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Abstract 

Interaction of an atomic beam with four traveling laser beams leads to 
optically induced Ramsey fringes in the atomic beam. This experimental 
setup has been used as an optical frequency standard as well as a matter
wave interferometer. We calculate for 2-level atoms the shift of the fringes 
due to the influence of fairly general external forces in lowest order of 
a perturbation approach. A comparison with the phase shift found in a 
corresponding WKB treatment of the interaction geometry is made. The 
consequences of beam reversal and COOling of the atomic beam are stud
ied. As application we treat the linear acceleration and rotation of the 
Interferometer and dIscuss the influence of spacetime curvature. 

I To appear in Physical Review A. 
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1 Introduction 

It has been pointed out by Borde et al. (1) that the Interaction of two level atoms or molecules or Ions 
passing successively two counterpropagating pairs of separated copropagating traveling laser waves 

IG 
leads to optical Ramsey fringes In the atomic beam. The respective times of Influence are shown In 
fig. 1. The laser beams Influence the atoms only In the laser zones during the time T. Between the 
laser zones the atoms travel for the times T and T' in the dark zOlles. In the four laser zones there 
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Figure 1: An atomic beam passing successively two counterpropagating pairs of copropagat
ing traveling laser waves. The interaction time with the laser beam Is T. The t1Ight time In 
the dark zones are T and T'. 

Is, because of absorption and emission processes, an exchange of energy and related with this an 
exchange of momentum. Accordingly in each laser zone a matter wave Is coherently split Into two 
components with discrete values of the momentum (comp. fig. 2). Denoting the Internal energy 
states by la > and Ib > and the states of external momentum by Iv>, the laser with wave vector 

k = ke3 splits in the first laser zone the atomic beam Iv > <8*, > entering the setup in the Xl 

direction into the two beams Iv> ®Ia > and IV+ k > ®Ib >. As far as It proves to be important 
in the following, the second zone and the rest of the interaction geometry can be read off from fig. 
2, where Iv+ uk > ®Ia > is denoted by an (or b,• for the internal state Ib >, respectively) and the 
extensions of the laser zones are neglected. In this paper we will use natural units (Ii = c = 1) if 
not otherwise stated. After having passed the last laser zone, the population in the excited states, the 
fluorescent decay of which is detected, oscillates with laser detunlng and atomiC beam velOCity. These 
oscillations are regIstered and called the Ramsey fHnges. They result from interference of matter waves 
which have propagated along two dIfferent paths. For early experimental realizations of the setup see 
Borde et al. (2) and Helmcke et al. (31. 

The case that the atoms propagate freely in the dark zones has theoretically been treated in detail 
in ref. (1). One finds after a final integration over the distribution of the initial velocity components 

v~D) in the direction .1:3, that in fact only the two interferometer geometries of fig. 3 contribute to 
the Ramsey fringes. Each of these geometries corresponds thereby to one recoil component of the 
Ramsey fringes. Apart from a background, the resulting Ramsey fringes can thereby be described by a 
bilaterally damped cosine 

cosI2(~w ± b)D/VI +.::l", +¢] (1 ) 

.::lw =w - Wo Is the detuning with the atomic tranSition frequency Wo = E" - En and the laser 
frequency w. {} = k2/(2M) denotes the recoil shift caused by the exchanged momentum k with M 
being the mass of the atom. The sign of b refers to the two different interferometer geometries of fig. 
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Figure 2: The interaction with the laser beams ±k lead to coherent splits of the beam of 
two-level atoms (Ia >, Ib ». (I." and bll denote energy and momentum of the atoms: 

an +-+ Ii+ uk > ®Ia. > , bn +-+ Ii)" + uk > ®Ib >. 

3. D is the distance between the two copropagating laser beams, UI the atom velocity. The flight 
time in the respective dark zone is T = D /UI. The phase alignment 6c,? = 94 - c,?3 + c,?2 - c,?1 is 
the difference of the phases ..pr in the four laser zones. In the result (1) the 2nd order Doppler effect 
("'1)2 Ie?) has been neglected. If apart from the four laser beams acting in the four laser zones there 
is strictly no influence on the atomic beam, the phase contribution <:> included in eqn. (1) vanishes. 
It is the aim of the article to show in detail how the influence of external potentials leads to specific 
nonvanlshing phase shifts 0. 

If one may disregard the recoil splitting and assume perfect phase alignment (6c,? = 0) as well 
as absence of external disturbances (¢ = 0), the maximum of the damped cosine (1) is given by the 
transition frequency woo This demonstrates the first important application of this scheme of Ramsey 
eXCitations: It represents a (ret/uency standard operating in the optical range. For example, using the 
Intercombination transition 3p, - ISu of 40Ca, the respective wavelength Is ,\ = 657.46nm. See 
Morinaga et a!. (41 for details and further literature on frequency stabilization by means of Ramsey 
excitation. For this application, an additional phase shift (i) in (1) would represent unwanted errors. 
It is important to know their theoretical structure in order to eliminate them. 

