umiiiiingm -

0 11b0 0023145 0 [

Ralativity Group e Konstanz University -

( Theory of Gravity | Quantum Theory )

=T
:-E%::‘:
>

3

KONS-RGKU-93-04

q/

A New Constructive Axiomatic Scheme
for the Geometry of Spacg=Time

Jiirgen Audretsch and Claus Limmerzahl

Fakultdt fir Physik der Universitit Konstanz
Postfach 5560, D-7750 Konstanz. Germany
(Jafiuary 19

K bIJ“L[,\N 2 a .

Abstract

A new scheme for a constructive axiomatics for the space-time geometry
is proposed. By treating quantum objects described by classical fields,
as primitive objects it is shown that a deterministic, linear and local
evolution leads to a system of partial differential equations. Founded
on basic quantum mechanical experiences. the conformal structure and
the paths of the classical limit are determined leading to a Riemannian
space-time. A spin motion enables the introduction of space-time torsion.
Therefore, if spacetime is the entity which prescribes the behavior of
characteristics, free matter waves, and spin states, then space-time is a
Riemann-Cartan space-time with azial torsion.
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1 The physical and conceptual frame

1.1 Gravitation, geometry of space-time and the quantum domain

The (pseudo)-Riemannian manifold of General Ralativity is today generally accepted as the best
mathematical framework for the description of space-time geometry, geometrised gravitation,
and the influence of inertia. Space-time torsion and other fields can be introduced in addition
and different types of field equations for geometrical quantities may describe different theories
of gravity. The objects of classical physics like fuids, electromagnetic fields, and so on ave
influenced by the gravi-inertial interaction and can act as their source. The same is the case
for quantum objects like elementary particles. Today a large part of the studies in General
Relativity is devoted to the role of the unquantised geometrised gravito-inertial interaction
in the quantum domain, whereby the quantum objects are treated either on the level of first
quantisation or with reference to the field quantisation of matter (quantum field theory in
curved space-time).

It is an important new development that these theoretical studies are now complemented
by increasing efforts concerning the empirical foundation of the interaction between quantum
objects and gravity. Today, matter wave interferometry with electrons, neutrons, and atoms
provides an ever increasing number of experiments in which the influence of classical gravity
and inertia on quantum objects can be studied in the laboratory in a very direct and precise
way [1]. On cosmological scales, on the other hand, the effects originating from the influence
of unquantised space-time curvature on processes of high energy physics, i.e. on quantum field
theoretically described matter, dominate the physics of the extreme hot very early universe and
have observable consequences today. To sum up, one may say that ‘gravity has invaded the
quantum domain’. By quantum domain we mean all those physical effects which reflect the fact
that matter (and not gravitation or geometry) must be quantised. The respective ‘particles’
like neutron#. electrons, etc., are called quantum objects.

To investigate the role of geometrised classical gravity and inertia in quantum effects we
usually assume a particular structure of space-time in the quantum domain. It is common
practice to essentially rely for this on the postulate "Space-time in the quantum domain obeys
a Riemann geometry”. On the other hand for the domain of classical physics it has convincingly
been disputed that it is reasonable to put such type of axiom on top of a theory of space-time.
Why should therefore the Riemann geometry be adequate for the quantum domain?

It has successfully been demonstrated for classical physics that a physical axiomatics of
space-time can be build up which does not postulate the particular geometrical structure from
the beginning, but makes it a derived concept (see below). For the quantum domain such a
constructive approach must be based on some typical quantum mechanical experiences which
are regarded to be fundamental. The aim of this article is to sketch a succession of physical
arguments and their mathematical formulation, which may be further elaborated to build a
constructive axiomatics of space-time for the quantum domain. The space-time geometry of
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classical physics will be thereby contained in a limiting casc. Before tirning to this approach,
we will make in the rest of this chapter some general remarks concerning the different types of

axiomatic schemes.

1.2 Different approaches to space-time geometry

As mentioned above, there is a very simple way to introduce the geometrical structure of space-
time. It is sufficient to postulate that the mathematical model for the physical space-time is
a Riemaunian manifold. Characteristic for such a deductive approach is that it starts from
a mathematical axiom which contains an abstact structural coustraint. It can be physically
interpreted only after considerable elaboration of the schenie and will then be related to complex
and involved laws. The physical and epimistological basis, the heuristic motivation, and the
possibility of emnpirically testing such an axiom remain hidden. It is unclear why it should be
physically plausible to assume this mathematical structure from the outset.

In contrast to this the alternative chronogeometric aziomatic approuch of Synge {2) is based
on particles and standard clocks as basic tools. One of the wmain objections against this approach
{comp. [3]) is that the real clocks of physicists and astronomers arc atom clocks. These are
physically highly complicated systems which can only be understood on the basis of quantum
mechanics. Because one can in principle construct ideal clocks based on light rays and freely
falling particles [4, 5], the chronogeometric axiomn either appears to be redundant or should
be reduced from a theory of the gravitational influence on quantum matter and confirmed
experimentally. Followiug [6] we add another argumnent: Withiu the domain of classical physics
nearly all tests of General Relativity refer to astrophysical situations. The appropriate objects
which reveal the structure of space-time uear a binary pulsar for instance are freely falling
masses and light rays. Clocks. not to speak about rigid rulers. are in this coutext of no use, We
come back to this fundmuental demand that one should choose the objects which shall indicate
by their behaviour the geometry of space-tine, to be adequate to the part of plysical reality
to which this geometry is goiug to be attributed.

