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Relativity Group ® Konstanz University - :——3—,— = 1 INTRODUCTION
( Theory of Gravity ' Quantum Theory ) ;: it : Matter wave interferometry with atoms, neutrons, or electrons plays an important role for the
] ] 1 ' experimental verification of the basic assumptions of General Relativity [1]. The great accuracy
""""" — —_— 2 of these devices has already been used to test the principle of equivalence on the quantum level.
Pr “ﬁ’;lfl 1t KON, SW Local Lorentz invariance (LLI) is a fundamental ingredient of Einsteins equivalence principle
o P and the basic assumption of Special Relativity ([2]). Although LLI seems to become manifest
T essentially in the high energy limit and atomic beam interferometry on the other hand works

with cooled atoms with very low velocity, we will demonstrate that nevertheless atomic beam
interferometry represents a powerful tool to set experimental limits on a possible Lorentz non-
invariance (LNI) of particles with spin % There are two main topics in this paper: Our

TESTING LORENTZ INVARIANCE WITH intt;:ltion is t;o deec-ril:et : sinfple &liirect a.;xd qumﬁtafi;enmat;er wav;. test for the facththat in
ATOMIC BEAM INTERFEROMETRY each space-time poin ere is only one future mass shell and accordingly not more than one

future null cone. To do so we firstly have to develop a theoretical scheme by generalising the
well known Dirac equation.

J. Audretsch, U. Bleyer and C. Lammerzahl 1.1 Lorentz non-invariance (LNI)
Fakult@t fiir Physik der Universitit Konstanz Tests of LLI are typically tests of specific model theories. They are based on the proposition
Postfach 5560. D-7750 Konstanz. Germnany and discussion of a LNI parametrised generalisation of a particular theory, whereby the gen-
coTwary | 9932/ eralisation reduces to the Lorentz invariant theory when the parameters are vanishing. If the
- [,(B N ﬁ anZ (,( . parameters are non-vanishing, they give rise to new physical effects depending on the parame-

ters, which are characteristic for the generalisation of the theory in question and can be tested
experimentally. Setting upper bounds to these parameters gives a measure to what extent LLI
Abstract is confirmed by these experiments. o ' ) o
Known LLI tests are, for example, related to the violation of Lorentz invariance if different
Atomic and neutron beam interferometry offer a sensible techuique for kinds of matter follow different propagation cones. The mutual orientation of these cones, if
tests of the space-time structure. One important ingredient of the space-
time strneture is given by the null cones which are related to local
Loventz invariance. A possible deviation from this structure described as
splitting of the null cones gives rise to non-Lorentz invariance effects. It is
showm that in the non-relativistic limit this typically amounts to a new

existing, depends on the reference frame and therefore breaks the Lorentz invariance. Such
effects may occure in model theories with different propagation cones for particles and for
electromagnetic field or for different types of particles. This is discussed in the so-called THeu-
scheme ({3]). The Mansouri-Sexi-scheme provides a kinematical framework for studying LLL

type of spin-uomentum conpling. Starting from a generalisation of the For further details see the review ([2]).

Dirac equation. based on fundamental principles. reasons are given for Alternatively, breaking of Lorentz invariance can also occur in principle for a single matter
this special kind of conpling. The outcome of this model theory is taken field if it is multicomponent: The different components may define different propagation cones.
to propose experiments which use atomic beam interferometry and give This leads to polarisation depending propagation. Such type of propagation is given by double-

improved npper limits on possible non-Lorentz invariance parameters. breaking media, where the speed of light depends on the polarisation direction (Nicols prism).

A breaking of Lorentz invariance of this kind may be caused by a generalisation of the Dirac
equation. Because of the relation
Phy) =g m

the Dirac matrices are deeply related with the metric of space-time and accordingly with the
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local null cones and the causal structure. It is therefore to be expected that modifications of
equation (1) will lead to a splitting of the mass shell and correspondingly of the future null

cone causing Lorentz non-invariance.

