
--------------

=r 

-:::r
!!!!i!! :::r 
~-~ 15liliiii ... :::r_o1--0 

~ fity Group • IKonstanz university) ~ '\_0 )ryofGravity Quantum Theory V\ 

=F:~~'" 
~ ~ ,.......... r--+-r- '-./ -

~ 

J\l/\ 
'V 'V 

~ 

f\ 

Preprint KONS-RGKU-92-01 

Matter Wave Interferometry and wh!y j: " 

Quantum Objects are Fundamentalf .. I 

for Establishing a Gravitational The~t (~ 

Jiirgen Audretsch*, Friedrich W. Hehl<>, and Claus Lammerzahl* 

* Department of Physics, University of Constance, D(W)-77S0 
Konstanz, Germany (e-mail: claus@spock.physik.uni-konstanz.de) 

and 

<> Institute for Theoretical Physics, University of Cologne, D(W)-SOOO Koln 41, 
Germany (e~.hehl@thp.uni-koeln.de),-". 

k ,S ' ---..

/, , i':: 1 t fP ! ~.... - ........ ­
.:~ 1 : ill 1 -:----~.- ---­

J c) i f i , A ' t .-'-~ 
. 0 ,~."-:.__ ' j , f ,t i l ~ , '._ 7 
!;..... ~ • ......""-- Lt. ~ i, . 
t , ' " ~~·~.~""t ~ I • ~ ~ 
! i pI' ''::"'- ...",;... i"i i f· : J ' ,1.: ........; , 

. ~ ,; l ,¥ i:';' ' ­

~.; I { l ~ l · : / ~: 
I .' I i {t I i 

1 

f J I .:'; I ~.I 

'} f i l'! I;' 
l 

~{ i ;
"':l,~!...... ~ ....... ,~_.... ! :" , 


t) To be published in: J. Ehlers, G. Schafer (eds.): Proceeding:':ith~ijatl Hon~ef School 
on Gravitation, Lecture Notes in Physics, Springer-Verlag. 

*) Supported by the Deutsche Forschungsgemeinschaft and the Commission of the Euro­
pean Community DG XII. 

<» Supported by the German-Israeli Foundation for Scientific Research and Development 
(GIF), Jerusalem and Munich. 

mailto:hehl@thp.uni-koeln.de
mailto:claus@spock.physik.uni-konstanz.de


Abstract 

More recently, a ntullber of interferoilletric experilnents with electrons, neutrons, 
and at0111S have been perforIlled in the gravitational field of the earth and in non­
inertial franles of reference. In atoillic interferonletry, additional high-precision exper­
iments are expected to be clone in the near future. The results obtained with electrons, 
neutrons, and atonls~ respectively~ can be understood by 111eans of the Schrodinger 
or, in the polarized case. by lueans of the Pauli equation, both of which are coupled 
to the external gravito-incrtial field. Based on the characteristic features read off 
from these experilllents, one can set up a constructive axioluatic approach for estab­
lishing an appropriate spacetilue geoluetry and can, independently, develop a gauge 
theoretical fOrIl1alislU for gravity. Both constructions luake the Rielnann-Cartan ge­
ometry of spacetiIne Inanifest. This geoilletry carries tOTsion as well as curvature. 

The Rielnannian geolnetry of Einstein's gravitational theory can be recovered as a 
linliting case for the nl0tion of classical point particles and light rays. We put the 
Dirac equation, fonnulated in a non-inertial fraille of reference, into an arbitrary 
gravitational field represented by the spacetiIne geolnetry obtained. We compute the 
consequences for interferoluetric experiInents and provide thereby a theoretical basis 
for future experiInents. 
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1. Introduction 

In these lectures we want to illustrate and to support the following thesis: Quan­
tun1 objects are fundan1ental for the establislullent of the structure of spacetiIlle and 
thereby, also, for the theory of gravity. 

To do so, we start our reasoning by drawing attention to the experiIllental foun­
dations of the interaction between quanttllU objects and gravity. Today, matter wave 
interferolnetry with electrons, neutrons, and atolllS provides an ever increasing num­
ber of experiments in which the influence of gravity and inertia on quantum objects 
can be studied in a very direct and precise way. A shllple description of these funda­
mental experiments Illakes use of the Pauli equation in a hOillogeneous gravitational 
field and in a non-inertial fralue of reference. There is presently still a big gap between 
this experi111entallevel on the one hand side and the theoretical level at which gravity 
is quantized on the other hand side. But if one restricts oneself to classical gravity, 
it is possible to read off frolu the experiluental results sonle characteristic traits on 
which a theory of the structure of classical spacetiIlle can be founded. 