An independent approach to space-time geoetry which is located somewhere between the
purely deductive schemes and the consequently constructive axiomatic schemes, which will be
described below. is the gauge approach to gravity. It takes the local validity of Minkowski space
with all its mathematical structure as starting point. Following Einstein. the structure and form
of the gravitational potentials are read off in flat space-time from the inertial forees arising in
non-inertial frames. Following Cartan. in a secoud step. arbitrary non-inertial reference frames
are identified with a field of orthonormal (anholonomic) tetrads. In discussing the Dirac field
it cau be demounstrated that one only nced to know the belhaviour of the Lagrangian in a
nou-inertial reference frame, to determine the coupling to gravity. Torsion comes out as a
natural consequence aud space-time has a Riemsaun-Cartan geometry. Note that the reference
to quantim mechanical matter ficlds and accordingly to matter wave cxperiments is central.

For details and the literature sce [1).

We now turn to @b initio approaches and begin with the description of the characteristic

structures of constructive space-time axiomatics.

1.3 Characteristic structures of constructive axiomatic
schemes for space-time geometry

The constructive eziomatic approach is opposed to deductive schemes. In this approach. which
is in the tradition of Helmholtz. one takes serious the statement of Reichenbach (7] that in
physics the observable facts are at the beginning and the abstract concepts are at the end.
Axioms should therefore directly be related to experimnents which can be performed without
refering to the theory which is to be constructed {Reichenbach [8]). A limited number of directly
observable phenomena which are regarded as fundamental. is taken as basic ezperiences and
stated as prepositions which are idealisations and mathematical formulations of empirical facts.
Accordingly the respective axioins may be directly confronted with particular experiments and
tested separately. In this way the physical basis of the different mathematically formulated
physical structures of an axiomatic schewe becomes evident. The physical entities with which
the basic experiences can be made, ave called primitive objects. They are inplicitely defined
by the axioms.

A constructive axiomatics for the space-time geoumetry is therefore based on the following
scheme!: Discover and describe by means of the behaviour of selected primitive objects in
particular basic experiences the geometrical structures of space-time. Thereby it must be
possible to formulate the axioms and to perform the underlying experiments without making
reference to geometry. Space-time geometry is theu obtained as a derived concept. The EPS
scheme sketched below is an exawple. It is based on the behaviour of free point particles and
light rays. In contrast to this. the alternative axiomatic schicme which we are going to describe
in more details is based on free quantumn objects and basic experiences demonstrating their
behaviour as matter waves.

The procedure always is to reveal the structure of space-time. It is discovered through the
behaviour of the primitive objects in the basic experiences. Accordingly, these experiences are
taken as indications for the existence of a geometrical structure which is responsible for certain
physical effects. as well as we take other expericnces for example with charged particles as
indications for the existence and particular nature of a field called the clectromagnetic field. It
is typical for this procedure that at the same time we only fix or define what we are going to
mean by the concept space-time geowetry. What we finally will obtain is therefore a theorem
of the type: "If space-time geometry is what prescribes to the particular primitive objects their
typical behaviour as seen in the basic expericnces, then space-time geometry is mathematically

described by ... (mmaybe a Riemann-Cartan space)”.

' For a more detailed discussion of such a type of axiomatics see Coleman and Korte [9. 10}. This approach is
also discussed together with related epistemological and physical problems regarding the structure of space-time

in contributions to the book of Audretsch and Mainzer [11].
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It is evident that the choice of the primitive objects and the basic experiences will reflect
the physical ideas and conceptions which are traditionally related to space-time geometry.
Typically, effects which remain after all interactions and influences which can be shielded have
indeed been shielded, are attributed to geometry. Geometry is what remains and accordingly
it influences the description of ‘free’ objects?. ‘Free’ is thereby implicitely fixed (in the sense of
Hilbert) by the axiom itself. Important is that one can find represcntations of the respective
primitive objects in nature. The procedure ‘shiclding’ itself is thereby not part of the scheme.
It may only be taken as a hint when actually performing all the operational procedures to carry
out the basic experiments.

In order to avoid misunderstandings it is necessary to make a final remark: The constructive
procedure is to detect the geometry and accordingly to ‘fill up’ or "enrich’ the manifold step by
step with mathematical structure. Accordingly, the fact that the geometrical structures which
are revealed by free point particles and light rays, represent a Weyl space without torsion, does
not mean that space-time geometry may not contain torsion. It can simply not be detected
this way. Other primitive objects may well be sensitive to torsion. But, as pointed out above,
it is a matter of convention, whether certain objects should be taken as basis for the scheme or

not.

1.4 The EPS scheme as an example

Already in 1921 Weyl distinguished between two primitivc substructures of the space-time
structure of General Relativity [13]. He rejected the reliance on clocks and rigid rods. The
ideas of Weyl have been given a detailed, precise. and axiomatic form by Ehlers, Pirani and
Schild (EPS) in 1972 [3]3. This scheme is a paradigm for a constructive space-time axiomatics.
EPS adopt as primitive elements the notious of event, light ray. particle and freely falling
particle. The introduction of local radar coordinates by means of particles and light rays leads
to a differentiable structure. Further basic experiences are the causal propagation of light
which introduces a conformnal structure. The universality of free fall and the fact that the
law of inertia holds infinitesimally reveals a projective structure. The relation between these
structures is established using the basic experience that a freely falling particle is always slower
than a photon, but can be made to chase a photon arbitrary close. This compatibility demand
leads finally to a Weyl geometry, in which the transport of time intervals will in general be
path dependent. Space-time torsion cannot be introduced or detected this way.

The last step to the further restricted Riemann geometry needs an additional Riemannian
axiom to exclude the second clock effect. It essentially amounts to the demand that gravi-
tational time given by the Weyl arc length agrees with atomic time [3. 4], since the latter is

*The concept ‘free’ must not necessarily appear in the scheme. Coleman and Korte [12] have shown that
there are possibilities to isolate and to characterise the influcuce of geometry ou the path of point particles even
if other interactious are present.