1.2 Reasons to consider LNI

There may be many physically very different reasons to consider LNI of massive particles. They
appear typically the case in scheines in which the metric is considered as a derived structure.
We shortly describe 3 reasons:

(i) One possibility to derive the space time geometry from fundainental physical experiences
is a constructive axionatics of space time. The procedure is to discover and to describe the
geometrical structure of space-tiine by ineans of the beliaviour of appropriately selected physical
systems (called primitive objects) in particular physical effects (taken as basic experiences) [4].
Following a schieme of a constructive axiomatics of space-time geometry which is analogous to
that of Ehlers, Pirani and Sclild who base their axiomatics on light rays and test particles [5],
the use of the concept of free matter waves as primitive elements in a space time axiomatics
leads to Riemaunian geometry, see {6], [7] and [4]. In this approach plane matter waves are
considered as a particular limiting case of wave mechanies defined by » general field equation
in a differentiable manifold. As field equation for the vector valued complex field the most
general linear system: of partial differential equations of arbitrary order was derived from first
principles. In addition to such fundamental assumptions like a deterministic and local evolution
of fields and the validity of a superposition principle the demand of local Lorentz invariance
is one of the assumptions in constructive axiomatics. Demanding Lorentz invariance rises the
necessity of independent tests of it's validity. This is what we are looking for in the present
paper.

(ii) Another heuristical explauation for a local disturbance of Lorentz invariance can be
given by an induction scheme of local causal structure based on the famous Mach principle.
Due to this principle the inertial properties of a local system are induced by all inasses of the
suwrrounding universe. This construction starts from a sufficiently large symmetry group of
motion for the whole of cosmical masses (called by Planck the telescopic group). For a small
local system we hiave to sum up the motion of all surrounding cosiical bodics. As a result the
local Lorentz invarianuce arises as the symmetry group of the local systemn. In this way local
Lorentz invariance can be induced for sinall subsystems by the structure of the cosmos as a
wlhole [8]. This is in full analogy to the induction of Galilei invariance in inertia free mechanics
[9] [10]. But in the real cosmical situation the synnuetry may be broken by inhomogeneous
matter distributions leading to the breaking of Lorentz invariance. This could be the case on
the earth due to the inllomogencous gravitational potential produced by the masses of our
galaxy [11]. Despite the fact that such an induction schemie is not realized constructively we
can look for possible consequences of such a Machian induction. It will change the kinematical
part of the equations of motion [12]. This can be realized with a gencralized Dirac equation

described below.

(iii) In high energy physics models of LNI Yang Mills theories have been constructed which
have the Lorentz invariant theory as a low energy limit. This makes Lorentz invariance a
derived property and possible deviations from the Lorentz invariant theory can be tested by
such model theories. The postulate for different metrics for weakly interacting paiticles is in

the same spirit (see Nielsen et al. {13], {14]).

1.3 LNI induced by a generalised Dirac equation

In the present paper we do not intend to establish or support a particular theory giving reasons
for a breaking of Lorentz invariance. Iustead we calculate phenomenologically possible effects
of a LNI model theory in order to confront it with ezperiments thus ruling out a complete
cluss of these generalised theories. We do this in discussing effects of null-cone splitting in the
framework of a generalized Dirac equation.

In our phenomenological approach we start with the generalised Dirac equation (GDE)

0 = i3 (z)0uplz) — M(z)plx). (2)

At this level 7# are arbitrary complex 4 x 4-matrices which are not uccessaxily fulfilling (1). The
mass matrix M is a complex 4 x 4-matrix. too. The J-inatrices as well as mass matrix M may
be responsible for creating LNI effects. (2) is invariant under coordinate transformations. For
position dependent transformations ¢ ~ ' = Sp, § € GI(C. s}, 7 transformns homogeneously,
F4 s FH = S3#S-!, while the mass matrix M transforms iuhomogencously, M r— M =
SMS~'~iS5#8,8". For the usual Dirac equation in Ricinaun space the mass matrix consists
of the connection —%(D,,h:)hf,'y“*n, and the scalar mass m.

In order to describe physical propagation plienomena this first order system has to be
hyperbolic. A geometrical characterisation of hyperbolicity of a partial differential equation is
that there is one solution within a cone for a §-like source at the vertex of the coue ([15]). This
will give consequences for the characteristics to be treated in ch.2.2.

We dont know if this very general equation can be attached to any reasonable physical
interpretation within the scheme of first or second quautisation. We thercfore specify this field
equation in demanding certain propertics known from the original locally Lorentz invariant
theory which we want to be kept. This reduces the number of unspecified parameters in 7 and
M considerably. We will thercby end up with a particular type of generalisation of the Dirac
equation which shows as new feature essentially the splitting of the mass shells and light cones.
This seems to be a very prominent and typical breaking of LLI. The final step then consists in
the outline of a clean ezperimental test to put upper limits on the remaining LNI parameters.
Clean tests are experiments. by which LLI can be veryfied as directly as possible. For an
example see the Phillips experiment {16] which will be discussed below. Experiments which
are as theoryloaden as high energy experiments. can not be regarded as being fundamental
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for this purpose, because it is very difficult to distinguish uniquely LNI from unconventional
modifications of other parts of physics.