Matter wave interferoIlletry convincingly deluonstrates the hllportance of gravity 
and inertia in the quantun1 dOluain. Accordingly, we need a corresponding theory 
which, however, presupposes a fraillework for the spacetiIne structure in the quantuln 
don1ain. How can it be established? We know fronl the corresponding situation 
in classical physics that it would be unsatisfactory to put the postulate I.S pacetiIue 
obeys a Rien1annian geoinetry' at the outset of a theory of spacetiIue. What we rather 
need is a physically conclusive reasoning which will event.ually lead to a stateillent 
of this type. For classical physics, there have been Inany efforts to establish such 
a statement as a result of basic postulates related to the equivalence principle for 
classical matter fields or, in the constructive axioillatic approach, to the behavior 
of point particles and light rays. In experiIllents point particles and light rays are 
typically realized by satellites and radar signals and, conversely, they characterize the 
domain of application of this approach. It. is evident that, for instance, the interior 
of the hydrogen atonl including its nucleus cannot be explored in this way. On the 
other hand, to refer for the quantun1 dOluain once nlore to the postulate cited above, 
would be as unsatisfactory as it has already been in the classical dOillain. Instead, we 
have to take into account quantunl Iuechanical experience right fronl the beginning. 
This is what we are going to do. 

A further reason for this procedure is the following: There is a hierarchy within 
the theories of matter. Quantun1 physics is Iuore fUl1daIuel1tal than classical physics. 
The latter is contained in the fOrIner as a lhlliting case. Matter, classically described, 
such as satellites, stones~ and other candidates for point particles. is COillposed of 
quarks, leptons. and their gauge bosons. The gravitational and inertial behavior of 
the cOl1lplex objects should be a consequence of the behavior of the nlore elelnentary 
objects. It is therefore reasonable. if 110t cOlupelling. to relate a theory of the structure 
of spacetiIne to the luore fundaluelltal theoretical fraluework of quantUl1l 111echal1ics, 
which llleans, by the salue token. to base it on the nlore priinitive objects, nainely 
on the elenlentary particles. And this even Illore so, because the influence of gravity 
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on classically described nlatter can be derived. as a liIniting case~ fronl the nlore 
fundamental quantuln approach. 

This is not to be confused with the fact that quanhlln Inechanical experiInents 
are performed using classical 111easuring devices. For a quantunl based constructive 
axiomatics, for exanlple, only enlpirical facts will be used which can be read off in a 
geolnetry-free way. 

Finally we Inention still another reason for relying on quanhun objects as priIn­
itive objects when exploring the structure of space-tiIne: quantunl objects, as COln­
pared to classical point particles and light rays, are the deeper searching probes. The 
interference experhnents delnonstrate that ll1assive fields with spin couple to gravito­
inertial fields in accordance with the strong equivalence principle. The experimental 
results depend on the paralneters nlass and spin. Based on this richer structure of 
the prinlitive objects, additional physical structures can be geonletrized yielding nlore 
specific statell1ents on spacetinle geolnetry. For exalnple, the torsion of spacetinle can 
be "sensed" if spacethne is explored by particles carrying spin. This luakes it iIn­
plausible to restrict gravitational theory to the torsion-free Einstein theory fronl the 
outset without giving a physical justification for this restriction of vanishing torsion. 
Only after having established a theory of spacethlle with torsion, one can try to look 
for experinlents which Inay show that torsion is negligibly slnall in certain dOlnains. 