3For elaborated discussions of the scheme see [4. 14. 15, 16}.

integrably transported because of the indistinguishability of quantum objects of a particular
kind. The authors themselves question that the time-equality postulate is compelling and re-
gard it as an extraneous element of their scheme. The argument that axiomaties should not
rely on so complex structures as atomic clocks, which above has been used against Synge's
scheme, could be repeated. To demand alternatively that the gravitational clock constructed
out of light rays and freely falling particles would lead to a path-independent transport of the
time unit would imply the introduction of an experience which is not technically realisable.

It is a deficiency of the EPS approach that the Riemannian axiom breaks the internal
coherence of the scheme. It has been demonstrated by Audretsch [17] that the final step
from a Weyl geometry to a Riemann geometry can be done by adding rudimnents of quantum
mechanics to the scheme. The reason for this is that quantum mechanics must include the
classical mechanics of freely falling point particles as a limiting case. The self-consistency
requirement that this limiting case should agree with the behaviour of classical particles as
postulated in the EPS-scheme reduces Weyl space to a Riemann space!-3,

To close the EPS scheme it was necessary to refer to some quantum mechanical arguments.
This leads legitimately to the question if it is possible to base an axiomatics of the Riemann
or Riemann-Cartan geometry of space-time solely on experiences with quantum matter. That
this can be done will be scetched in the following chapters. Before doing so we want to point
out that an approach of this type is reasonable as well as important for several reasons.

1.5 Motivation for a constructive axiomatics founded on basic quantum me-
chanical experiences

On the background of the worked out EPS scheme and the arguments used above to reject
earlier axiomatics, several motives for the alternative scheme become evident (comp. [1]).
There is a hierarchy within the theories of matter. Quantum physics is more fundamnental

*That it shonld be possible to obtain this reduction in discussing quantum mechanical wave equations has
already been conjectured by Ehlers [4]. In connection with the paper mcntioned above it hias been stressed by
Kasper {19} and Ehlers {16] that it is the appearance of a mass function in the g hanical f; k

in Weyl space that makes it possible to introduce a Riemanuian strncture.

*Various attempts have beeu made to imnprove and to supplement the EPS scheme. Woodhonse {20] gave a
rigorous derivation of the differential and causal structure based on much the same priwmitive elemnents. Schroter
et al. [21, 22, 23] studied the basic experiences which lead to the description of space-tiine as a four-dimensional
differentiable manifold and a reformulation of the EPS scheme. A characterisatiou of free fall path by a Desargues
property has been given by Heilig and Pfister [24]. The free fall structure has altcruntively been characterised by
admitting maximal local isotropy by Ehlers and Kohler {25] and Coleman and Korte [9, 10, 26]. The compatibilty
demand has been rediscussed by Coleman and Korte [27). An axiomatics of the Newtou-Cartan geometry has
been treated by Ewen and Schiidt (28]. The EPS scheme can he enlarged by including additional experiences. If
the particle carries in addition a polarisation direction, it has been demonstrated by Audretsch and Limmerzahl

[28] that the space-time metric can be endowed with a totally autisymmetric torsion. A first attempt to study
the possibility to obtain a Riemannian space-time if in the EPS-scheme all axiows referring to freely falling
particles are replaced by axioms related to free matter waves. has been made by Audretsch and Lammerzahl
[29].
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than classical physics. The latter is contained in the former as a limiting case. Classically
described matter, such as satellites, stones, and other candidates for point particles, is composed
of quarks, leptons, and their gauge bosons. The gravitational and inertial behaviour of the
complex objects should be a consequence of the behavior of the more elementary objects. It
is therefore reasonable, if not compelling, to relate a theory of the structure of space-time to
the more fundamental theorctical framework of quantum mechanics. This means, by the same
token, to base it on the physically more primitive objects, namely on the elementary particles,
and on basic experiences which are typical for the quantuin domain and which can be made in
a theory-free (especially geometry-free) way. In doing so. we may have to put up with the fact,
that the physically more primitive objects may be less ‘primitive’ with regards to the technical
details of the operational handling as compared with point particles.

The Weylian geometry governs the behaviour of point particles and light rays. To infer from
this that it is also the appropriate geometry for the description of quantum objects would be a
deductive extrapolation, an approach which has been rcjected above. From the motion of point
particles and light rays it is impossible to read off any physical indication suggesting that the
space-time geometry underlying the quantum domain is a Weyl geomctry. Point particles and
light rays are typically realised by satellites and radar signals. It is evident that. for instance,
the geometry in the interior of an hydrogen atoin caunot be revealed with their help.

This leads to the important conclusion that coustructive axiomatic schemes have natural
domains of application to which they are adjusted. These domains, as parts of physical reality,
are characterised by the fact that their geometry can be explored by the typical operational
realisations of the respective primitive objects. The basic experiences refer to this domain.
Obviously the domain of application of the EPS-schemc is restricted to classical physics. We
therefore need an alternative scheme which includes the quantum domain, and we have to base
it on quantumn objects as primitive objects.

There is a third motivation: Quantuin objects, as compared to classical point particles
and light rays, are the decper searching probes. The matter wave interference experiments
demonstrate that massive fields with spin couple to gravito-inertial ficlds in accordance with
the strong equivalence principle. The respective experimental results depend on the paramneters
mass and spin. Based on this richer structure of the new primitive objects. additional physical
structures can be geometrized yielding more specific statements on space-time geometry. Ac-
cordingly geometry can be further specified. This has two consequences: The axiomatic scheme
will not end with the Weyl geometry but will lead to Riemann geometry directly. Secondly, the
torsion of space-time can be ‘sensed’ if space-time is explored by quantum objects with spin.