Since the first atomic interferometer has been built by Carnal and Mlynek (5), several alternative 
setups have been developed (6, 7, 8). In this context a second important domain of application of the 
experimental setup described above is found. As has been pointed out by Borde (9), the two closed 
arrays of coherent matter beams (comp. fig. 3) can be considered as two atomic beam interferometers. 
The laser zones represent beam splitters which provide coherent beam splits and reflections. Together 
with changes in the internal degrees of freedom they are able to separate the beams not only in 
momentum space but also in the physical space of the atoms. These beam splitters are based on 
the physically rather 'pure' effect of the atomic recoil in a traveling laser beam. This fact has the 
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Figure 3: The interaction geometry represents two matter wave Interferometers 

big advantage that the respective dynamics In the beam splitter is well defined in detail and can be 
treated theoretically in a transparent way (camp. chapt. 3 below). Influences of external potentials 
on the two atomic beams of the interferometer lead in general to a nonvanishing additional phase 
¢ in (1) and accordingly to a shift of the Ramsey fringes, by which the interaction of the respective 
forces with matter waves may be detected. An example is the Sagnac effect for matter waves, caused 
by the rotation of the reference system, which has been measured in this way by Riehle et al. 16). 
Among other reasons, atomic beam interferometry is of importance because it offers new possibilities 
for the experimental verification of the influence of gravity and inertia on quantum matter. This is 
fundamental for general relativity (camp. Audretsch et al. 110/,1111). 

The description of the experimental setup given above shows that the investigation of disturbing 
influences causing an unwanted shift in the frequency standard on one hand and the study of induced 
phase shifts in matter wave Interferometry on the other represent only two aspects of the same 
physical problem: Study of the shift IjJ :f:. 0 of the Ramsey fringes caused by the influence of external 
potentials. Both aspects can be treated in the same calculation. It is the aim of this article to do this 
for a fairly general type of external forces. The results for linearly accelerated frames (or equivalently 
homogeneous gravitational fields) and for rotating frames have already been obtained by Borde 112), 
compare also ref. [91. 

The article is organized as follows: As starting point the general dynamics of the matter beams is 
described in chapt. 2. The discussion of the influence of external potentials Is based on a perturbation 
scheme. Details of the scheme including an Idealization of the beam splitters are given in chapt. 3. 
The resulting shifts 1jJ( I) of the Ramsey fringes are worked out in chapt. 4. In chapt. 5 a comparison 
with a WKB approach to matter wave interferometers is made. Finally, applications are discussed in 
chapt.6. 
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2 Dynamics of the matter field 

We follow ref. (1) and model the atomic beam by 2-level atoms with internal energy states la > and 
lb > whereby Ell < E". The dynamic is specified by the Hamiltonian 

-2 

H =HIO) + HIO = ~f +H2Iel• +l. E- ~r+ Hel). (2) 

is Is the momentum operator acting on the cms coordinates of the atom. H21e,. describes the internal 
degrees of freedom, i.e. Hz1eIJIa >= Ealo > , H2/Hlb >= Et,lb >. The coupling to the electro
magnetic field In dipole approximation In the laser zones is given by rI· E, dis the (Internal) dipole 
operator with < al{na >=< bldlb >= 0 ::F< (*~b >=< bl(~lI >. r describes the decay of the 
states: ria >= lala > , rib >= 1"lb >. We take for the electric fields laser beams running along 
the ±X3 direction with polarization such that < al,1· Elb >= 201lbcos(wt =F 1.:(.1'3 + t,f)t) + l'r) 
where 0011 is the Rabl frequency and w is the laser frequency. l'r are the phases of the laser beams. 
The term proportional to v~D) makes sense only In a frame of reference where the atom Is at rest with 
respect to the xa direction. In such a frame It produces the first order Doppler shift of the laser fields 
as seen by the atoms. Throughout the paper we neglect all special relativistic effects. 

The additional term HI II In the Hamiltonian of eqn. (2) represents either the external disturbances 
of the frequency standard or the external potentials to be registered by matter wave interferometry. 
In the following we will study In a perturbation approach Influences of the fairly general type 

H(I) =H(P) (,1·d""(.1"2)N1 (.rj)Nl (3) 

with Integer Ni • The atomic dipole moment land the energy levels are thereby assumed to remain 
unchanged. The laser field E Is regarded to be fixed. The Hamiltonian H'I) of eqn. (3) has the 
following property: It does not affect the internal degrees of freedom of the atoms, for example it can 
not cause tranSitions « "IH( 1'Ib > = 0). Note that it is not excluded that for charged matter like ion 
beams HI 1 , may depend on electromagnetic fields including the laser beams influencing the center of 
mass motion only. Since we will use first order perturbation theory with regard to HI 1 ), our method 
holds also for linear combinations of different perturbations of the type (3). 

To obtain the exact SchrOdinger equation in momentum space. we decompose the matter state 
with regard to momentum eigenstates Iii>. 

'''' >= Jd3
p'{a,;.(t)l]T' > ®Ia > +bt;,(t)\ij ' > ®Ib >} (4) 

Assuming the detuning ~ = w - Wo to be small compared with Wo = Ell - E(u we get after projecting 
with < (t, P1 and < I), P1 for the Schrodinger equation in the momentum representation 

_.) 

. .. P - ia . ;("', 1..,.(011+"1 
(t- = {-IE - t- - -}It--IH be 'F ~ If' b- r 

p Il 2JI 2 I' II p'i:l< 

-iJd:)p' fI"l < a.l~H(lIlii'.(f > 

iL 
_.) 