Guided by these heuristic considerations and founded on an empirical basis, the 
following two different procedures for establishing the geolnetrical structure of space­
time seenl to be natural: (i) The gauge approach to gravity which represents the 
generic gravitational theory for quanhun Inechanical Inatter fields and which incor­
porates the equivalence principle in an essential way. Following Einstein, the structure 
and for111 of the gravitational potentials are read off in flat spacethne fronl the iner­
tial forces arising in non-inertial franles. Following Cal-tan (1986), in a second step, 
arbitrary non-inertial reference franles are identified with a field of orthononnal (an­
holononlic) tetrads. (ii) The constructive axionlatics, as an alternative approach, does 
not refer to special relativity. Inst.ead~ nearly all elenlents of spacethne geonletry are 
built up by refonnulating as postulates experience largely gained frOll1 Inatter wave in­
terferometry. Both approaches independently result in a Riemann-Carlan spacetiIne, 
carrying torsion as well as cU1l,atu1~e, thus validating the thesis stated above. 

The article is organized as follows: As experiInental background, in Sect.2, luatter 
wave interferolneiry is described with reference to the Pauli equation which is coupled 
to an external Newtonian gravitational field. In Sect.3, the fundalnental physical 
consequences are pointed out. Based on this, in Sect.4, the constructive axiolnatic 
approach and, in Sect.5, the gauge approach are concisely presented. Finally, in 
Sect.6, starting fronl the spacetill1e structure established, an approxilnation schenle 
is given for the description of interferellce experiInents in gravitational and inertial 
fields. It can be used when searching for new 111easurable effects. 

Acknowledgments: We are grateful to the W.&E.Heraeus-Stiftullg and to Dr. Gerhard 
Schafer for the invitation to present lectures at the Bad Honnef School on Gravitation. 
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For his conscientious reading of SOllIe parts of the Inanuscript~ we would like to thank 
Prof. J. Derlllott McCrea (Dublin); we also thank hilu for his peflllission to use SOllIe 
of his unpublished work [McCrea (1989)]. We also thank Dr. Olivier Carnal and Prof. 
Jiirgen Mlynek (Konstanz) for helpful discussions and Prof. U. BOllse (Dortmund) 
and Dr. F. Hasselbach (Tiibingen) for providing pictures of their apparatuses. 

2. Experimental background 

2.1. Interferometers 

Interferolnetry belongs to the fundaluental experituents in physics. By Ineans of 
interferolnetry one can study the structure of the interferring light and Inatter waves 
as well as the type of interactions of these waves with external fields. 

Interferoluetry of light waves has been known for quite sonle titne. It can be 
described by Ineans of the eikonal approxituation of the Maxwell equations. Interfer­
olnetry of luatter waves can be understood only if one takes into account the quantuln 
theory of Inat tel' (at least within a certain approxiluation). Therefore nlatter wave 
interferoluetry provides a tool for testing sonle principles of quantulu theory as well 
as the influence of external fields on quantullI 111atter. 

Up to now there are three types of nlatter waves at our disposal(1) for which 
interference had been observed and which can be used to study the interaction with 
external fields. These are electrons, neutrons, and atolllS. The corresponding inter­
ferolneters are 1l10Stly of the Mach-Zehnder type, that is, there are spatially sepa­
rated Inatter bealns as~ for instance, in the Bonse and Hart (1965) perfect crystal 
interferolneter. Other types of interferoll1etric setups are also possible, such as the 
atolnic fountain setup of Kasevich and Chu (1991). Furthernlore, by llleans of exciting 
trapped atonls~ one can do interferolnetry of atolllS which rerllain at the saIne place. 

Electrons and neutrons are Inost conveniently described by Ineans of the Pauli 
or the Dirac equation. AtOlllS are, of course, Inore cOlllplex objects and should be 
described in an n-particle approach. In SOlne approxiluation, this yields a Pauli­
type equation with Inagnetic and electric dipole nlonlents or its respective relativistic 
version. This represents a center-of-luass Inotion with additional degrees of freedom. 
In the following we will restrict the external forces to gravitational and inertial forces, 
that is, we study the influence of the spacetirlle geoluetry on quantuln nlatter. 

ElectTons are the first Inatter waves proper interferolnetry has been done with. 
Today charged particle interferoilletry is still based on electrons. 

The advantages of ncutTon inte1je1'ometry cOllsist in the sitllplicity and the 111acro­
scopic dhnensions of the interferolneter. The cOluparatively large separation of the 
neutron bealns provide a device to study quantulll 111echanics in 11lacroscopic diInen­
Slons. 

