (4) are fUlldiolls of the paraUlet.ers 1f~t. And if the 

deviation is smalL i.e. if 1f~" ¢: 1. t.hen there should be a rcprcsent.at.ion of t.he 1'-matrices, so 

t.hat also for the parameters E~ ¢: 1 holds. However, we will not de,\! with this problem here 

but simply use (4) t.o describe the sigularities and the lIull COllCS of our GDE. 

The parameters f~ are frame dependent and give uotice of t.he breakdown of Lorentz in­

variance. This breaking is accompanied by a null COliC split.t.ing: Thc Illut.ual orient.at.ion of the 

propagation cones is frame dependent. (see ch.4). 
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2.2 Conservation of helicity 

The first step in characterising a special version of the GDE (2) consist.s ill thc requirement that 

during the evolution of the field 'P a prepared helicity should be conscrved. In the following 

considerations we do not assume that the panunctcrs l am small. Ouly for the confronatatioll 

with experiments in ch.4 we agein refer to small E. 

2.2.1 Oscillatory initial values 

The GDE can be reformulated as cvolutioll e<luatioIl (/1 = 1.2.3) 

i80'P -i(;yO)-I:.yiiDji'P + (:.y0)-1 M'P (7) 

whereby xO acts as ·time' coordinate and the surfaces xO =coust are hypcrsllrfaccs E,ru. 
By means of (7) the field on a hypersllrface with panLlllct.er xO + /5:1:0 is t.hcu given by 

'P = 'Po + 6xo ( -i(:.y°)-I:.yliD,i'PO + (:.y0)-I M 'Pu) (8) 

where 'Po is the init.ial value 011 the bypersurfacc at xO. 

If a fuuction ¢ is given which depcnds on the coordinatcs of EJ.o only, t.hen any initial 

value given by 'Po = e i4>ipo with IIDjiipoli « IUDji¢)ipoll and 1I(:.y0)-1 Mipll « II(Dji¢)ipoli is called 

a oscillatory i"itial value (see e.g. Courant Hilbert (17» for the GDE. Physically one may 

interpret these functions as fields with high moment.Ulll. Insert.ing oscillat.ory initial values into 

(8) we get 

'P = 'Po - it5xO(:.y0)-l?i(D/i¢)'PO (9) 

2.2.2 Consequences of conservation of helicity 

Now we take oscillatory initial values which a.re prep,\l'ed as to possess It certain helicity given 

by the projection operator P± := ~(1±')'!j), t.hat is, P±ipo± = ipo±. We dcnHUld: Requirement 

I: The state of /u:licity does not cllauge dnriuy propag(ltion for oscill(Ltor!J initial ·values. That 

means, if the oscillatory initial state is an cigenstate P±~o± = ipo± t.hen also the t.ime-evolved 

state (9) 'P should be I\n eigcnst.ate P±'P± = 'P±. To l)(~ more il.(:C:llmt.e. this means that there 

iLre ,),-matl'iccs so that one can build with t.hcsc "Y-mat.riccs a '}','; so t.hat. t.he above requirement 

is fulfilled. 

For the operator (:.y0)-l:.yiiDji¢ ill (9) goveruiug the ti11le-<!volut.ioll of oscillat.ory initial values 

this means that. it should commut.e witli t.he projection operator P±: 

[P±, (:.y0)-I:.yliDji¢1 =0 (10) 

Since ')'5 commutes with itself and a/UI we infer (:.y0)-1:.y11 = elil + (i',),s + ef'.aap<T for some 

nndetermined panullct.crs ci', d1i , and e~. This call be l'CWl'it.t.Cll as (:.yo) -I :.y/; = eli 1 + dji')'5 + 
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~')'o')'p + e~')'5')'0')'P. For the following it is most convenient to reprcscnt t.his result in the chiral 

representation of the ,),-matrices: 

. . ~ ... . (ali + bl!aV 

eyO)-I:.yp ~I + d/'')'5 + ~"Y0')'P + e~"Y.n°Y' = 0 v (11)
Lit +°d~a V ) 

where ali are the usual Pauli-matrices. 