On the one hand, quantum physics contains classical physics as a limiting case. The EPS-
scheme will therefore as well be contained in a limiting case. Therefore it will not be refuted but
instead confirmed. On the other hand. quantum mechanical experiments rely on macrophysical
objects. It must be stressed that the basic experiences refering to the quantum domain nwst be
chosen in such a way that macro-objects arc only manipulated in a geometry-free way or with

reference to the geometry which has already been introduced at the previous steps of the scheme.
A double slit and the registration of an interference pattern are typical examples. It is evident
that therfore only some rudiments of quantum mechanics can be related to basic experiences,
because the interpretation of the majority of quantum experiments are theoryloaden and cannot
be operationalised in a geometry-freee way. Accordingly we will have to base the scheme on
quantum objects and on experiences out of the quantum domain which are fundamental and
prior to a specific theoretical elaboration of quantum theory.

We will now turn to the details of the scheme and sketch in the following our results of
[30. 31, 32, 33]. For doing so we introduce classical fields as our primitive objects representing
the quantum objects we are dealing with. The basic expericnces are then described in the
postulates 1 - 8.

2 Derivation of the field equations

2.1 Deterministic evolution

It is difficult to specify particular field equations as. for example. the Dirac equation, op-
erationally from basic experiences. Therefore we establish the dynamical behaviour of the
considered fields. Thereby we start from the basic experience that the ficlds show a deter-
ministic evolution. For this a 4-dimensional differentiable manifold is assumed®. We consider
classical fields (no second quantisation) and allow them to be vector valued complex functions:
p: M- C*:z v p(z).

The dynamical behaviour of the fields can be formulated by considering the physical
phenomena with respect to some (3+1)-slicing e of the manifold M which consists in a 3-
dimensional differentiable manifold £ and a class of cinbeddings e, : £ = M, t €1 = [Tp,T] C
R.sothate:Ix L — M : (t,x) — £ = e(t,x) = e/(x). We can define the fields @, := ejp
as the field p pulled back from I, := ¢;(Z) to . The ficlds @, then give rise to the function
space D(Z, C?®) of vector valued distributions on X.

To introduce a deterministic evolution there should exist at least one (3+1)-slicing with
a corresponding class of 3-dimensional non-intersecting hypersurfaces £, which are labeled by
a monotonically increasing parameter t which may be called a “time’-like paramcter. With
reference to this parameter the evolution of the ficld. i.e. the progression of the field from I,
to Ti4s: and so on, takes place in a unique way’.

Postulate 1: (Deterministic evolution)

~ d'¢
3 (3 + 1)-slicing e so that for « set of given data O} := T‘?' o i=0,1,....R the field 5,
0

is uniquely determined for all t > tj.

It would be desireable to get also the differential structure of the manifold as a derived concept as has been
doue on the classical level in (3, 20, 22]. One may imnagine that in the fiell theoretical context this could be
achieved by considering the differentiable structure of solutious.

"We do not consider fields with constraints.
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.By unique determination we mean that there is a unique correlation. a unique map-
ping between the state at tg and the state at ¢ 8 This introduces a dynamical operator
U: (t,t,8) = & =U (t,20,0). We need more experiences for specifying this dynamical
operator U.

We can now introduce the concept of a type of a field: We are dealing with a certain field
type or quantum objects of a particular type if for all initial data the dynamical evolution does
not decouple, that is, if there is no invariant subspace? of D(E., C?) with respect to U.

2.2 Superposition principle

Source free fields of quantum matter obey the superposition principle. For this can directly be
demonstrated by interference experiments, see e.g. [35]. Other estimates [38] give even stronger
limits on nonlinearities.

We will formalise this experience in demandiug that the superposition ayp + 4 of two fields
¢ and ¥ which evolve according to U is a field which obeys with respect to the same slicing e
the same dynamics for all a, § € C. Formulating this demand with reference to the preparation
procedure, it means that the linear combination of initial data results in the linear combination
of the fields too. We therefore require for source free ficlds

Postulate 2: (Super posntlon)

v86.%.va.f€C: =Ult.t0.8)
¥.va.pEC: w,~v<t.tu,m

From this we can conclude that there are lincar operators FU(t,tg) which act separately

} = af + Ao = Ut tg. a® + p).

on the initial data:

R R
=U(t,t0.8) = U(t 20,y 87) = 3" F(2.1)6' (1)
i=0 i=0

Differentiation with respect to ¢ leads to an abstract Cauchy problem of higher order:

dn+l (l)d 4
dtll+l = Z llt' (2)

R+1
whereby the G( Vi luu i‘}'“ (Z (-1y! (RT') F' 4+ (R+1-Dh, t)) are time-dependent
=0

operators.

#This usually is called Hadamard's principle of scientific determinion [34].
DR, C*) admits an invasiant subspace. if B ¢ C* is a linear subspace and U : D(T. B) — D(E, B), that is,
initially prepared data in D(E, B) will remain in this subspace during theiv evolution.

2.3 Locality

In the next step we specify a certain time-dependence of the fields during the evolution from
the inital data. We demand that at points x € £ where all the data vanish, the field increases
so slowly that at these points at least the (R+ 1)™ time derivative of the field 3, vanishes too.
This means that at these points the field should grows more slowly than given by the order of
the abstract Cauchy problem. In this sense we demand

Postulate 3: (Locality)

i o~

df+1g, R d'g,
supp (——dt,M L” C L{supp o
o

)

By use of the abstract Cauchy problem and by chosing arbitrary initial data postulate 3
implies that all GS“ are local operators'®. By means of a theorem by Peetre [39] (see also
[40]) each linear operator P : C*(E, C*) — C*®(L, C*) which is local. is a differential operator
with C*-coefficients. Therefore the operators Gﬁ" ave differential operators leading to the field

equationin R x X
dR+l

4'g
dtﬁ.+l = ’ZJZOJ":).( m, . 'am,F. (3)

Transscribing this result to the 4-dimensional manifold we finally get as field equation for
quantumn objects .
0=3 () By - o) (2) (4)
i=0
with r ;= o?iaéx& {R + 1. N;} and where the y*'-#i(z) are complex s x s-matrices in cEm.c” ).
Thesc entities are related to external fields which may be the metric, the connection or, for
instance, the electromagnetic potential.