1.4 Outline of this paper

In what follows we start with (2) and introduce a parametrisation of the generalised Dirac
matrices. Then we look for some minimal nontrivial ansatz for the generalised Dirac matrices
in order to describe possible experimental consequences of the null cone splitting. Our ansatz
is characterised by the requirements that (i) for oscillatory initial values the helicity should be
conserved (as it is the case for the usual Dirac equation in Minkowski space) and (ii) there is a
coordinate system so that the characteristics, i.e. the null cone, appear isotropic. The general
mass matrix will be reduced by requiring that in the WKB limit the Hamilton operator should
comnmute with the helicity operator and an additional demand concerning helicity states. In
the following we exploit step by step these requirements.

In the second part of this paper we discuss the experimental consequences of the special
type of null cone splitting specified above. Especially the possibility is analised to test these
structures with the help of atomic beam interferometry. On this experimental basis we give
estimates for the validity of LLI. Readers interested in experimental consequences only can
start with ch.4.

Unless otherwise stated we use hi=c = 1.

2 Restricting the generalised y-matrices

As described in the introduction a generalisation of the usual Dirac theory can be realised by a
first order systein of partial differential equations (2). At first we introduce a parametrisation
of the generalised Dirac matrices. We do not use the gencralized Dirac equation in its most
general form but restrict it in requiring that certain plysical plienomena still should hold.
Therefore. we use physical arguments in order to restrict the possible perturbations in a special
reference frame. In this way we arrive at some ‘minimal’ gencralisation of the usual Dirac
equation which still describes some splitting of the usual null cone thus giving rise to Lorentz

non-invariance.

2.1 Generalised Dirac matrices

The matrices 7 of the GDE are not fulfilling any Clifford algebra. Of course, from a phys-
ical point of view any deviation of these J-matrices from the usnal Dirac matrices fulfilling
some Clifford algebra are small'. Nevertheless. since the calculation below go through for ar-
bitrary deviations we make not this restriction. Only at the end by comparing our results with

experiinents we take small deviations.

!To be more mathemnatical: For given ¥* therc are other matrices 5" fulfilling a Clifford algebra relation and
for which {|7* — v*|| € 1 where || - || is some matrix normn. e.g. the maximun norm.

Also for non-Clifford 5-matrices we can introduce a second rank tensor by g+ := 111'“('?"7”)
which however has no physical meaning and is used for mathematical convenience only.

We can now introduce usual Dirac matrices in arbitrary coordinates by y#4*) = g#*. Here
g"* is some non-singular second rank tensor with signature -2. With these 7-matrices we can
introduce the Dirac algebra, that is, the complete set of 4 x 4-matrices

I = {Liys, " 7" 0™} (3)

where we defined 15 1= teup07* 7 7?y" and 0¥ = %7("7"}, We emphiasize that the second
rank teusor ¢/ with the mathematical properties of a metric as well as the matrices v* are
{on this level) of no physical importance. They ave introduced just for being able to have a
complete set of 4 x 4-matrices available which are used to expand any 4 x 4 matrix. No physical
propagation property is related to this tensor g#v.

To formalise the notion of ‘deviation’ of the J-matrices from y-matrices fulfilling a Clifford
algebra. we introduce the difference aud expand it with respect to the Dirac algebra:

F o= g# + T = o 4 f L+ ey’ + el 0" + By’ + (4)

From the physical point of view the parameters ¢, are assumed to be small but otherwise
completely undetermined. The description of the generalised Dirac matrices as a deviation
from the usual Dirac matrices is of technical importance.

The deviation of the generalised Dirac matrices for example now appears in the anticom-
mutator

(= 1
FE3 = g1+ ) + s {r T ) (5)

(y“"+6g“"(cf;))1 +Z' w';"(f“‘)r‘ (6)
A

whereby 3°; runs over the Dirac algebra (3) but the 1. It is §* = ¢** + 6¢"*. The coefficients
n!” are a representation independent neasure of the deviation of the F-matrices from a Clifford
algebra. The last equation should be the starting point for describing ¥-matrices which do not
fulfill a Clifford algebra. Then the €} of (4) are functions of the paramcters 7. And if the
deviation is small. i.e. if 74" < 1, theu there should be a representation of the y-matrices, so
that also for the parameters ¢’y < 1 holds. However, we will uot deal with this problem here
but simply use (4) to describe the sigularitics and the null cones of our GDE.