(1) As the earliest Inatter wave ;.illterferolueter', sensitive to an external gravitational 
field, one 111ay consider the KO KO-lneson systelu as described by Good (1961). 
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Figure 1. a) The triple bipl'ism interferometer, b) the electron optical set up, c) the 
path of the electron beams [taken from Hasselbach and Nicklaus (1988)]. 

In conlparison to neutron interferoluetry, atomic beam interferometry provides 
several advantages: (i) By lueans of laser cooling and trapping, atoluic bealns can 
be prepared with very low velocites, (ii) atolus have a larger nlass and hence smaller 
deBroglie wavelengths [this together with (i) yields for a large class of interference 
experiments an increased accuracy], (iii) there are luuch nl0re possibilitites to lua­
nipulate atomic beanls because of their internal degrees of freedom, (iv) sources of 
atomic beMUS are nUlch easier to handle~ and (v) because of the internal degrees of 
freedom there are additional effects which luay possibly be tested with atonl beam 
interferometry based on new types of interferolueter experilnents. However, because 
of the low velocities of the atolns~ the experhnents are not well suited for testing 
relativistic effects. 

2.1.1. Electron 

Interference of electrons has first been observed by Marton et al. (1953) by 
using crystal plates as beanl splitters where the electrons undergo Bragg scattering. 
An effective type of electron interferolueter was built by Mollenstedt and co-workers 
(1954, 1961) using a triple biprisnl (see Fig.I). They achieved a bean1 splitting of 
about 100 JLm and a path length of about 10 em. The electrons had an energy of 1 
keY and hence a velocity of about 'U ~ 0.06 c, where c is the velocity of light. 

Also a double-slit interferolueter for electrons has been built by Mollenstedt and 
Jonsson (1959). 
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Figure 2. The single crystal interferometer for neutrollS of Bonse and Hart (1965). 
The incoming neutron beam is spit at the first slab. The second slab serves as mirror 
and at the third slab the beam is recombined. The intensity of the interfering beams 
can be read off from the counters 01 and 02. E> is the Bragg angle. 03 is a reference 
counter. 

2.1.2. Neutron 

The neutron interferol11eter designed by R.auch, Treilller~ and Bonse (1974) is, 
because of its conceptual Silllplicity, a very successful interferol11eter for quantunl 
luatter waves. It delllonstrates the wave aspect of luatter on luacroscopic scales. 

The interferolueter consists of a silicon single crystal (see Fig.2). Three slabs 
are cut frOlU the crystal. The first two slabs serve as bealn splitter and lnirror, 
respectively, whereas the last one recolubines the two beal11S such that the infofluation 
related to the interference is coded onto the beanls leaving the third slab of the 
interferol11eter. By l11eans of this set-up, one does not observe any interference pattern 
directly as, for instance. in the case of a double slit experilnent with light where the 
interference fringes are displayed on sonle screen. Instead, this neutron interferolneter 
set-up is designed for observing phase shifts induced by varying external parailleters, 
like the orientation in the gravitational field or the strength of sonle nlagnetic field 
influencing one of the neutron bealns. 

Neutron waves entering the crystal undergo Bragg scattering at the atoluic planes. 
Within the crystal the neut.ron beanls propagate perpendicular to the crystal face. 
When leaving the crystal they split into a forward and a backward beanl. (2) The 
height and the length of the interferOll1eter are of the order of 10 ern. This nleans that 

(2) Actually, the propagation within the crystal is 1110re cOluplicated because there 
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one can do quantun1 luechanics on a 111acroscopic scale. The l1latter waves used are 
thermal neutrons with a wavelength of about 0.1 J.L1n, which is equivalent to a velocity 
of about 2000 m/s. The coherence length of such a neutron is about 30 J.Lm, whereas 
the extension of the wave packet is of the order of 1 C1n. 

A double slit set-up for neutron interferoll1etry has been built by Klein et ale 
(1981) to confirll1 the Fizeau effect for neutrons. 

2.1.3. Atom 

Today there are five types of atoluic bean1 interferoilleters working around the 
world. 

(i) 	The first one, based on a double slit as luechanical bean1 splitter, was build by 
Carnal and Mlynek (1991) [see also Carnal (1992)]. The slit width is 1 J.Lm and 
the two slits are 8 J.L71t apart. The length of the path is about 111t (see Figs.3 and 
4). Heliun1 aton1S are used with a velocity of 500 1n/s. 