All coefficients y#1-# but the one of heighest order transform inhomogeneously under
coordinate transformations z — z’ = f(z) and under transformations of the basis of the vector
space C*: p — ¢’ = Sy for S € GI(C, s). The y*'#i with i < r play the role of covariantising
coefficients.

To sum up: Fields showing a deterministic evolution which is linear and local, must obey a

linear system of partial differential equations (PDE). The locality postulate can be replaced by

"Mathematically an operator P is called local if suapp(P8) C suppo Yo € C™=(T.C").
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a postulate demanding finite propagation speed of solutions '*.

deterministic evolution
superposition principle == weak hyperbolic system of PDE

locality / finite propagation speed

3 The null cone structure

3.1 The singularities

As soon as a system of partial differential equations is given, we can analyse it by means of
characteristic propertics of solutions, as, for example. possible singularities in the solutions.
Singularities ave discontinuities in the solutions or in one of their derivatives which can occur
only on certain subsets of M called characteristics. In General Relativity they are related
to the notion of the light cone because for all physical theories of matter the characteristics
are identical with the usual light cones describing also the causal behaviour of the fields.
In our axiomatic reconstruction we base the introduction of the conformal structure on the
characteristics of the field equation (4). Mathematically singularitics are most appropriately
described by the notion of wave front sets in the case of scalar field equations (Hérmander [41}),
or by polarisation sets in the case of systems of partial differential equations (Dencker [42]).

Briefly, the polarisation set {(z, k,, A) | ¥#1#(x)k,, - - k., A = 0} is a subset of a vector
bundle over M which describes at which points z, in which direction &,,. and the components A
in which the solution can be singular. A describes the jumps of lowest order of the solution along
the hypersurface ®(z) = const., called characteristic surface, which is defined by &k, = 9,®.
The solvability condition of y*'#r (z)k,, - - -k, a = 0 reads

He(x k) i=det(y* vk, - Ky, ) = gftforky, -k, =0 (5)
meaning that kp is a function of k3, 2 = 1,2,3. (5) is the characteristic equation which has

the form of a Hamilton-Jacobi equation. Therefore it can be uniquely solved for the function
®. At a point z the solutions of (5) form the null cones.

'! Assume that initial data with compact support © are posed and {locally) a cone K := {{t,x) | t > cje},c > 0}
is given. Then one can define in the neighbourhood of the initial hypersurface a region R by attaching to each
poiut of © the above cone and takiug the union of all these cones. Then the itersection of a later hyperplane

T, for t > 1o with this region again is compact, Now we can formulate the alternative postulate:
Postulate 3b: (Finite propagation speed) There is a solution which remains i R.

By means of this condition we can sliow that {2) reduces to a liucar system of partial differential equations
and that the hypersurfaces of the (3+1)-slicing are non-characteristic. Partial differential equations with this
property are called weakly hyperbolic. Therefore postulate 3b is stronger than the locality postulate.
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For the introduction of the conformal structure it is sufficient to restrict oneself to a first
order system of a certain field type [33]. Other fields will be treated separately in ch.4.4.

0=iv"d,p - Mop. (6)

Such first order system exists in nature and can thercfore be taken as some realisation of our
axiomatic scheme [33]. The polarisation set then is defined by ¥*k,,a = 0 which can be read as
an equation for the eigenvalue kq. It leads to the characteristic equation H(z, k) = det(y*k,) =
0.

3.2 A probability current

For being able to establish a physical interpretation of our classical field theory described by a
first order system, and therefore to use it to describe measuring results of quantuin mechanical
phenomena, we have to introduce a real vector to represent a probability current j#. This
has to be done with the elements already contained in our theory. The only vector available
in our theory is the matrix 7. In addition, the probability should be bilinear in the fields
@. Therefore j# must equal p*fvy#p with some still open natrix . The subject of the next
postulate is to demand its reality:

Postulate 4: (probability current)

For the first order system there is ¢ matriz 8 so that j* = T pByPp € R Vyp.

Since j# should be real for all p we infer (8v#)* = fiy".

3.3 The conformal structure

In the following we make statements about the structure of the characteristics and about the
jumps A which are solutions of y#k,A = 0. Different solutions A of ¥k, A4 = 0 which belong
to the same k solving H.(z,k) = 0 ave called helicity amplitudes.

To motivate our next postulate we recall that in nature inore than two null cones {one future
and one past cone) have never been observed in ‘empty space’. This can be demonstrated with
matter wave interferometry [43]. In addition. for our first order field equation. there should be
no more than two helicity amplitudes:

Postulate 5: (conformal structure)
1. There are two null cones only, that is. for each ky # 0 there are two different ky solving
(5) which are non-vanishing and have different sign'2.

2. For the first order system (6) there are 2 helicity amplitudes.

3The non-vanishing of kg means that the hypersurfaces T are non-characteristic. {Thevefore, the Schrodinger
equation is excluded at this point.) On the other haud, postulate 3b (finite propagation speed) implics that
the T’s are non-characteristic. Accordingly if we had stated postulate 3b instead of the locality postulate 3, we
would not have had to demand this part of the axiom.
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"Because there are two helicity amplitudes on the null cone and the matrix Av#k, is her-
mitean. we know that the multiplicity of the zeros of the characteristic polynomial is two, so
that the characteristic polynomial is the square of another one: H.(z.k) = (Ho(z.k))z. In
addition, because there are two solutions kg only, the polynomial Hy(z.k) must be of order
two: Hp(z. k) = ?"(z)k“k,. Because the characteristic polynomial now is of order four, we
have s = 4 and the 7’s and the M are complex-valued 4 x 4-matrices.