The parameters ¢”; are frame dependent and give notice of the breakdown of Lorentz in-
variance. This breaking is accompanied by a null cone splitting: The mutual orientation of the
propagation cones is frame dependent (see ch.4).
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2.2 Conservation of helicity

The first step in characterising a special version of the GDE (2) consists in the requirement that
during the evolution of the field ¢ a prepared helicity should be conserved. In the following
considerations we do not assume that the paraineters € are small. Ouly for the confronatation

with experiments in ch.4 we agein refer to small e.

2.2.1 Oscillatory initial values

The GDE can be reformulated as evolution equation (4 = 1,2.3)
idop = —i(7)"'F 0 + (7)Mo (7

whereby 20 acts as “time’ coordinate and the surfaces 2 = const are hypersurfaces T .

By means of (7) the field on a hypersurface with paramecter 2% + 629 is then given by
o = po +82° (~iF) " 7 0 + ()7 Mo ()

where g is the initial value on the hypersurface at 9.

If a function ¢ is given which depends on the coordinates of £,0 only, then any initial
value given by 9o = @y with [|Faoll < 11(:4)@oll and [|(F°)~' MBIl < 1|(9;6)Poll is called
a oscillatory initial value (see e.g. Courant Hilbert [17]) for the GDE. Physically one may
interpret these functions as fields with high momentum. Inserting oscillatory initial values into
(8) we get

¢ = pg — i6z°(F°) '3 (9;¢)p0 (9)

2.2.2 Consequences of conservation of helicity

Now we take oscillatory initial values which are prepared as to possess a certain helicity given
by the projection operator Py := %(li'rr,)‘ that is, Py@os = Pps. We demand: Requirement
1: The state of helicity does not change during propegation for oscillatory initial values. That
means, if the oscillatory initial state is an cigeustate Pr@py = Po+ then also the time-evolved
state (9) ¢ should be an cigenstate Py = 9. To be more accurate. this means that there
are y-matrices so that one can build with these y-matrices a 5 so that the above requirement
is fulfilled.

For the operator ('7“)”'7’70,# in (9} governing the time-evolution of oscillatory initial values

this means that it should commute with the projection operator Py:
(P2, (7°)'70:9] = 0 (10)

Since 5 commutes with itsclf and ¢/ we infer (79)™'5 = 1 + d*y; + €£,07 for some

undeternined paramcters o, d*, and e"ﬁ,. This can be rewritten as (39)7'5# = #1 + diys +

7

E’;"‘yo'y‘s + Ef,:‘757°7ﬁ. For the following it is most convenient to represent this result in the chiral
representation of the y-matrices:
N R . . - . b4 big? 0

~Oy-lzn it ~ii, 0 St 0 — @ v .

A =1+ s+ + T ( 0 o+ dig (11)
where o# are the usual Pauli-matrices.

Next we use statements about the shape of the light cones to restrict further the deviations

of the GDM.

2.3 Isotropy of the null cones

Typical features of partial differential equations like the GDE are described by discontinuities
(jumps) in its solutions or in one of their derivatives which can occur only on certain hypersur-
faces ®(z) = const called characteristics. In General Relativity they are related to the notion
of the light cone because for all physical theories of matter the characteristics are identical with
the usual light cones related to the causal behaviour of the fields.

2.3.1 The jumps

We assume that a jump (compare {17]) of a solution of (2) may occur at some surface (z) =0,
called jump-surface. For describing a function ¢ having jumps up to order N (that means up
to the N derivative) we begin with the ansatz

N
plz) =Y (sV(@) (2)a"(2) + R(=) (12)

i=r

with ¢!V, R € C and §")(®) := ’—i-ir'(Q)(b" (n is the Heaviside function). r can of course be
zero. It is enough that there is a jump at all, that is, that there is a jump of lowest order
r < oc. Since p should be a (generalised) solution of the field equation we insert this series into
(2) and perforin the differentiation taking d, (S‘"’(@)) (z) = (S"1(@))(2)(9, ) (z) (S~ is

the é-function) into account:

N
0=7(0,2)a"S" (@) + Y z;y(z)S (@) + i7" R - MR (13)

i=r

whereby the functions z;)(z) are regular and consist in the functions a'' and derivatives of the
hypersurface ¢. The most irregular part of (13) is contained iu the first tenin.