Next we use statements about the shape of the light concs t.o restrict further the deviations 

of the GDM. 

2.3 Isotropy of the null cones 

Typical features of partial differential equations like the GDE lLl'C dcscribed by discontinuities 

(jumps) in its solutions or in one of their derivatives which can occur only on certain hypersur­

faces 4>(x) = const called charncteristics. In Gencral Relativity t.hey are related to the notion 

of the light cone because for all physical theories of matt.er the characteristics are identical with 

the usual light cones related to the causal behaviour of the fields. 

2.3.1 The jumps 

We assume that a jump (compare [17]) of a solution of (2) may occur at. some surface 41(x) = 0, 

called jump-surface. For describing a function 'P having jumps up to order N (that means up 

to the Nth derivative) we begin with the ansatz 

N 

'P(x) = L (S(iI(4») (x)ahl(x) + R(x) (12) 
i=r 

with 0,(11, R E C and sl n l (41) := ~,,,,(4))4>'' ('1 is t.he Helwiside function). r can of course be 
n. 

zero. It is enough t.hat there is a jump at all, t.hnt is, tha.t. t.hcre is a jump of lowest order 

r < 00. Since 'P should be a (generalised) solution of the field equat.ion we insert this series into 

(2) and perform the differentiation taking Dp. (stnl (4») (x) = (SIII-I)(4»)(x)(Dp 4>)(x) (SI-I) is 

the t5-function) into account: 

IV 

0= :.y/'(Dp4»ulrlslr-II(4» + L z(i)(X)Sl i l (4» + i:.y/'DpR - M R (13) 
;=r 

whereby the functions z(, I (x) are regular and consist in the fUllctiollS 0,( i) and derivatives of the 

hypersurface 4>. The most irregular part of (13) is cont.ained ill the first. tenn. 

All coefficients to t.he SI i) (4)), i = r - 1..... N. have to vanish indepcndently so that a series 

of equations relating the hypersurface 41 to the funct.ions (Lli) arise. This scries starts with the 
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equation 

0= 9/Jk"a(r) (14) 

where we introduced the normal k/J := 8/J1b of the hypersurface lb. This equation describes the 

jump a := a(r) of lowest order along a hypersurface Ib = 0, That means. that if a solution of 

(2) possesses a jump. t.hat is. is not a regular solut,ion, then (14) must, be fulfilled. This relation 

t,hen connects the normal of the jump surface with the jump funct.ion tl, 

2.3,2 The null·cones 

For (14) to possess any solution. the coefficient matrix 9" k" must be singular giving a condition 

on the normals of the hypersurfaces kw Because t.he 'Yare 4 x 4-UlI\t,riccs. the determinant in 

fact is a polynomial. the characteristic polynomia~ in ~: of order 4: 

det( 9" k,,) =g/JllfJfI k,.kllkpktr • 	 (15) 

where gIlllfJfI is some 4t.h rank t.ensor. The solutions k of (15) give t.he 110nnal cone. also called 
" null cone. This llull cone becomes a fourth ordel' surface. which can decay into two second order 

surfaces. In this way the null cone of special relativist.ic pbysics is splitted into two different 

propagation cones. 

For the GDE t.o be hyperbolic a necessary condit.ion is t.lmt. there is a hypersurface with 

normal n", so that the charact.eristic polynomial has a.'! many real solut.ions ko = f(kl ,) 'I: 0 as 

the order of t.he charact.eristic equation is. In our case t.his means t,hat t.here al'e 4 solutions 

ko 'I: O. The set of topologically different cones is indicated by fig.l (set! [18]). 

2.3.3 Consequences of isotropic null cones 

The condition for the jumps (14) can be reformulated 11." 