Therefore the subsets of M where singularities in solutions can occur are characterised by
the equivalence class [g"*(z)] := {§"¥(z) | §"(z) = Ag"(z), A € R} which is defined by the k,
via §"k,k, = 0 and which is called conformal structure. Chosing another representant of the
conformal structure results in a rescaling of the metric which is called conformal transformation.

In virtue of the above postulates all metrical tensors are non-singular and have (according
to convention) the signature +2 or —2. Thercfore there is an inverse metric 5“,.

The bi-characteristics v* = §#*k, fulfill the geodesic equation v*D,v* = ov# for some
function 0. D,v* = dv* + { /2 } v° is the covariant derivative with the Christoffel symbol
{ ::, = %;"F(al‘&ap + 3,3,,,, = ap!;w)-

By means of the conformal structure we can introduce the notion of Lorentz transforma-
tions: We choose one metric ¢* from the equivalence class and define corresponding tetrads
e by g = nebesey with g = diag(+ — ——). All trausformatious et v &, = La.°§f,‘ leaving
the defining relation invariant are Lorentz-transformations. These transformations are charac-

terised by 'Iach"Lf = Ned-

4 The Riemannian structure

4.1 The classical limit

In the following we base our axiomatic scheme [32] on basic experiments which can be made
in the classical limit of wave mechanics. By classical limit we denote the physics of locally
approximately plane wave solutions of (4). Such a solution can be decomposed approximately
according to ¢ = ae's into a ‘*slowly varying’ amplitude a and a phase S, so that all terms
containing at least one derivative of the amplitude or at least. the second derivative of the phase
can be neglected'. Formally this means that a solution ¢ of (4) is a locally approzimately
plane matter wave in ¢ € M - briefly called plene matter wave - if within an appropriate
neighbourhiood of z there is a field of C*-bases and a eoordinate system as well as functions
S € C(M.R)and a € C{M.C*) so that it can be represeuted as

o(z) = a(z)eS™ (4]

13 A more precise way to arrive at this kind of approximate solution is via Fourier Integral operators, see e.g.
{40, 44}
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with
|-+ IT@s) a”a“ & lla]| if at least one |a;| > 2 or 8] 21 (8

liell is some norm in C*. Equations which are valid only in this special base and coordinate
systems are marked by an x.

Our classical limit in contrast to the WKB scheme is not an expansion with respect to the
Planck constant k. because the field equation (4) does not contain such quantity.

4.2 Approximate plane wave solutions

Inserting (7) into the field equation (4) we get in the system # using (8)

Z 7(;101’...}‘}(:)?”‘ © Py =0 (9)
j=0

where p,, := —0,5 is called the momentum of the plane wave. The coefficients 7("0',""" (z) are
defined to be equal to the coefficients ¥*!#(z} of the field equation (4) in the special base
and coordinate system #.

The transformation properties of the coefficients 'y(':)',"""(:t) can be derived by means of
the requirement, that after a base and coordinate transformation the transformed equation (9)
must have the transformed amplitude o’ as solution. It turns out that the coefficients 'r:'o')""‘ {z)
transform homogeneously.

In regions where there is a classical limit, the amnplitude ¢ cannot vanish, so that the
solvability condition .

H(z,p) = det(z Yoy ™ (@), - ~p,,)) =0 (10)
=0
must be fulfilled. This equation, the Hamilton-Jucobi-equation, is a polynomial of order rs in
the momentum p,. (10) corresponds to the eikonal equation of geownetrical optics. For given
Pi, 4 = 1,2,3, equation (10) can be (not necessarily uniquely) solved for py = f(z,p;). (10)
is a complex equation and is invariant against coordinate transforinations and transformations
of the C*-bases.

4.3 Local Lorentz-isotropy

By means of the orthotetrads cef,‘ it is possible to formulate the Hamilton-Jacobi-equation in
terms of the p, := gf,‘pp, that is H(z.p,) = H(:x:,f:;',p,.) = ﬁ(z.p,,). This equation can be
solved for p(g, := f(z,pa).

Having alveady established a conformal structure!* on the manifold aud the related equiv-
alence class of metrics [;,u,(x)], some elementary measurements are operationally possible. For

"In {32] we took over the conformal structure of EPS [3]. Note that because of ch.3 this is not necessary in
the complete scheme here.
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two different plane matter waves ¢ and ¢’ the ratio of the related Lorentz components X_’_;
has an invariant meaning and represents a measuring quantity related in the usual way to the
phase function S(z) and the succession of hyperplanes of constant phase. For index a = 0 it
corresponds to a ratio of frequencies, for a = @ it corresponds to a ratio of wavelenghts and a
propagation direction relative to the orthotetrad.

On the basis of this, it is possible to formulate two additional basic experiences made with
a subclass of all fields containing the plane matter waves which arc free. The first one is the
following: In an event and its neighborhood it is possible to find a plane matter wave and to
arrange the experimental setup in such a way, that active Lorentz transformations transport
the whole arrangement including the plane wave into an equally possible arrangement. As
in corresponding experiments with free point particles (as opposed to interacting particles),
this may in practice need some shielding. Loosely speaking one could say that the following is
demanded: If all the direction dependent external influences which can be elimminated are indeed
eliminated, then that what remains as structure allows that au active Lorentz transformation
of the experimental setup leads to one which can also pliysically be realised. This characterises
the ‘remaining structure’ which is related to the geometry of space-time.