{-iE - - ~}b__ 'o ,-i("'/'Fh,~DI'+"")(t bp b 2,\1 2 I' tH"b( l1:fk 

-i J{['p' bl,l < b.ll1H(lljJ1'.b > (5) 
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whereby we have made a rotating wave approximation in neglecting terms containing exp( ±i(2w + 
~)t) as compared to those containing exp(±i~t). As can be seen in figs. 2 and 3, we assume that 
the matter beam enters the experimental set up traveling in the :1', direction (j'Jifl) = p\in)et> so that 
Initially only the a;1-i., is different from zero. 

3 Perturbation scheme 

To solve the Schrodinger equation, we assume Hl l } to be small and use a perturbation scheme: 

W,ltp >= (HIO) + H(1))l1/I > , '''' >= > +ltlP }> (6) 

where 1",(1) > is of the same order as HI n. In momentum space we decompose ap = (t~) + a~' and 
correspondingly bp. The dynamics is then given up to first order by 

iO,lwlO ' >= HIOllli,IOI > (7) 

W,lv,(I) >= Hlo'lwlll > +H'I)I,p'O' > (8) 

The Ramsey fringes of zeroth order go back to It,blo, >. They have completely be determined by 
Borde et a!. (1) In the form described in chapt. 1 above. We refer to these results In a twofold way: 
Mathematically H(1)I",IO' > enters as an Inhomogeneity in the otherwise unperturbed SchrOdlnger 
equation (8) for jt,bl 1, >. Physically our intention is to determine according to (1) the shift <pI 1 , ::F 0 
modifying the zeroth order Ramsey fringes (<p = 0). 

Returning to the momentum representation (5) of the SchrOdinger equation, we apply the unitary 
transformation 

i(E E (ih)2) i .( (in,) (D' } ~ 
IIp =exp { - 2 a + b + ---u- t + 21.1.1t + I P:J - P3 V3 t ap 

i (j;.d2 i . Ii'" (DI } ~ b/;±k =exp { - 2( E.. + Eb + M"" )t - 21.1.1t + I(P:J - P:J ± k )u:) f b,;±k (9) 

(jj = ih +P3e.1) to obtain a dynamical equation with constant coeffiCients 0 ,,: 

(~n'). (~(I1 )b,;±k = ':(000'0 + n. a) 1J,r±k + ( fb(t) ) (10)
~II) 2 ~(I) f, (1)
(It; a,; (I • 

whereby 

0 0 := - 2~J((P:d2 + (1)3 ± 1.:)2) (2(p:J -IN")) ± k)tl~D) + hab 


0 1 := -20(.bCOSl' ,02:= -2H"b Siu l' 


0 3 := ~ - 2~/((J13 ± I.:f - (p:))2)::r kv~D) + i(,b - la)/2 (11) 


(A/ab := ha + Ib)/2) and 

. i (]TlY i . in D 
f,,(t) := -/exp{2(ElI+Eb+-xr)t+2I.1.1t-I(]J:J-p~ )±k)l'~ 't} 
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./ d31/ b~,l < b,ji± kIH(1)jft',b > 

'() . {i(E E (ih)2) i .( (ifll) (Dl t }
Ja t := -lexp 2' + I. + M" t - 2'wt - I. P3 - 113 V3(I 

. / (pp'lt~~) < a.P1H(I)l1j ',a > . (12) 

(1i are the Pauli matrices, (10 =12x2' Set fa.b =0 for the respective zeroth order equations for ala) 

and bIO). To obtain (12), we have made use of the fact, that the operator HO) does not act on the 
internal states la > and Ib >. 0 1 and O2 vanish in the dark zones outside the beam splitters. 

As can be read off from (10), the first order solution 1.! = (b~~k ' it!; I) is given by 

y(t) = foo G(t - t')f(t')dt' (13)10 
with L= (II. • fa) where G is the (retarded) Green function: 

G(t - t') = eiOo(t-t')/2eil'i'a'(I-/'I/2(108U - t'l . (14) 

In the following we simplify the Index notation according to a" := (-''i;ti.)+I.i~ and bn correspondingly. 
In principle the mathematical procedure would now be to calculate the time development of the 

matter waves in first and second order from zone to zone (0 $ t $ 1', l' $ t $ l' + T and so on, 
compo fig. 1) in order to obtain the probability for the excited states at t = 41' + 2T +T'. In practice, 
if there is an external intluence H( lIon the experimental setup, this program turns out to be very 
cumbersome due to the complicated dependence of the zeroth order solution on the momentum In 
the four laser zones. The reason is the following: It can be seen from the zeroth order dynamical 
equation, which is obtained from eqn.(10) by setting f(••o =0 and writing a~O) and b~O) instead of 
ii~l) and b~1 I, that the contribution of a laser zone to the evolution of the matter wave results for each 
laser zone In a 2 x 2 transformation matrix 

.(1·0.. r/2~ '. - - iO ( A Be-i<P)
eiOOT/2eiO.iJr/2 = e'Oer/:l[cos(Or/2) +in sm(OT/2)j =: e o Cei'P D (15) 

acting on the states (b, a) entering the respective laser wne, whereby nand n = !fP refer to (11). 