All coefficients to the SU)(®), i =r~1..... N. have to vanish independently so that a series
of equations relating the hypersurface ¢ to the functions a'* arise. This series starts with the
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equation

0 = 7#k,a” (14)
where we introduced the normal k, := 9,® of the hypersurface ®. This equation describes the
jump a := a!" of lowest order along a hypersurface & = 0. That means. that if a solution of
(2) possesses a jump. that is. is not a regular solution, then (14) must be fulfilled. This relation
then connects the normal of the jump surface with the jump function «.

2.3.2 The nuli-cones

For (14) to possess any solution, the coefficient matrix ¥k, mnust be singular giving a condition
on the normals of the hypersurfaces k,. Because the v are 4 x 4-matrices. the determinant in
fact is a polynomial. the characteristic polynomial, in k of order 4:

det(:)wku) = gﬂvwkpkvkﬂkﬂ- (15)

where g"¥#? is some 4th rank tensor. The solutions &, of {15) give the normal cone. also called
null cone. This null cone becomes a fourth order surface, which can decay into two second order
surfaces. In this way the null cone of special relativistic pliysics is splitted into two different
propagation cones.

For the GDE to be hyperbolic a necessary condition is that there is a hypersurface with
normal n, so that the characteristic polynomial has as many real solutions ko = f(kz) # 0 as
the order of the characteristic equation is. In our case this mecans that there are 4 solutions
kg # 0. The set of topologically different cones is indicated by fig.1 (see [18]).

2.3.3 Consequences of isotropic null cones

The coundition for the jumps (14) can be reformulated as
0= (kol + (:’0)-!:7;2;“}) e =: Ba. (16)
With (11) the characteristics are now determined to be

det(afk — ko + Ui kao®) det{chy — ko + dhkzo®)
[(aPhs = ko)? = 3 (ka)?) [(ehs ~ ko)? = 3 (dka)?] (17)
v &

det. B

]

We restrict the ¥* further by demanding the isotropy of the null cones: Requirement 2:
There s a coordinate system. so that this characteristic polynomial has the form H(z,k) =
(n‘l\:g - )\I?) (;tkg - ul?z) with £2 := k2 + k3 + &3 and some undetermined coefficients «. A,

u, and v. Therefore (17) fulfills this isotropy demand only if ¢ = 0. ¢ = 0, b} = b&:;‘ and
dg = déf;. Thus with this restriction (11) reduces to

0\l _ boh 0
s —( 0 dok (18)

Using now the usual Dirac matrices in the chiral representation. then (16} can be written as
[1ko + (14 a1 + 7 ys7" z) a = 0 (19)

whereby o' = .%(d —~b)~—1and b = %(d + b). Since solutions ¢ remain unchanged we can
’

!
multiply this equation with the non-singular matrix (1 - —:—;75) 7® and get with ¢g = -% and
!
e;=b’——~:-,-(l+a') .
[(1+ oms)rko + (1 + errs)ykz) a =0 (20)

From this equation the generalised Dirac matrices 3* leading to conserved helicity and isotropic
null cone. can be read off.

2.4 The resulting y-matrices

To sum up, in the special coordinate system specified above. the gencralised Dirac matrices
finally have the form
o { 72 + em'r‘; .
T+ sy
It should be noted that reading off the y-matrices from (20) is not unique. All the characteristic
features are not changed if one multiplies (20) with a non-singular matrix.

With these 7 the characteristic polynomial describing the null cones (15) now reads
0 = det(3%ko + Fkz) = [(1+€0)2k§ — (1+ )R] [(1- )3 - (1 - e)?F?] . (22)

.. . l+e
From hyperbolicity the four solutions &g are real. Therefore (l T :'
0

2
) > 0. implying ¢g.¢; € R
and the hermiticity of (°)~'5%. In the special coordinate systet in which the splitting appears

isotropic, there are two future pointing solutions kg for given E:

1+¢,» 24) 1-¢ -
e 1 N Sl T
R R 1 (23
A splitting parameter wnay then be defined by
k:)Hl _ k((]2+) € — € )
A= L-:)H') = (1-50)(1+€|)—2(€l_fu)+0(e ). (24)
10
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For small parameters €g, ¢; the splitting is to first order given by their difference. Therefore
also in experiments the main contribution is expected to be of this order.

The GDE gives us a tnodel theory to discuss the effects the breaking of Lorentz invariance
in a lot of experiments, which we are going to discuss in ch.4. We finally observe that the
Hamiltonian of the GDE is

idyp = Hp = [—i(l + 0770, ~ sy 0 + M| g (25)

and up to first order in the €

i =Hp= [—i’yo'y’;a,; +1{eg ~ 61)13107‘}8,; + M] Q. (26)
In the case of constant y-matrices the helicity operator s := s p/lp] with SA = 15704#

commutes with the Hamiltonian but the "mass’ term M.