A c 
N EE 

I 

l 
I 

y 	 I. " L 	 L' 

Figure 3. Schematic representation of the atomic beam interferometer of Carnal and 
Mlynek (1991). N: nozzle system and gas reservoir; EE electron impact excitation; A: 
entrance slit; B: double slit; C: detector screen: SEM: secondary electron multiplier. 
d=8 pffl,L=L'=G4cffl,Sl =2 p.m..s2=1 p.m.. 

(ii) 	 Keith et ale (1991) took a grating as 111echanical bean1 splitter with about the 
same geoluetric diIuensions as the double slit. 

(iii) Riehle 	et ale (1991) used a totally different device as bean1 splitter: As pointed 
out by Borde (1989L one can use four travelling laser waves for transluitting to 

are two slightly different propagation directions which, by interference, yield the so­
called 'pendellosung'. Hence four bean1s leave one slab leading to eight possible paths 
within the interferolueter. which all interfere at the last slab. Since the phase shifts 
as, for exan1ple, those induced hy gravito-inertial effects, depend on the geoluetry of 
the paths, it influences the interpretation of the 111easuring data. This problen1 is still 
under investigation, see Horne (1986) and Werner and Kaiser (1990). 
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Figure 4. Experimental setup of the Carnal-Mlynek (1991) interferometer. EC: 

expansion chamber (N nozzle system, SK skimmer orifice); EI: electron impact exci­

tation area; CH chopper (velocity selector); EX: experimental chamber (insertion of 

double slit, etc.): SEM: secondary electron multiplier. 


the atonlS well defined 11lOlllenta. By resonant absorption and eluission processes, 
energy and 1110111enttull is exchanged between atolllS and photons (see Fig.5). A 
wave packet with nl0111entluu p and internal state la > is put at the splitter 1 
into a superposition of states la, Po > and Ib, p+ 6.p > by the 11lOluentunl transfer 

<JIll
10.2>/Ilb,m.> 

/."", I 

Ib.1 > 
I a.ma > 

Figure 5. Beam split ­
ting of an atomic beam 
by means of optical 
Ramsey excitation us­
ing four travelling laser 
fields. In the first (left) 
interaction zone the 
atomic matter wave is1 coherently split. The 
second and third inter­
action zones act as mir­

I b.-1 > I rors. In the last zone 
the beams recombilleI--- 0 ---1---- d -----...-.- 0 ----l and interfere with one 
another [Borde (1989)1. 
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~p 	= nk from the laser wave. After shnilar laser induced transitions Ib,p + 
~p 	>~ la,p > and la,p >~ Ib,p - ~p > in points 2 and 3, the two 
atomic waves interfere at point 4 after interaction with a fourth laser beam. 
(A second possiblity is represented by the dashed lines in Fig.5. This optical 
beam splitter allows coherent separation and recolubinatiol1 of atomic beams. 
In the realisation of Riehle et al., Calcilllu atonlS are used with a velocity of 
about 700 m/8 and a nl011lentlull transfer of about 2 x 10-28 kg 1n/8 correspond­
ing to a deflection angle of 22 J.Lrad. 
Note that because of the sll1all beanl separation it is not possible to put anything 
between the paths. However, because the position of the atolll for the transitions 
between the internal states is not relevant, this configuration provides a high 
atomic beam flux. 
The sanle type of interferollleter, but using Magnesiunl atonls, has recently been 
built by Ertiller (1991). 

(iv) Kasevich and Chu (1991) used Ra­
man transitions of Sodhlll1 atonlS 
to transillit a well defined nl0111en­
tum from the laser light to the z 
atolllS. They used laser cooled 

atoms with a tenlperature of 30 

J.LK, which is equivalent to a veloci­


li 
ty of 18 ern)8. They have done this 

for two configurations: the Mach­

Zehnder and the atolnic fouutain 


/ 
/

configuration. Whereas in the 
I 

IIMach-Zehnder configuration the 
//atom beallls are spatially separa­

/ 

Ited, the atonlS l110ve ill one direc­
= 0 1tion only in the fountain config­

uration (see Fig.G). They absorb 
-fand eillit nlOluenta fronl the laser 


light in the direction of nl0tion in 

such a way that, before recoillbi­


Figure 6. Space-time diagram of an 
nation, half of the at.onlS in the 	 atomic beam interferometer using an 

atomic fountain. Solid lines: statebeam is travelling faster than the 	 II,p>. Dashed lines: state 12,p+6p>. 

other half. 