The second equation In (15) is the definition of the quantities .-l to D. The quantities in (15) differ 
from laser zone to laser zone. We have omitted the index,. which denotes this. The expression (15) 

depends on the momenta In a complicated way. 
It is therefore convenient to use an ac/tlitional approximation in idealizing the laser zones of duration 

l' mathematically by beam splitters which act pointlike in time (comp. fig. 2). They can formally 
be obtained by taking the limit r -+ O. nab -+ 00 in such a way that \ := TOab remains finite, 
characterizing the respective experimental setup. In this case the influence of the laser field on the 
atoms in a laser zone results in the Simple matrix 

i.4. Be- ..,.,) ( cos \ -isin \e-i'P ) 
(16)( Gei.., D = -isin \ei<p cos \ 

which models the beam splitters completely. We will use these idealized beam splitters also for the 
first order calculation. Their use is phYSically justified under the condition that the influence of the 
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perturbing Hamiltonian H( I lover the time l' in the laser zones is so small that it may be neglected 
for the first step of the perturbation scheme. But, if the perturbation H( I) itself depends on the 
laser electric field too, the limit Oab -+ 00 may imply H( I I -+ 00 so that the procedure above is 
unreasonable. Cases like this need a particular treatment. An example is given below . 

Note that the experimental setup used here allows us to model simple perfect beam splitters. This 
is an advantage over the case of neutron interferometry, where the complicated physical processes in 
the splitters can only be handled with some ad hoc assumptions. 

4 Influence of the perturbation 

The perturbation scheme is based on the zeroth order result (HI I) = 0) which we have stated first. 
Idealizing the four beam splitters as described above, we obtain 

iJ\O)(t») _ Ble-i<p, exp!i(Oo + 03)t/2j ) for t $ T 

( ithO)(t) - ( DI exp[i(Oo - 03)t/2J 


iJ\O)(t) ) eifh(t-T)/2[BIA2e-i<PleiihT/2 + D I B 2e- i":le- i l'hT/2j )eirlot /2 ( 

( ahOI(t) e-dhlt-TI/2[BI C
2
ei(<;'l-<P1 leifhl'/2 + DI D2C-i03T/2J for t $ T + T' 

iJ~l(t) ) Q.hOI(T + T') ( B3e-i<P3~i(O~+(hl(I-T-'f'1/2 ) 
for t > T + 1"( ii&O)(t) D e,(Oo-Ollll-T-T'I/2

3

b\O)(t») _ b~O)(T + 1") ( .4.~ei(Oo:03)(t-T-T'I/2 ) 
for t > T + 1" (17)( a~O)(t) - G3e'<;3eilOo-03)lt-T-T'I/2 

with 

0 0 - 2~1(2(]J3)2 + 2P3k + k2
) - kv~DI + hUb 

0 3 = ~ - 2~1(2P3~: + k2
) - kv~D) + i(io - ia)/2 

no = - 2~1(2(P3)2 - 2P3k + k2 
) + kv~D) + hal. 

03 = ~ - 2~1( -2p:~k + k2
) + kv~tl + ibb la)/2 

no = - 2~1(2(P3)2 + 6P3k + 5k2 
) - 3kt,&DI + h'lIb 

n3 = ~ + 2~/(2P3k + 3k2 
) + kt,~DI + i(;" -1.. )/2 (18) 

where the last two matrix equations in (17) refer to the two different interference geometries of fig. 2, 

respectively. The amplitudes after the atoms have passed the fourth laser beam are 

b~l<2T + 1") = a~OI(T + 1")[B3.4.4e-i<P3ei(Oo+03rr/2 + D3B 4c- i"'·ei(Oo-03IT/2j (19) 

and 
b\01(2T + T') = b~ol(T + T')[.4.:1.4.4e i(OoH'hrr/2 + C:1B"c i("'J-",.le i(Oo-fhll·/2j (20) 
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Moduli squared of these amplitudes give the fringe signals of the Ramsey interference. The resulting 
expressions can be read off from equations (27) and (30) below in putting all X111, ljO) and z1 1

) 

equal to zero. The result agrees with equations (16) and (17) of ref. III apart from the fact that In our 
case A. B, C, D refer to the idealized beam splitters and do therefore not depend on the detuning 
~. Only terms In square brackets In (27) and (30) cause the Ramsey fringes which are of the type (1) 

with 4> = 0 and T = d/t'l. 
Turning now to the first order perturbation, we firstly note that after the unitary transformation 

the a(O) and bID) do not depend on ih. To work out the Integrals In (12) which contribute to the 
Inhomogeneities In (10) we make use of the following central lemma 

a:1 elap+tJp') = (i + (i( 0 + 2/1p)]{r)4/1)J,-, ('~I) (0 + 2/31»)21P'.N. }eoP+llr (21) 
1=0 

with 
JI := Integer part of NI/2 (22) 

(r := (1 ± (_I)N. )/2 	 (23) 

J 1 

P',N.:= II (m (-1 )N'/2) (24) 
m=I+1 

which can be proven by Induction. P,,,IV. is set to one whenever I + I exceeds JI • With the help of 
thiS lemma we then find 