0= (kol + (9°)-'9ilk,;) tl =: BtL. 	 (16) 

With (11) the charact.erist.ics al'e now determincd t.o be 

det.B 	 det,(a,ikil - ko + lI~k/iO'jj) det.((.Jj~:/ - ko + d~ki«l1jj) 

[(ai«kil - ko)2 - L(~kjJ~] [(d\. - kO)2 - L(tJfk;Jl
]. (17) 

v 	 v 

We rcst.rid t.he 9/J fUl·t.her by demanding t.he isot.ropy of the 111111 cOlles: Requirement 2: 

There i.~ (L coortlifulte system. so that thi!l c/u11ncteri.~tic lJOlynominl /UtS the form H (x. k) = 
(....:k6 - AP) (/1k6 - vP) wit.h k2 := kf + ~:~ + k~ and SOllle undetermilled (:oeffieients Ii. A, 

p., and v. Therefore (17) fulfills this isotropy demand only if ali = O. d' = 0, II~ = b6~ and 

d~ = dt5~. Thus with this restriction (11) reduces to 

(90 )-19il = (b;il 	 (18)d: il ) 

Using now t.he nsual Dirac matrices in the chiral representat.ion. t.hen (16) can be written as 

[lkO + «(1 + a'l1'°'Yil + b''Y°'Y.on'' )k,;J (I = 0 	 (19) 

whereby a' = ~(d - b) - 1 and b' = ~(d + b). Since solut.ions a remain unchanged we can 

multiply this equation wit.h t.he non-singular matrix (1 - ~'YS) 'Yo and get. wit.h to = -~ and 

,a' 	 ,
tl = b - i/(1 + a ) 

[(1 + to'Ysl1'°ko + (1 + tns)-yI' kill a = 0 (20) 

From this equation the generalised Dirac mat.l'ices 1'" leading t.o eOllserved helicit.y and isotropic 

null cone. can be read off. 

2.4 The resulting I-matrices 

To sum up, in the special coordinate system specified above. t.he generalised Dirac matrices 

finally have t.he form 

1'" = { 'Y~ + to'Y5'Y~ . (21) 
'Y'" + t 1'Y5'Y/J 

It should be noted that reading off the 'Y-matrices from (20) is not unique. All the characteristic 

features are not. changed if one multiplies (20) wit.h a non-singular mat.rix. 

With these 9'" t.he characteristic polynomial describing the llull cones (15) now reads 

o= det(90~:o + 9Akji) = [(1 + to)2~:fi - (1 + tr)2k2] [(1- toflkfi (1 - td2P] . (22) 

'1 

From hyperbolicity the foul' solutions ko are real. Therefore (~ : :~) > O. implying to. t J E R 

and the hermiticity of (9°)-'9il . In the special coordillat.e syst.em ill whkh the split.t.ing appears 

isotropic. t.hel·e are two future pointing solutions ko for given k: 

1+tl -, kb2±1 =± 1 ­I.(l±) = ±---Ik , t 11kl. 	 (23)
"0 1+to 1- to 

A splitting parameter may thcn be defined by 

k~I+) - k~2+) =2 tJ - to = 2(t, _ eo) + 0(,,2). (24)A:= (I+) (1-to)(l+tl)
ko 
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For small parameters to, tl the splitt-ing is to first ordcr givcn by t.heir diffcrcnce. Therefore 

a.lso in experiments thc main contribut.ion is expected t.o be of t.his ordcr. 

The GDE gives us a modcl theory t.o discuss thc effect.s the breaking of Lorentz invariance 

ill a lot of experiments, which we are going t.o discuss ill chAo We finally observe that the 

Hamiltonian of the GDE is 

i80tp =H tp = [-i(1 + a' )"'l-yli f)fi - ill '"'('f/Y0-f f)fi + M Jtp (25) 

and up to first order in thc t 

i80tp = Htp = [-i-y°-ff)fi +i(to - tlhn°-ylif),i + MJ tp. (26) 

III the case of constant 'Y-matrices t.he helicity operat.or 8 := S 'lj/b~ wit.h Sfi := 'Y5'Y°'Yfi 

comIIlutes with the Hamiltonian but the 'mass' tcrm M, 

If the usual Dirac: Ulatricc8 are modificd according t.o (21), it. describcs a splitting of the 

uull cone structure which is chal'act.el'ised by one cffcctive perturbat.ion parmnct.cr to - eI. This 

rcpresents the minimal nontrivial ausatz for the dcscript.ioll of a lIull COllC splitt.iug. In this way 

we complcted t.he discussion of thc null cones rcsp. t.hc musill st.ructurc, In ordcr to discuss 

consequences of the GDE in t.he low velocity region, as it. is rcquircd for cxperiments using 

mattcr wave interferometry, we must. consider thc strllct.ure of the mass matrix too, as can be 

seen from (25). Thcrcfore we will also restrict t.he gcncral form of thc lIlass matrix in ch.3. 