Postulate 6: (isotropy)

Given an event and u free plane malter wave with momentum p,, then the momentum py in
this event obtained by an active Lorentz transformation p, — po = Ly, belongs to an equally
possible free plane matter wave:

i (J:,Lﬁpb) =0 VLﬁ fulfilling LY L = nuc. Yoy fulfilling )25 (z.pp) = 0.

Therefore H(z. p)=0& H(x, Lp) = 0. For free plane matter waves the respective Hamil-
ton functions must be invariant under Lorentz transformations. This has the important conse-
quence that according to the fundamental theorem of vector invariants of the Lorentz group,
H{z,p) can only be a function of 5""(1);),,1),,. In this case the polynomial Hamilton-Jacobi-
equation (10) must have the structure

nL
H(z,p) = [] (" @ = Vi (2)) (11)
ko)

with some complex scalar functions Vi(z) which do not depend on p. Cliosing another rep-
resentant of [§#*], that is makiug a rescaling of §", results in a rescaling of Viiy also. These
functions depend in a complex way on the ¥ ~#(z) of (9). We call the Vi) (x) scalar mass
potentials of the field p(z). Whenever locally approximately planc wave solutions of (4) are
possible which ave in addition free, they must fulfill {11) and these mass potentials must exist.
Together with the class [f;*‘”(z)} of metrics they determinc the phase functions S(x) as solutions
of (10). The functions [3“" (z)] aud Vi;y{z) together characterise the geowmetry of the classical
limit of (4).
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By grouping together identical factors in (11), we can write

Hz.p) = ] (Hatzm)™ (12)
=1
Hy(z,p): = §*(@)pupy — Viylz) =0 (13)

whereby the powers have to fulfill Ef;x oy = 5. Since *(z) and pp are real, Vj;,(z) must
be real too.

4.4 The conformal structure for the other field equations

Before proceeding in our axiomatics we derive the conformal structure of the general field
equations (4) which are not of first order.

Firstly we observe that the heigh energy limit of the Hamilton-Jacobi equation (11) is
Hiz,p)= Hi(‘&“"p,,p,)"“l, On the other hand, the heigh energy limit of the Hamilton-Jacobi
equation is proportional to the characteristic polynomial. Therefore H.(z, k) = 8[];( B“" Pupy )9
for some proportionality factor 3. Therefore the characteristics of the general field equations
{4) agree with those of the first order system of ¢h.3. All field equations ({) define the same
conformal structure. Note that if we had chosen another field equation to establish the confor-
mal structure, we would have obtained the same conformal structure. Postulate 6 guarautees
the self-consistency of our scheme.

4.5 Constancy of the ratios of mass potentials and Riemann space.

Postulate 6 is not sufficient to single out ‘frec’ waves. because only direction dependent influ-
ences are excluded. The potentials Vj;)(x) may still contain in addition to mass parameters the
contributions from isotropic external fields. To complete the characterisation ‘free’, we must
describe the physics obtained after a successful ‘shielding’ of these directional independent in-
fluences too. The influence which is conunonly called the gravitational one, cannot be shielded
and is therefore contained in the geometry of free plane matter waves.

It is well known and has been demonstrated in the COW type experiments (for a review see
e.g. [1]), that interference of plane matter waves in gravitational fields lead to mass dependent
results. This is in contrast to the behaviour of free test particles on which, according to the
equivalence principle, mass has no influence (which docs not inean that there is no equivalence
principle in the quantum domain, see {1]). This sensitivity with regard to mass makes matter
waves superior to test particles as primitive objects in u space-time aziomatics. Returning to

our axiomatic scheme this means that additional information can be extracted from interference

phenomena.
Each type of quantum object ¢ (labeled by A) characterised by a respective field equation
(4) may lead to different scalar mass potentials V(‘,.’)“./\.i = 1,2,.... Based on matter wave
16
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intérferometry we take as basic experiences with free plane waves that for the same physical
set-up (the same interferometer apparatus under identical conditions) the pattern of interfer-
ence fringes, upp to a constant rescaling, are identical. This means that for all A, X',4,7' the
’\')(z) of these potentials turns out to be the same in every space-time event.

B (A) {
ratio Vz‘») (:t)/V(i,)

Accordingly we demand the universality of the mass function:
Postulate 7: For free plane matter waves the ratio of any two scalar mass potentials proves
to be constant.

For Vj;(z) = 0 equation (13) describes null rays. Ficlds with at least one V;)(z) # 0 will
be called massive. Because of postulate 7 one can take one of the non-vanishing potentials as
universal function Vig)(z) and write for the other potentials

Vior(@)| = m, [Vior(=)] (14)

with real positive constants m;,. It is the universality of (14) which guarantees the absence
of external (in the sense of non-gravitational) influences. Note that negative V};,(z) indicating
tachyonic behaviour are not excluded. The constants my;) are called masses. One field equation
(4) can lead to several masses.

We can therefore conclude from the postulates the result: The space-time manifold M is
endowed with a class of metrics [_(c;,,,(:c)] and a universal mass function Vig)(z). Therefore we
can define a unique conformally invariant metric

1 .
g (z) := myw(m) (15)

and the manifold M becomes a Riemann space!®. This result does not mean that other
geometrical fields like torsion are vanishing, they have simply not yet been established.

5 Establishing space-time torsion

In the following we restrict ourselves to massive first order systews from which the conformal
structure has been derived. Fromn these ficlds the propagation of the spin can be derived which
in turn is used to introduce another gecometric entity, namely a space-time torsion (comp. [30]).