N3 
." .. .. 'Ne ( a -(01) + + itp_

/,,(t) -tH(p±k),' 81):3 b±1 (2 PO•N2[(t-A/(I] 

"JI (J)I R 2J,+h-/'(_i/M)'/I+-h+/tl)2/If',+h+/. (25)L I I"N, . I 
' 1=0 I 

with 
NG:= NI +N2+NJ (26) 

To obtain /a(t) we have to replace b~i and H(j1±k) in (25) by (i~O) and il(jJ)ora~O) and H(p+ 2k), 
respectively. From now on we denote j1 iJl 

) by ji. 
The rest of the calculation is straightforward but long. To obtain the outgoing amplitudes up to 

first order b_ 1 b~: + b~: and bl at the time 2T + T', one essentially uses the zeroth order solution 
(17) and applies eqn. (13) in each of the three dark zones of fig. 2 In which the disturbance Hili 
influences the atom beams. The calculation is done zone after zone whereby the initial conditions for 
each zone are given by the field at the end of the preceding zone multiplied by the respective constant 
laser matrix (16). For details of the calculation see ref. [131. 

For the first interferometer geometry we find for the output 

Ib_ I (2T + T)j2 =e-2T, ..-T''lo {IB,C1B3A412e(;n-,/,IT(l + .X:Il) + IBIC2D3B412(1 + X~II) 

+IDID2DaB412eli'-i·)T(l + X~I)) + IDID2B:JA.112(1 + X~I)) 
+[BIC1B3A4(DID2D3B.1re2i(~-.sIT+~;P(l + izll)) + ('.c.] + O(eih.~DJT)} 

(27) 

(6 =k2 /(2M), T =dlvl). Because Z: I), which will be given below, Is of first order, the phase term 

In square brackets takes with exp is I::::: I + i€ the form exp i(2(~ - 6)T + ~<P + 4>\1)] with 

4>\1) =Re(Zp)) 	 (28) 

At the end we have set p= 1)1 el so that we are essentially In the frame of reference used in (l Jand can 

apply their result that after Integrating over v~D) (Doppler broadening) the term in square brackets Is 
the only one which contributes to the fringes. As In the zeroth approximation It turns out that the 
integrals of the terms in factor of exp i(· .. ) give the fringe envelop, the remaining additive terms 
give the background and the Ramsey fringes have again the form of a bilaterally damped cosine of 

the structure (1). For Ib_112 we have a recoil shift -6 and find an additive phase shift 4>~1) given by 

(28) which depends only on Zp I. The complicated real expressions X! I I do not contribute to the 

fringe shift and will therefore not be written down. For the general perturbation (3) the quantity Z~ 1) 

is thereby given by 

Z(l) = -1"+1>. iNc ~ ~ (JI) (Ja)R R 2"C-/I-/l(_~)I'J)2/'k2h
I '102 O.Nl 	 L L I I II.N, h.N3 \1 I 


'.=Ob=O I a i 


H("+k)TIJ+I{<t(~ _ iT(PI(,(i+k(tG') _ T
1
()lk(,(,}
[ p J1. + M(,I. + 2) AJ:l(JI + 3) 


+H(jJ') Tlb (+ - C ikT ]{ (i ((T +T)JG+/,-h+ 1 _ TJaH-/3 +1)
3 3 AI JG+I,-1a+ 1 

ipl(, ((T + T ' )Jc+/,-b+2 _ T JG+/t-/l+2)}
M(JG + II -13 + 2) 

+H(ji - k) ~ (_1)m(213)(2T +T1)m{<i 	 (29) 
m=O 111 

[(t - ik(2T + T'Ki /MJ ((2T + T)I.+I-m _ (T + T),.+I-III)
Jt+l-m 

+ i(i(ik - i('!)!Ja.-,...ik(2~ + T'Ki /M] ((2T + T t ),.+1- m _ (T + T ' )I.+2-m) 

+ Plk(,(i ((2T+Tt )'.+3-1II_(T+Tt )I.+3-",)}
M Z(/t+3-m) 

-H*(~6 (+(_I)IJ+NC{(+(2T+T')/J+l + (-ipl(2T+TI)"+2}]
PI 13.0 3 I It + 1 I M{JI + 2) 

For notational convenience we have Introduced .IG := .II + -h + .1aand II := JG + II + Il • 

Before discussing this reSUlt, we turn to the output of the second interferometer geometry, The 
lengthy calculation leads to 

Ibl (2T +T' )j2 =e-2T;."-T';"{IBI,42,4:JA412eli.-,,,,T(l + l'III)) + IBI.·hC3B4!2(l + l1 1)) 

+IDIB2C3B412el;/'-i'oIT(I + 1:: 1)) + IDIB2A3A412(1 + 1~(11) 
+[BJ.'42A3A4(DIB2C3B4re2i(~+6IT+~'P(l + iZ~II) + c.t.] + O(eikt>~DJT)} 

(30) 
Based on the same arguments as above, we obtain a shift 

4>~11 = Re(Z~II) 	 (31) 
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of the Ramsey fringes which in this case show a recoil shift +c5. The responsible quantity Zill is 
thereby 

Z(l) = _1"+ R iNG ~ f;:.. (J l ) (h)R R 2JG-I.-ll(_~)fJ.J/-I'k2h
2 ~2 O,N] L-. L-. I l. I ..N. Il.N, A1 I 


, 1 =0'3 =0 I 3 


[H(P+ k) {(t(.\(2T + T')IJ+l _ i(plG-(t + k(tG)(2T + T')fJ.+2 
J.l+ M(/I.+2) 

Plk(j"(.! (2T + T')1J+3} _ H-(p;-:'\ c5 (_l)IJ+NGI"+{.st.,.TIJ+I
M2(lt + 3) "I 1,.0 ~a It + 1 

. (-} 21, (2i )+ 'r/'. TIJ+2 - h"(p+ k) (_I)IJ+Na L (-IY" :J Tnt 
M It+2) m::;O 11/. 