3 WKB approximation and non-relativistic limit 

In order to work out. possiblc effccts appccu'ing ill il1t.crfcl'OlIlct.I'Y experil11cnt.s we considcr the 

GDE (2) with the relat.ed;Y1l of (21). Thcre (U'C t.wo indcpcndcnt. ways t.o arrive at. t.hc prediction 

for im interfercnce cxperimcnts: (i) by means of t.hc gCllcmliscd Pauli cquat.ion. and (ii) using 

the WKB limit of the GDE. We use thc sccond method 

3.1 Restricting the mass matrix 

The WKB apPl'Oxinmt.ion will bc iutroduccd by 

tp = ciSa wit.h l-y/f)"al «: I(ll (27) 

Inscrting this iut.o (2) we get 

o (;Yf'l}11 - M(OI)Cl (28) 

o i;Y"f),.(l - MIlI(l (29) 

11 

·
" 
with M = M(O) + M(11 whereby the 4 x 4-matl'ix M(O) transfo1"lIIs homogeneously under base 

transfOl'mations (further details can be found in [7]). 
For the WKB limit the mass matrix MIO) may be arbit.rary. However. we specify t.his matrix 

by demanding the following Requirement: 3: The matrix H giving the eigenvalne po: 

poa (r::yO)-I;Y':'Pfi + (;yO)-1 MIOI) a=: HCl (30) 

commutes with the he/icity operator 8, This is only possiblc for '"'(0 and '"'(5, Therefore the matrix 

(;yO )-1 M(OI can be constructed from these two matrices so that H = eyO)-I;y':'p,:. + 7h'"'(0 + '175 
and (28) reduces to 

(;YI']1f' - m1 +u'Y°'"'(,'» Cl = 0 (31) 

for open parameter m and n. 

The last requirement for characterising the simplest deviation from the usual Dirac equation 

rests on the following observation: In the chiral represent.ation of Ule '"'(-lllatrices we demanded 

conservation of chirality, that is, a splitting of the GDE iut.o two two-component equations for 

oscillatory initial values. In the WKB approximation this splitt.ing will be conserved for the 

n-term while it is violat.ed for the m-tcrm. We dcfine the two-component function describing 

the respective helicity of the field by ("0+) := P+" and ("~) := P_a. Especially for a 

particle at rest P,:. =0 we have from (30) 

a+ ) ( -"+ ) (Cl_ ) (32)H ( a_ =n "_ - m a+ 

Now we demand Requirement 4: P+H ( (~ ) 0/01' (l state pl'Cpll1'ed 'with the initial 

'vCllue (a+~to)), This t.hcn l'cquires n = O. In t.his way we red1lccd t.hc mass l11at.rix to the 

very simple structure M(O) = mI. 

3.2 Resulting mass shells 

The solvability condition of (31) wit.h u 0 thcn givcs 

o det(yipI' - m1) 

((1- e5}])& + 2po(tl + toll) - (1 fIll}2 - m2) 
(0- t5)P5 + 21}o(to - eil1) - (1 - tr)p2 - m2) (33) 
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where p:= Jp~ + p~ + P5· The mass shells are then given by 

2
(1::1:) (£0 edp ± (eo - ed11):! (1 - eT""} + m

(34)Po (1- £6 1 - eij + 1- eij 

(2::1:) -(eo - et)p ± (eO-Q)IJ)2 (l-ei)I,:!+m2 
Po ( 2 + .) (35)--2~ 

1- EO 1 -eo l- Eii 

There are 4 mass shells (two future and two past direct.ing) which touch at Pii = O. that is 

p~I±)(Pii = 0) = P~2::I:)(Pii = 0) =: ±mo = ±m/VI - E~. Because of our WKD ansatz Po is real 

and because we proved that EO has t.o be real too. we can conclude t.hat also m and therefore 

1110 must be real. 11l() may be called the rest mass of 0111' GDE. It is the only mass parameter 

which may be measurable. 