(v) 	The most recent atoillic beanl interferolueter was built by Shhllizu, Shhuizu, and 
Takuma (1992). They use ultra-cold 183 111etastable Neoll atonlS the trajectories 
of which are detenllined only by the inital velocity of the atonlS and by the 
gravitational acceleration (see Fig. 7). 

Other beanl splitters and luirrors for atolllic bealus are under construction: Ex­
amples are bean1 splitters based on the Kapitza-Dirac effect [Kapitza and Dirac 
(1933)], on Bragg scattering of atolllS fro In standing light waves [Martin et al. (1988)], 
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on the Stern-Gerlach effect [Miniatura at ai. (1991)], or using the concept of velocity­
tuned resonances [Glasgow et ai. (1991)]. 

2.2. Gravito-inertial experiments and their simple theoretical description 

In this section we describe the outcolue of the interference experiInents with the 
help of the siInplest theory, that is, by lueans of the Pauli equation in a rotating 
and linearly accelerating fralue under the influence of Newtonian gravitation. The 
measurability of the corresponding effects has been discussed for atomic beam inter­
ferolneters by Clauser (1988) and Audretsch and Lanullerzahl (1992). 

2.2.1. General formula for the phase shift 

We use the Pauli equation as field equation for describing the propagation of 
111atter waves with spin 1/2 in an external constant gravitational field Ii: 

(2.2.1) 

Here we distinguish between the inertial nlass 1ni and the gravitationalluass mg. 

We transfonu to a fralue with constant rotation wand linear accceleration ii. Then, 
to first order in wand ii, we find 

'Ii a II. [ 71,2 A -- (.... 'Ii" h -) (-- -) ....J../.'t ~-'o/ = ---u +W· ',. X 't Lv + -0 - 1ngg - mia . r 0/, (2.2.2)at 2111.i 2 

where a represents the Pauli luatrices. 

The phase shift for a luatter wave interference experiIuellt can be calculated in the 
the selui-classical WKB approxhuation: 4' = <pexp (k,¢), with V<p rv 0 and VV¢ rv O. 
Substitution of this ansatz into (2.2.2) yields 

(2.2.3) 

with L := r x p denoting angular nloluelltlUll, § spin angular nlonlentulu, and E := 

-at ¢ and p:= - V ¢ energy and nloluenttuu, respectively. We choose r = 0 at the 
beanl splitter. 

An interference experiIuent nlust be done under quasi-stationary conditions, oth­
erwise the interference fringes luay wash out. For the theoretical description, however, 
we assume strict stationarity. Nevertheless, the results obtained luay be used in or­
der to describe adiabatic changes of paralueters. In the calculation we take E to 
be constant. Now we solve (2.2.3) with respect to p and have, to first order in the 
interactions, 

p= (2.2.4) 
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Optical I 598nm 2Po
2 

fiber with Ekiu := , Eint := W . (r x+Laser rt1i 

po) + (111g9 - 11lia) . r, and Po be­
ing the nlodulus of the lnonlentum 

Lens· of the lnatter wave at the position 
of the bealn splitter.Vacuum 


enclosure 
 Then the resulting phase shift 
---+­ <r---- in an interference experhnent with 

840nm1s5 Ne* 
Laser synunetric paths is given by 

l1S' Ne' O</J = ~ f p. di 

Double (2.2.5 ) = -~ f Eint dt .slit 

where dt has to be calculated from 
the classical path and the group ve­MCP 
locity of the wave packet as deter­

Fluorescent 

plate lnined by the plane wave solutions. 


Herewith we obtain the well-knownFigure 7. Experimental setup of the Shimizu et 

ale (1992) interferometer. After being trapped, fonnula [see Heer (1961), Overhau­

the atoms fall freely through the double slit. 
 ser and Colella (1974), Page (1975),The experiment is done for different positions 

(heights) of the screen (fluorescent plate). Anandan (1977)] 


1ni
f:A-, 1 f[- (- -) ( - -) -Jd 1 (111gg -11lia )A ­
U\f' = h W· r x Po + 'I11gg - 1nia . r -t = h 'Vo + 2-We A­

, , ~ V' 

grav.& accel.effect Sagnac type effect 
(2.2.6) 

where A is the interferolneter area. Note as characteristic results that even for rt1i = 
mg the mass paranleters do not drop out and that 9 and ahave an equivalent influence. 