'SIn an different approach postulate 7 can he replaced by one using the notion of paths of wave packets and
their group velocity defined by v* ~ @H(x,p)/dp,, and requiring: All wave packets out of massive free plane
matter waves follow the same paths. This again resnlts in a Riemann space. Therefore we can alternatively
state: The geometry of bi-characteristics and wave packets is a Riemannian space-time. More details can be
found in [32}.
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5.1 The spin states

If we insert @(z) of (7) into the first order system (6) we get the following two equations for
approximately plane matter waves:

0 r'pi - M®)a, (16)
ivda = MUa, (17)

for some 4 x 4-matrices M® and M) where M® transforms homogencously. The solvability
condition of the first equation gives a polynomial of fourth order in p, namely the Hamilton-
Jacobi equation H(z,p) = (¢*p.p, +1n(2“)(g‘"'p‘,p,, + m??)) with real my;, and myy). The spin
states a which will now become important are solutions of (16) corresponding to a particular
solution p of the Hamilton-Jacobi equation.

With the help of the next postulate it is possible to derive the Clifford algebra and related
notions:
Postulate 8: (spin states)
For each momentum there are two spin states.

This requirement implies that H(z,p) should be the square of another polynomial leading
to myy) = myy) =: m = const # 0, therefore

H(z,p) = (9" pup, —m*). (18)
For convenience, in the following we chose m = 1.

5.2 The Clifford algebra

The right hand side of (18) is the determinant of v*p, ~ M () Given some matrix, its deter-
minant is given by multiplication of this matrix with its minor (see e.g. [45]). Therefore, there
is a minor B, so that B ('y"p,, - M‘o’) = (" pupy — 1)%. In addition. one can show that. if
the determinant has multiple zeros of a certain degree d, then the minor is proportional to the
(d — 1)st power of this zero. In our case there is another matrix B, polynomial in p,, with

B = (¢"Ypupv — 1) B. Therefore we get
B(+'P, - MO = 9" pupy — 1. (19)
Since the right hand side is a polynomial of order 2 in p,, B must be a polynomial of order 1:

B = B(x.p) = B¥(z)p,+ BYz). Inserting this B into (19) and equating the coefficients of the
respective powers of p,, gives B® = (M{®)~1, B# = B% B® and therefore the Clifford algebra:

1 ~pa ~vau
3 77 +7"5") = ¢* (20)
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with 4% := B%#. By this the 7 became the usual Dirac matrices. The complete set of
matrices 1,4y, v*, 1574, %[7",7"] (omitting the hat) is called Direc algebra. In addition, we
get B = 4p, +1 and the matrix § from postulate 4 can be chosen to be 4%} := ef,o"y“ whereby

e;‘,e,l:g“" = 1,“".

5.3 The propagation of the spin states

From (17) it is possible to derive a propagation law for the spin states a of the form v#d,a =
v* fu(z)a where v* is the group velocity of the wave packet, comp. footnote 15. For doing so
we introduce a spin-connection ', by the relation

0= Dy =" +{ £ 11" +[[har*] @1
and a covariant derivative Dya := 9ya + [ya. (17) can then be rewritten as
i7" Dya = (M) — iy*T, )a. (22)
Multiplication with B gives the propagation law for the spin states
v Dya = %g""D,,pua +('p+ 1)K (23)

where K := %( MU - #y#[,) is some 4 x 4 matrix which cau be expanded with respect to the
Dirac algebra: K = k%1 + kiys + K, ur + Kyvsy* + K, 2iG". D, acting on vectors denotes
the usual covariant derivative in Riemann space based in the Christoffel symbols.

5.4 The propagation of the spin

We define the bilinear forms
pi=1a, P:=dirsa, j* =8y, S":=iyre. S = Girlyla (24)
with @:= a*f. and get from (16) as independent equations
P=0, p=j" vS’“" =", 8°. (25)
Therefore S* can be derived from P and 7. We can show especially that p # 0 for approxi-

mately plane waves.
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Because of (25) the only idependent entities are the group velocity v*, and the normalised
spin-vector §¥ ;= S#/p. With (23) we get as propagation equation for the goup velocity a
geodesic equation and for the normalised spin vector

vD,§" = v"eu,,“"Kog" - (g" — v*vY) K(‘,,,}.'S"”. (26)

This shows that the dynamics of the spin vector is influenced by, and therefore sensitive to, K,
and Kj,,) only.

The first term on the right hand side can be identified with an axial torsion!S, The second
term is an external torque which cannot be reformaulated as part of any connection bacause a
connection term must be linear in the group velocity and the spin vector.

Because of the last equation we can state the following result: A first order system charac-
terised by means of the axioms 1 to 8, defines a Riemann-Cartan geometry with azial torsion.

In other words: If spacetime is the entity which prescribes the behavior of the characteristics,
of the free matter waves, and of the spin states in the way specified above, then spacetime is a
Riemann-Cartan space-time with azial torsion.

6 Concluding remarks

We have shown that it is possible to build up a constructive axiomatic scheme for the space-time
geometry in the domain of quantum and of classical physics using quantuin objects as primitive
objects and formalising some fundamental quantum experiences. We have reconstructed in this
way the Riemann-Cartan space-time which is generally regarded as the appropriate geometry.
Concerning the experiences we refered to the WKB limit of quantum mechanics which is to-
day being explored in an increasing number of matter wave experiments. Accordingly these
experiments are so rudimentary and general that they would be compatible with different the-
oretical elaborations of quantum nechanics. The details of the procedure above show that the
lasting influence of inass and spin in this limit make the quantuin objects the more sensitive
probes for exploring space-time geometry as compared to point particles and light rays. This
advantage is structurally correlated with the disadvantage that quantuin objects are less simple
from the operational point of view, and that fields as primitive objects are based on something
spread out which can locally not be ‘touched’ or *seen’. Experiences are in this case directly
related only to concepts derived from fields. It is on the other hand very satisfying that space-
time axiomatics can be based on quantumn objects, which are today the most fundamental and
elementary entities from the plysical point of view.

!$For theories with torsion see e.g. [1] and the article of F.-W. Hebl iu this volume.
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