If the usual Dirac matrices are modified according to (21), it describes a splitting of the
null cone structure which is characterised by one cffective perturbation parammeter ¢y —e€). This
represents the minimal nontrivial ansatz for the description of a null cone splitting. In this way
we completed the discussion of the null cones resp. the causal structure. In order to discuss
consequences of the GDE in the low velocity region, as it is required for cxperiments using
matter wave interferometry, we must consider the structure of the inass matrix too. as can be

seen from (25). Thercfore we will also restrict the gencral form of the mass matrix in ch.3.

3 WKB approximation and non-relativistic limit

In order to work out possible effects appearing in interferometry experinents we cousider the
GDE (2) with the related 3 of (21). There arc two independent ways to arvive at the prediction
for an interference experiments: (i) by means of the gencralised Pauli equation. and {ii) using
the WKB limit of the GDE. We use the sccond method

3.1 Restricting the mass matrix

The WKB approximation will be introduced by
p=e"a with [7" 0,0} < o] (27)

Inserting this iuto (2) we get

[

(F#pp — M) (28)
' ~ MM (29)

]

11

with M = M 4+ M(1) whereby the 4 x 4-matrix M‘®) transforms homogeneously under base
transformations (further details can be found in {7]).

For the WKB limit the mass matrix M%) inay be arbitrary. However. we specify this matrix
by demanding the following Requirement: 3: The matriz H giving the eigenvalue py:

poe = ((3°)' %z + () M) a =: Ha (30)

comrmutes with the helicity operutor s. This is only possible for v and 5. Therefore the matrix
(3°)~'M‘® can be constructed from these two matrices so that H = ('70)'1'7‘31:;‘ + 9y + Ay
and (28) reduces to

(;'y“py —ml+ 11.'10'75) a=0 (31)

for open parameter m and n.

The last requirement for characterising the sitnplest deviation from the usual Dirac equation
rests on the following observation: In the chiral representation of the y-matrices we demanded
conservation of chirality, that is, a splitting of the GDE iuto two two-component equations for
oscillatory initial values. In the WKB approximation this splitting will be conserved for the
n-term while it is violated for the m-terni. We define the two-compouent function describing

0
the respective helicity of the field by (u[;. := Pra and ( ) := P_a. Especially for a
G-

particle at rest p; = 0 we have from (30)
(u+)=n(_.a+)_m(u-) 32)
. @.. Gy

a
Now we demand Requirement 4: P, H ( J) = ( for a state prepared with the initial

a4 (to) Lo . . .
value ( +0 . This then requires n = 0. In this way we reduced the mass matrix to the

very simple structure M®) = m1,

3.2 Resulting mass shells

The solvability condition of (31) with n = 0 then gives

0 = det(¥p, —ml)
((1 - eg)pg + 2pole; + €g)p ~ (1 — e‘f)p2 - m.z)
({1 - eg)pg + 2poleg — €1)p — (1 — 6?);}2 - m"’) (33)

12
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where p 1=,/ p? +p3+ p%. The mass shells are then given by

2 2y,,2 2
(1%) (€0 — €1)p ((eo—sl)p) (1 —¢e)p”+m
= + 3 : 34
Po -4 \] =3 ) YT 1o (34)
2 214)2 2
(2%) —(eg ~ €1)p ((60"6\)1’) (1—-epp*+m
= + s 3
Po 1-¢€ \] 1-¢€ + 1-¢ (35)

There are 4 mass shells (two future and two past directing) which touch at p; = 0. that is
p},lﬂ(p‘; =0)= pz)u](p,; =0)=:dmy = im./‘/l — €2. Because of our WKB ansatz py is real
and because we proved that ¢ has to be real too, we can conclude that also m and therefore
mg must be real. mp may be called the rest mass of onr GDE. It is the only mass parameter
which may be ineasurable.

The splitting of the mass shell Apg for positive encigy is then given in linear order of the
parameters ¢ and ¢; by

(14) _

(24)
Apg = pg Po

= 2(€g — €1)p + terms quadratic in €g, €; (36)
In the non-relativistic limit we get Apg = 2¢p where we defined € = ¢g — €;. Again we recover
the difference of the paraneters ¢ and €; as the entity causing the main effect. (36) also
shows that relativistic corrections, i.e. terms of the form p?/(mc)?. are correlated with squares
of e. Therefore, deviations from Lorentz invariance would be very difficult to measure in the
relativistiv domain.