The splitting of t.he mass shell ~Po for positive energy is then giveu ill linear order of the 

parameters EO and EI by 

~po := p~l+) - p~2+) = 2 (eo - Ed I' + t.erms quadrat.ic ill EO. el (36) 

In the nOll-relativistic limit we get. ~po = 2El' where we defined e = eo - el. Again we recover 

t.he difference of the parameters eo and el as t.he ent.it.y causing t.he main effect. (36) also 

shows that relativistic con-ections, i.e. tenus of the form IJ2/(m.c)2. nre correlated with squares 

of e. Therefore. deviat.ions from Lorentz invarial1ce would be very difficult to measlll'e in the 

relativistiv domain. 

4 Experimental test by matter wave interferometry 

The theoretical scheme developed in the Pl'CViOllS sections (;;\n be used to discllss experimental 

consequences of the mass shell imd related null cone splitting (see fig.2) resp. LNI. Thereby 

we have derived the simplest nOll-trivial geueralisat.ion of the Dimc e(luat.ioll depending on 

t.he effective perturbat.ion E. From this equation we ealenlat.e for experiment.al applications 

iu t.he low velocity domain t.he interaction Hamiltoniau ill t.he eorresponding nOlHelativistic 

limit.. This gives us t.he pos."Iibility t.o come t.o numerical values for the effective perturbation 

e. For t.his purpose t.here are several met.hods. At first. we are Ilsing t.he theoretical results 

of the last section to give est.imates for the effect.ive pert.urbation. We discuss t.his for atomic 

beam interferomet.l'Y and compare the result. wit.h oUler estimat.es from hyperfine split.ting in 

the hydrogen at.om and the Phillips experiment .. 

4.1 Generalised Pauli equation 

From (30) we can derive the respective Hmniltolliall for the 1101l-relativist.ic domain. For doing 

so we calculate IJ;}a = H 2a from (30). take the square root and deVelop it. with respect to 1'. 

13 

Then we get to first order in l' and the disturbing parameter e 

p2 
H= -+Hint, Hint = e8i;. (37)

2m 

Here we have rescaled for convenience l' 1-+ (1 - i) 1'. which is of no significance. 

Equation (37) demonstrates that according t.o the orientation of Ute spin with respect to 

the given 3-momentum, the particles momentum is restricted to one or the other mass shell: 
2 

For 8 parallel to given p the energy is given by L +eSp while for 8 anti-parallel to (the same 
2m 

2
Pgiven) p t.he energy is 2 - eSp. Therefore. a spin-flip results ill a change in t.he energy of the 
m 

particle although the particles have the same 3-momentum. This effect leads to t.he splitting 

of the mass shells. (The analogue of this effect ill crystal optics is known as double breaking.) 

While in the usual Dirac theory relative velocities are observer dependent and t.he effects 

induced by them can therefrore be transformed nway. ill Ollr model theory t.he splitting of 

t.he null cones fixes a preferred franlC which enables one t.o introduce the notion of absolute 

velocities. This is the reason why a pure velocity effect can playa physical role. 

Below we give possible estimat.es for the difference of the coefficients E. Accordingly, this 

difference can be set zero t.o vcry good accuracy. In t.his case. t.he t.wo mass shells coincide 

according t.o (34) and (35). The respect.ive dispersion relation rcads 1'0 = ±V112 + nlij with a 

rescaled mass mo. 