I"+ {(t - ikTG 1M] (T + T')IJ+I-m _ TIJ+I-m)
{ ~I 1'+ 1- m 

+ i(t(.j" k + i(,-PI(:i - ikTG1M] (T + T,),,+2- m TI.+2- m ) (32) 
M(J.l+2-m) 

,Plk(j"(i (T + T'),I+:J-III _ TI,+;J-",)}

M2(J.l+3 m) 


2/3 (21 ) {-h'"(p+ 2k) (_I)/'+Na L (-1)'" ;J 2:Ul -II/(2T + T')nI (t 

,..=0 1H 


Kt - ik(2T + T)(i1M) (2T + T)I'+I-m _ (T + T')IJ+I-m)
It+1-m 

+2i(tGk + i(j"lJlfct - ik(2T + T)(i I·H] (2T + T'),,+2-m 

M(lt+2 - m) 


-(T + Tf)IJ+2-m) _ 2Pl k(,(i (2T + T,),,+:J-m _ (T + T')1J+3-m)}] 
M 2(J.l+3-m) 

Because of the generality of the external influence given by (3), the expressions Z~II and Z~l) seem 
to be clumsy. This is in fact not the case, because they reduce for all practical applications to only a 
very few terms. Examples will be given below. Before doing so we read off some general properties of 
our result (28) and (31): 

It is easy to check that tjJ(l) vanishes if H(I) H(P1, P2)(:t'1 )N. (.t'2)N~. This is physically evident, 
because In this case the two interferometer paths are disturbed in the same way. 

In case the Ramsey fringes discussed above are used as basis of an optical frequency standard, It is 
essential that phase errors leading to a ~'" t= 0 in eqn. (1) of the excitation can be compensated by 
laser beam reversal. For a discussion see ref. (41. Above we have treated the influence of disturbances 
with potentials of the type (3). This leads to the corresponding question if the disturbances too leading 
to <p( I) t= 0 In eqn. (1) can be compensated by reversal of laser or matter beams. Due to the symmetry 
of the experimental setup the effect of thiS procedure In the disturbed case can easily be deduced 
from (29) and (32) by inverting the sign of Pt' or k for atom beam reversal or laser beam reversal, 

respectively. For matter beam reversal it results In Z: 11 in a factor (-1 )NI and the replacement 

H(ft + uk) - H( -j) + uk). For the special case of constant h only the factor (_I)N, in <p~I) 
remains, so that for odd NI beam reversal allows an elimination of the disturbance tjJ~ II while this is 
'not possible for even XI. For laser beam reversal on the other hand zll' pics up a factor ( -1) N3 and 

h(j';+nk) has to be replaced by H(ir- nk). For constant Honly the factor ( -1 )N3 for cp~ 11 remains. 
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The disturbances tjJ~ II can accordingly be eliminated for .IVa odd and not be eliminated for Na even. 

This shows that if both NI and Na are even and h is constant, the shifts ~! I) do not alter Sign if the 
laser or matter beam directions are changed so that there is no way to eliminate these unwanted shifts 
by any type of beam reversal. 

In the context of matter wave Interferometry a well known strategy to obtain optimal experimental 
results is to use as low atomic velocities as possible. This is also favourable In the context of frequency 
standards, because the uncertainty to realize the line center of the fringes decreases with decreasing 
atomic velocity VI (comp. eqn. (1». It is therefore Important to discuss how the additional shift tjJ(l1 

depends on the atomiC velocity. 
For a general perturbation (3) one cannot say much because of the arbitrary dependence of Hon 

p, but if we assume that H is independent of PI one can read off in setting PI =M VI that the terms 

in zt 1
) are proportional to v~(JG-IJ+IJ+l+{;). In varying i l and h one sees that the lowest possible 

value of the exponent Is -( JI + h + N3 + 1) and the highest possible value is -( J2 + J3 + 1 + (3"). 
Both are smaller than zero so that the phase shifts (28) and (31) are increasing with decreasing velocity 
VI. By explicit calculation we have checked the special case of rotation (see below), where h does 

depend on p. and have found the corresponding dependence <p~ II '" l/vi' These results regarding 

the velocity dependence of the shifts ¢~ I) have two different consequences: Cooling to low atomiC 
velocity is favourable In case the experimental setup serves as an atomic beam interferometer by 
which very particular physical influences on matter waves are detected. But cooling needs particular 

attention If the arrangement serves as a frequency standard and the cp~ I, represent unintended phase 
errors which are to be avoided experimentally. 