4 Experimental test by matter wave interferometry

The theoretical scheme developed in the previous sectious can be used to discuss experimental
consequences of the mass shell and related null cone splitting (sce fig.2) resp. LNI. Thereby
we have derived the siinplest non-trivial generalisation of the Dirac equation depending on
the effective perturbation e. From this equation we calculate for experimental applications
in the low velocity donain the interaction Hamiltonian in the corresponding non-relativistic
limit. This gives us the possibility to come to nunerical values for the effective perturbation
€. For this purpose there are several incthods. At first we are using the theoretical results
of the last section to give estimates for the effective perturbation. We discuss this for atomic
beam interferometry and compare the resnlt with other cstimates from hyperfine splitting in
the hydrogen atom and the Phillips experiment.

4.1 Generalised Pauli equation

From {30) we can derive the respective Hamiltonian for the uon-relativistic domain. For deing
so we calculate pja = H2a from (30), take the square root and develop it with respect to p.
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Then we get to first order in p and the disturbing parameter €

2

H = E— -+ Him, Hint = fgi" ‘37)
2m

€ -
Here we have rescaled for convenience p (1 - 5) p. which is of no significance.
Equation (37) demonstrates that according to the orientation of the spin with respect to
the given 3-momentum, the particles momentum is restricted to one or the other mass shell:

For § parallel to given § the energy is given by % + ¢Sp while for § anti-parallel to (the same

given) p the energy is -2—2— — €Sp. Therefore. a spin-flip results in a change in the energy of the
particle although the pz’u'ticles have the same 3-momentum. This effect leads to the splitting
of the mass shells. (The analogue of this effect in crystal optics is known as double breaking.)

While in the usual Dirac theory relative velocities are observer dependent and the effects
induced by themn can therefrore be trausforined away. in our model theory the splitting of
the null cones fixes a preferred frame which enables one to introduce the notion of absolute
velocities. This is the reason why a pure velocity effect can play a physical role.

Below we give possible estimates for the difference of the cocfficients e. Accordingly, this
difference can be set zero to very good accuracy. In this case. the two iass shells coincide
according to (34) and (35). The respective dispersion relation reads po = £,/p? + mé with a
rescaled mass myg.

4.2 Phase shift

We want to describe the outcome of a matter wave interferometer experimnent. Thereby we
assume that the interferometer is so sinall that the parameters €g and €; can be considered
as being constant. The incoming particle beam is prepared as to consist of particles which
are in a definite helicity state. This incoining beamn will be splitted into two beams and, after
having travelled along the interferometer paths I and IL will be recombined. In one of these
two paths a spin flip will be performed along a definite distance ! corresponding to a time of
flight At. The particles with the flipped spin live on the other mass shell thus accumnulating
another energy than the bean: in the unflipped state. If all external influences are excluded
we can calculate for the non-relativistic limit using the WKB approximation the phase shift

experienced by matter waves
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Inserting the interaction Hamiltonian of (37) we get finally

f})udt = inmdt

/pgzﬂdt - /pé,l“dt
8] i
2epAt

{
2e5- (39)

]

[AY

il

[l

with the Compton wavelength A; := h/mec of the particles used. Note that the two beams must
not travel along different paths in 3-space inside the device. Therefore it may be possible to
have one beam of particles and to make a spin flip for haif of the particles. Thenu the interference
pattern may vary with {.

We emphasize that the final result is independent of any gcometrical notion, because in
(39) only the ratio of two lengths occure. One only needs to know the length { in terms of
the given Compton wavelength A.. This is important for our approach because in LNI model

theories there is no metric available in principle.

4.3 Expected resuit

At first we note that the inatter wave experimnent described above is not performed till now.
Nevertheless, such experiments can be done and we asswne in the following that the outcome
of such experiments will be negative, i.e., they will not confirin any splitting of the mass shell
or the null cone. Then. with the specifications of interferomcter apparatus, estinates for the
validity of LLI can be given by finding upper limits for the parameter e. Thereby the phase
shift is given by (39).