4.2 Phase shift 

We want t.o describe the outcome of a mat.ter wave int.erferomet.er experiment. Thereby we 

assume that the interferometer is so s111all that the paranleters EO a.nd El can be considered 

as being constant. The incoming particle beam is prepared as to consist. of particles which 

are in a definite helicity state. This incoming beam will be split.ted int.o two beams and, after 

having travelled along the interferomet.er paths I and II. will be recombined. In one of these 

t.wo paths a spin flip will be performed along a definite dist.ance 1 corresponding t.o a time of 

flight. ~t. The particles with the flipped spin live 011 t.he ot.her um ...s shell thus accumulating 

another energy than the beanl in the unflipped st.at.e. If nil external iufluences are excluded 

we can calculate for t.he llou-rela.t.ivist.i(~ limit. using t.he WKD approximat.ion t.he phase shift 

experienced by matter waves 

~4> f 11/Jdx ll 

of "odx - f "I;dxl
; • (38) 
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Inserting the interaction Hamiltouian of (37) we get finally 

A¢ f lJodt =f Hillldt 

r 1)~'l+)dt -11)~1+)dt
111 I 

2t"pAt 

2t"~ (39)
Ac 

with the Compton wavelcngth Ac := rl/m.c of the particlcs uscd. Not.e that the two beams must 

not travel along diffcrcnt patbs in 3-space inside the device. Thel'cfore it may be possible to 

bave Olle beam of particles and to makc a spin flip for half of the particlcs. Then the intcrference 

pattern ma.y vary wit.h I. 

We emphasize that. the final result. is indcpendcnt of any gcomctrical notion. because in 

(39) only t.he ratio of two lengths occurc. Oue only needs t.o know t.he length 1 in terms of 

the given Compton waveleugth Ac. This is important for our appl'Oadl because in LNI model 

theories there is no metric available ill principle. 

4.3 Expected result 

At first we note that the matter wave experiment described above is not. performed till now. 

Nevertheless, sllch experiments can be done and we a.~SllUle in the following t.hat the outcome 

of such experiments will be ncgative, i.e., they will not confirm any spliU.ing of the mass shell 

01' thc null cone. Then. with the specifications of interferomet.er apparat.ns, estimates for the 

validity of LLI (:an be given by finding uppcr limit.s for the plmlluet.cr f. Thereby the phase 

shift. is given by (39). 

At first we givc clltilllates for t.he standard neutron interferometer. If t.his phase shift does 

not appeal" then this effcct can be at best of the order of t.he aecuracy of the apparatus 

used. For t.he neut.l'on int.erferollletry we find from (39) with Ac = 10- 15 m and 1 =10-1 m 

a pba.'Ie shift as depending from t.he pert.ul'batioll pal'mueters 6<1t ~ dOH. Together with the 

accuracy 10-311" for t.he Bousc~Hart neutron iuterferometer this giv(!11 1111 Ule limitation for the 

perturbations of the order of magnitude IfI < 10- 1i. 

As Call be seen by inspection of (39) t.he velocit.y of t.he interfering part.ides bas no influence 

un the phase shift. The only pm'allwtcr5 determining t.lw phalle shift. a.re the mass and spin of 

the pmtic1es as well a.s t.he )ellgt.h of the device. TI}(~refol'(l it. is favourable t.o have pm·ticles 

with large mass and spin tl'avelling through a lal'ge interfcrolUet.er. COllse<lllellt.ly, atomic beam 

interferometry is most appropriate to perform such tests of LNI. 

It follows that for lID atomic beam int.erferometer thc estimatc obt.aiued above fol' neutron 

interferometry can be improvcd by several m'ders of magnitude. This may be achieved by means 

of t.he following: (i) t.he 1118.'111 of all atom is of order 10 lat'ger giving a Cumpton wavelcngth of 

the order Ac = 10- 16 In. Oi) the length of the paths of the atoms lUay be of the ordcr 1 m as 

15 

11., 

is e.g. for the atom beam interferometcrs with mechanical beam split.t.ers (/19J, [20]) and (iii) 

t.he accuracy of measuring phase shifts is ~ 10-3 11", which may iucrease in fut.me. Thcrcfore we 

est.imate for a null experiment of the above type with at.oms for t.he pert.Ul'batioll parameter to 

be 

IfI< 10- 19 (40) 

The results obtained above are calculated for the preferrcd frame defined by the isotropy 

of the null cones. Such a preferred frame can be provided typically by some cosmic preferred 

frame. by some galactical mass distributions, or similar phenomena. On the other hand, the 

experiments done on the earth are most probably not done in t.hc prefcl'l'cd frame. Therefore 

it seems to be necessary to describe thesc experimcntal results for other refcrence frames. 