5 Comparison with a WKB phase shift 

The disturbing Hamiltonian HI I, of (3) is characterized by not affecting the Internal degrees of 
freedom of the atoms. In our approximation it is in addition assumed that there is no Influence of 
the disturbance In the interaction zones of the matter beams with the laser fields (I.e. 'inside' the 
beam splitters). This leads to the conjecture that the resulting phase shifts cp~ l) obtained above should 
somehow show similarities with the phase shifts obtained In matter wave Interferometers with the 
same Interaction geometry as in fig. 3, where the beam splitters described above have been replaced by 
purely 'optical' mirrors and splitters. By 'optical' we Indicate that the internal states of the quantum 
objects in the matter wave are not Involved in the respective scattering process. Essentially only the 
momentum of the matter beam Is changed, compare for example neutron Interferometry. Note that 
this Is physically a different Interferometer type. It is therefore not to be expected that the phase shifts 
(28) and (31) or even the complete Interference pattern as described by (27) and (30) will agree with the 
respective WKB result exactly. The results above have been obtained in first order In the perturbation 
H(l) and in arbitrary order in n. It is nevertheless useful to ask if for particular disturbances Hll) 

and In certain limits the shifts cp~ II of the Ramsey fringes agree with the phase shifts obtained in a 
WKB approach for the corresponding interferometers with 'optical' beam splitters. Because the WKB 
calculation is mathematically simple, this will then for all practical purposes allow a quick insight 
Into the phYSical structure of the phase shifts <p~ I, to be expected for certain physical Influences HI 1). 

The outcome of the different types of atomiC interferometers can easily be compared. For neutron 
Interferometry a speCific correction of the WKB phase is caused by spin terms, see Audretsch and 
Lammerzahl (141. 
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To obtain this WKB phase shift In question we use the steepest descent approximation of path 
Integral formalism. It is equivalent to the usual WKB method and leads to the result that the phase 
shift Is given by I L dt, where L Is the Lagrangian and the integration is done over a classical path. If 
(aLIat) = 0 the energy E is conserved and we get I L cit = I( - E + j;. ;hdf = I ji. dx. Here fi is 
the canonical momentum. A Hamiltonian of the form 

H =L 
~ 

+ HII), H(J) = H(jJ)(:r\ ).'VI(.1,'2)N2(:t'a)N3 (33)
2M 

with HI I) small can be deduced, in first order in HI \ " from the Lagrangian 

1 :..J. ., N '" "2Mx - H(Mx)(x.)N'(.1,'2) 2(·1,'a)" (34) 

Working out the WKB phase shifts for the two corresponding interferometer geometries shown in fig. 
3, we obtain for the lower paths related to the output Ib_ 112 

(\) f - - p~~ k~ { • - .. T,!\'I+.V1 +1 • TN3 
<PWKBI = p. dx = M/ 1+ 3/).'V2'0 - H(p + k) lVl + iVa + 1 - H(P) N\+T' 

( T +T/)NI+I _ TN,+t) _ H(11- k) ~ (_I)Nl-111 (2T +T)m (N3). (35)
L NI + Na + 1- m m 
m=O 

[( 2T +T')NI+Nl+l-m _ (T +T,)NI+S3+ 1-",] + H(Jr /), (2T +T)N,+I }
"I ;\'3<0 N. + 1 

This is to be compared with ¢\I) of (28). For the upper paths corresponding to we find 

{I) p~k;\'; {... - (2T +T')NI+N1+1. TN,+!, .. 
<PWKO, = M 1+1 1lJN,.0 - H(]) + k) NI + Na + 1 + H(jJ) li N3 .ON;""+! + H(l} + k)· 

N1 (1)1rIT"'
,,- ("'3)[(T+T/),vI+Nl+l-m _T'Y1 +.Y1 +1-1II] +H(11+2k),
L NI + N. + 1 - m '" 

m=O 

~ (-1 )m(2T +T)'" (NJ)2Nl-m [(2T + T'),vI+Nl+t-m _ (T +T/)NI+N3+I-m)} 
L NI + /Va + 1 - m '" 
m::O 

(36) 

and compare it with ~t) of (31). The results depend on the different powers Ni of the coordinates Xi 

In the Hamiltonian HI t) (comp. (3»: 
(I) If N2 =F 0, a comparison with the WKB scheme Is impossible, because the respective WKB paths 

are restricted to the plane ;1:2 =0 where H(I) =n. Accordingly we have qA~~o =0, 
(1) If HI II does not depend on .('2 (Le, (N2 =0) we find, regardless if HI t) depends on P'l or 

not, that the terms in the sums in Z!1I with II = ./1 and I:J = h lead exactly to <Pt~'t.;8' The other 

terms are of higher order in nas can be seen by reintroducing nin Z: 1) in replacing each T. T' by 
Tin, T'11i. Accordingly we have for'v2 0 always at least an agreement to lowest order in fl, 

N2 =0 => <D~I)(to lowest order in Ti.) = 4>~~~mi (37) 

(iii) The agreement between ¢I II and ot~~m is even exact for particular combinations and if the 
exponents Nt, N2• N3 in HI I) are small. This is the case for !VI + N2 + N3 $ 3 and also for 
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(N" N2, Na) E {(1, 2,1), (3,0,1), (1,0,3)} for arbitrary Hdue to the fact that aU corrections in 

Z!l) are then purely imaginary. The phase shifts agree also exactly for Nt + N2 + Na :5 4 If Hdoes 
not depend on Pa. 