At first we give estimates for the standard nentron interferomecter. If this phase shift does
not appear. then this effect can be at best of the order of the accuracy of the apparatus
used. For the neutron interferometry we find from (39) with A, = 10" mand { = 107! m
a phase shift as depending from the perturbation parameters §&¢ ~ €10'. Together with the
accuracy 10737 for the Bouse-Hart neutron interferometer this gives us the limitation for the
perturbations of the order of magnitude |¢| < 1017,

As can be seen by inspection of (39) thie velocity of the interfering particles has 1o influence
on the phase shift. The only paramcters deterinining the phase shift are the mass and spin of
the particles as well as the length of the device. Therefore it is favourable to have particles
with large mass and spin travelling through a large interferomseter. Consequently, atomic beam
interferowetry is most appropriate to perform such tests of LNL

It follows that for an atomic beam interferometer the estimate obtained above for neutron
interferometry can be improved by several orders of maguitude. This may be achieved by means
of the following: (i) the mass of an atom is of order 10 larger giving a Compton wavelength of
the order A, = 10716 m, (ii) the length of the paths of the atoms may be of the order 1 m as
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is e.g. for the atom beam interferometers with mechanical beaw splitters ({19], [20]} and (iii)
the accuracy of measuring phase shifts is &z 1037, which may increase in future, Therefore we
estimate for a null experiment of the above type with atoms for the perturbation parameter to
be

le] < 10719, (40)

The results obtained above are calculated for the preferred frame defined by the isotropy
of the null cones. Such a preferred frame can be provided typically by some cosmic preferred
frame, by some galactical mass distributions, or similar phenomena. On the other hand, the
experiments done on the earth are most probably not done in the preferred frame. Therefore
it seems to be necessary to describe these experimental results for other reference frames.
However, because the splitting of the null cone is expected to be very small. Special Relativity
is at least almost the correct theory. Therefore any result obtained in another reference frames
would to first order in the perturbation € be correlated with the preferred frame result by an
unperturbed Lorentz transformation. Since all relative velocities are small as compared with
the velocity of light, we can neglect these transformations. Therefore. in the non-relativistic
limit, we can use predictions obtained in our preferred reference fraine to describe outcomes of

experiments done on the earth.

4.4 Comparison with alternative estimates

Other effects may also be used to give estimates for the perturbation parameters. So we find
an additional hyperfine splitting of the energy levels of the hydrogen atom given by

(41)

a? -4 m a? “%oﬁld:("’
E,p=m [1 + m] ) [l T &:)2] k(:z ” k))3
In this case we get {21] |¢| < 1078, Myonic atoms do not lead to a stronger limitation. This
shows that the hydrogen atom is not as such a sensitive indicator for deviations from the
Lorentz invariant Dirac theory as widly believed. Therefore it is ineaningful to look for further
experimental consequences, which give us stronger upper limits for the perturbations.

A famous experiment giving strong estimates for LNI effects was carried out by Phillips [16].
This experiinent determines the daily variation of the torque acting on a ferromagnet hanging
on a string. A spin-velocity coupling as predicted by the GDE model could lead to an additional
torque depending on the polarisation direction of the magnet. In this way the existence of a
preferred reference frame is examined, in which the velocity of the earth v is connected with
the spin of the electrons via a coupling term described by (37). The experiment determines
the energy splitting of the two different spin states. If we insert iuto (37) the values for the
electron mass and the velocity of the earth on its path arround the sun (v = 30 km/sec) we
find AE = €10~17 J. The experimental result gives AE = 7-107% J leading to | € |< 10718,
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5 CONCLUSIONS

In this article we develloped a model theory based on a generalisation of the Dirac equation
leading to a violation of local Lorentz invariance (LLI). This breaking of LLI is related to the
fact that the generalised Dirac matrices do not fulfill any Clifford algebra. Using physically
meaningful requirements like conservation of helicity and isotropy of the null cones. we reduced
the most general violation of LLI to a minimnal nontrivial model. This results in the non-
relativistic limit in a special spin-momentum coupling leading to a splitting of the inass shells
and consequently of the null cones.

This spin-momentum coupling can be most suitably tested with atomic beamn interferometry
using spin flip devices. Our model would lead to a phase shift proportional to the parameter
¢ characterising the splitting of the null cone. Assuming a negative outcome of atomic beam
interference experiments and taking into considertion the accuracy of the respective apparatus
then gives upper limits for the parameter characterising the violation of LLI. The great and
increasing accuracy of atomic beam interferometers makes it very desireable to perform such
experiments because this would lead to improved limitations of LLI violations: l¢| < 10~!9.
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Figure 1: Possible shapes of the null cones defined by the characteristic polynomial of the
GDE.

Figure 2: Splitting of mass shell and null cone for the simplest non-trivial generalisation of
the Dirac equation.
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