However, because the splitting of the null cone is expected to bc very smalL Special Relativity 

is at least almost the correct theory. Therefore auy result obtaincd in auot.her reference frames 

would to first order in the perturbation f be correlated with t.he prcferred fl'amc result by an 

unperturbed Lorentz transfonnation. Since all relative velocit.ies arc small as compared with 

thc velocity of light, we can neglcct thcse transformations. Thcrcforc. in the non~relativistic 

limit, we can use prcdictions obtained ill our preferred rcfcrcncc frallle t.o describe outcomes of 

experiments done 011 the earth. 

4.4 Comparison with alternative estimates 

Other effects may also be used to give estimates for the pert.urbation paramet.ers. So we find 

an additional hyperfinc splitting of the energy levels of the hydrogen at.om given by 

2 2 4
0i ] -! m [ 0i )-t 0 (1 ± f)2 

(41)EfI.k=m [ 1+(n+k)2 -"2 1 +(n+k)2 k(n+k)3+'" 

In this case we get. [21J IfI < 10-8 . Myonic atoms do not. lead t.o a stronger limitation. This 

shows that the hydrogen atom is not as such a sensitive indicator for deviations from the 

Lorentz invariallt Dirac theory as widly believed. Therefore it is mcaningful to look for further 

experiment.al conse(luences, which give us st.rongel· uppcr limit.s for t.he pertmbat.iolls. 

A famous experiment giving strong estimates for LNI effects was <:arried out by Phillips [16J. 

This experiment determines the daily variation of the torquc acting on a ferromagnet hanging 

on a string. A spin-velocity coupling as predictcd by the GDE model wuld lead t.o an additional 

torque depending on t.he polal'isation direction of the magnet. In t.his way t.he existence of a 

preferred reference frame is examined, ill which t.he velocity of the earth v is connected with 

the spin of the clectrons via a coupling t.erm dcscrib(.'<i by (37). The experiment. det.ermines 

the energy splitting of the two different spin states. If we insert iuto (37) the values for the 

electron mass and the velocity of the em·th on its path arrouud the sun (v = 30 km/sec) we 

find AE = dO- 17 J. The expcrillleutal rcsult gives AE = 7.10-:1.') .J leading to 1f 1< 10-18 • 
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5 CONCLUSIONS 

In this article we develloped a model theory based on a generalisation of the Dirac equation 

leading to a violation of local Lorentz iuvariance (LLI). This breaking of LLI is related to the 

fact that. t.he generalised Dirac matrices do not fulfill auy Clifford algebra. Using physically 

meaningful requirements like conservation of helicity and isotropy of t.he null cones. we reduced 

t.he most general violation of LLI t.o a minimal nont.rivial model. This results in the non­

relativistic limit in a special spin-momentum coupling leading to a splitting of t.he mass shells 

and consequently of the null cones. 

This spin-momentum coupling can be most suitably tested with atomic beam interferometry 

using spin flip devices. Our model would lead to a phase shift proportional to the parameter 

E characterising t.he splitting of the null cone. Assuming a negative outcome of atomic beam 

interference experiments and t.aking into cOllsidertion t.he accuracy of the respective apparatus 

then gives upper limits for the paramet.er charact.erising t.lIe violat.ion of LLI. The great and 

increasing accuracy of at.omic beam int.erfel·ometers makes it very dcsireable t.o perform such 

experiments because this would lcad to improved limitations ofLLI violations: lEI < lO-19. 
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Figure captions 

Figure 1: Possible shapes of the null cones defim ..-d by the characteristic polynomial of the 

GDE. 

Figure 2: Splitting of mass shell and null cone for the simplest nOli-trivial generalisation of 

the Dirac equation. 
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