(Iv) On the other hand, if the conditions above are not fulfilled, there may in general be large 

differences between the full d>~ t ) and <P~~Bi' For example Nt = N2 =0, N1 = 5 or 6 and Hconstant 
is such a case. 

6 Applications 

Examples for an application of our results are acceleration or rotation of the Ramsey geometry and 
the influence of spacetime curvature. We have for acceleration ii 

H(l) = Jlii ..r (38) 

and for rotation Wrol of the reference frame 

Hill = -Wrot • (.i x (if  q.4)) (39) 

In a rotating frame a nonvanishing vector potential .4 of an external field leads to an additional term 
In HI I) if the quantum objects In the matter beam have a charge (J, as would be the case for ions. 

For the spacetime curvature given by the Riemann tensor R''''fJtf we find 

H(I) = AI t ROIO"'XI1'm (40) 
2 l.m::1 

We have used here the conventions of ref. [161. The components of the curvature tensor are taken 
on the worldline of the observer with respect to his Fermi-tetrad. for details see [171 and references 
therein. 

The fact that for q =F 0 a rotation gives an additional coupling between ions and the laser fields in 
the beam splitters needs particular conSiderations. Taking for example.4 = Eo sin(wf ± k.1,'a +9)/w, 
we have to investigate how the inhomogeneities (12) are affected, Evaluating 1b we get 

f dap' b~) < b, fi ± klHI IIIP. b >= iWrol ' (j) x Vp)b!~) 
+!l.(W X E ) . ! [ieiIIJI+..p)V _ _bIO) _ - ie-i(IJ,+..pIV _bIO'_] 

(41) 
IJ rot 0 2 p±k jiH ;;:r.k ;;:r.k 

Since the second part is proportional to the laser field and therefore proportional to the Rabl frequency, 
it tends to infinity if we would formally take nab - 00 as we have done in chapt. 3 to approximate 
the beam splitters. Nevertheless the procedure above remains justified also for charged matter beams: 

Due to the fact that only b~: are not zero to lowest order, the coupling between the modes in (41) 

causes nonvanishlng corrections only for b~l) and b~i, As the relevant quantity is the output of the 
interferometer which is proportional to 

l21< bll/J > 12 =L Ibn :::::: L Ib~O)12 + (b~O)b~ll. + c.c.) • (42) 

we see that these corrections do not contribute to first order in HI II, The same argument holds for 
the a-modes so that the additional fringe shift for q =F 0 is entirely of higher order in HI I). 
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By Inserting these Hamiltonians into (29) and (32) we find with (28) and (31) the phase shifts 

tiN' = cf>~1) = -kit T{T + T) 	 (43) 

for acceleration (li = ae:,) and 

(I) (I) 2 T 
<PI 	 = <P2 = MWrol1)lk T(T + ) (44) 

for rotation (Wrol = Wrole2) and vanishing charge q. For curvature one has a different phase shift for 
the two Interferometer geometries: 

A.(l) = __I_R010J kp T(2T2 + 3rT + (T)2) __1_J?OOo3 k2T2(2T + 3T) (45)
0/1 2.H I 	 6AI 

and 

~l) = __I_RoW3 kp1T(2T2 + 3TT' + (T)2) __I_ ROJO;) k2T(4T2 + 6TT' + 3(T)2) (46)
2jl 	 6AI 

Le. <14.1) Is more than twice as big as <p~1} for no:J03 =f:: 0 = nOlO:). An experimental method to 

detect for example f/J~1) only has been described by Sterr et al. (15). The two shifts (43) and (44) are 
in agreement with the results in ref. (12) and with the usual terms found by a WKB approximation 
(comp. ref. (10)) If one sets T = DIu, T = d/v where D is the spatial distances between the 1st 
and 2nd laser beams, d the distance between the 2nd and 3rd beam, and L' is the mean velocity of the 
atom beam. A more detailed discussion which will be given in ref. /17) shows that, while rotation 
and acceleration phase shifts have already been experimentally verified (6, 8, 181, the influence of 
spacetime curvature on the shift of the Ramsey fringes should be big enough to be measured in future 
experiments. 

7 	 Conclusions 

We have calculated the shift of the Ramsey fringes caused by a perturbational Hamiltonian HI I) which 
does not affect the internal degrees of freedom of the matter field to first order in HI I'. The result is 
compared with the phase shift calculated in a WKB approach and agrees with It, If the dependence 
of HI I) on the position operators, which is assumed to be polynomial, is not too strong, i.e. if the 

degree of the polynomial does not exceed 3. There are counterexamples for general agreement. 
Several applications of the experimental setup are discussed. In connection with frequency stan

dards based on the Ramsey fringes our result allows to deCide which classes of unwanted disturbances 
can be eliminated by laser or atomic beam reversal. In the case the setup is used as an atom interfer
ometer we have discussed the general behaviour of fringe shifts for COOling of the atoms. We have 
applied our result to rotation, acceleration and spacetime curvature. 
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