The interaction energy w. § of (2.2.3) can only be observed if for one path a 
spin flip is hnposed after splitting and before recolubinatioll of the two bealns, see 
Mashhoon (1988). 

Effects of tidal forces, that is space variations of the eath's gravitational field 9, 
seem to be too slnall to be detectable in the laboratory by present-day interferolneters. 
Some detailed derivations are given in Sect.6. 

2.2.2. Effect of acceleration & gravity 

Using the neutron interferolneter, the effect of the earth's gravitational field [eq. 
(2.2.6) for a=w= 0] has been lueasured by Colella, Overhauser, and Werner (1975). 
This is usually called the COW-experilnent. Bonse and Wroblewski (1983) have 
obained exactly the saIne interference pattern in a reference fralne accelerated with 

12 



ii = 9 [for w = 0 and no influence of gravity] (see Fig.B). Assuming the equality 

of inertial and gravitational nlass~ 111i = 1ng , this experiIllent proves the complete 

equivalence of acceleration and gravity as reflected in (2.2.4). Nevertheless, the effect 

remains mass dependent. This will be iIllportant for the subsequent discussion of the 

strong equivalence principle for nlatter fields. 

n 

5 
H 

Figure 8. Experimen­
tal setup of Bonse and 
Wroblewski (1983). n: 
incoming neutron 
beam; 1: fore crystal; 
2: interferometer on 
traverse; 3: loudspea­
ker magnets; 4: func­
tion generatorj 5: posi­
tion transducer; 6: neu­
tron detector measur 
ing the intensity; 7: po­
sition-to-pulse-height 
converter; 8: pair of 
single channel analyzel'; 
9: Al pbase shifter. 

Gravitational acceleration has also been observed for atonlic beaUl interferolue­

tel'S by Kasevich and Chu (1991) and ShiIllizu~ ShiIllizu, and Takullla (1992). ShiIllizu 

et ale Ineasured by interference at a double slit. the change of the deBroglie wavelength 

arising from the gain in energy during the free fall of the atonlS in the earth's grav­

itational field (see Fig.9). In this way they tested not only the linear approxiInatiol1 

in 9 but the cOlllplete expression, 

21'119 9 T d1 - t, (2.2.7)8¢= IE 
111·i v5 

which is a direct consequence of (2.2.3). 

An important feature of this experiIllent is the fact that the center of nlass of the 

wave packet llloves in downward direction lllasS independent.ly like a classical point 

particle (f = -g), i.e .. in accordanee with the weak equivalence principle (11'1- 1. = 111g ). 

On the other hand, the double slit at the sallle tilHe causes a quantuul uncertainty to 

the vertical1110nlentuul eonlpOllent leading to a. nlass dependent interference pattern. 
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2.2.3. Sagnac type effect· 

The Sagnac effect for light has been ver­

ified by Michelson and Gale (1925). For Inat­ 200 

E 
.E.­ter wave interferolnetry, the Sagnac effect is 
§ 150 
.~ •a consequence of the coupling of the rotation 
ctJ 
a.of the reference franle to the angular nlOlnen­ ~ 100 

Q) 
01tum of the matter wave. For neutrons it was c: 
if 50measured for the rotating earth by Werner 

et al. (1979) and for a rotating turntable by 
o 

-, I I I I I
Atwood et al. (1984). Riehle et al. (1991 ) 60 80 100 120 t40 t60 t80 200 

Time (ms) measured the influence of the rotation of a 

turntable on atolnic beanlS. For electrons 

the effect was nleasured by Hasselbach and Figure 9. Fringe separation versus 
transit time of the atoms crossing theNicklaus (1988, 1989, 1991). interferometer of Shimizu et al. (1992). 

2.2.4. Spin-rotation coupling 

On the non-relativistic level, by using Inatter wave interferolnetry, this coupling 

can only be measured by flipping the spin along one of the two paths. Let the length 

of the path, where the spin is in its flipped state, be Lllflip. Then the phase shift will 
be 

J:A, _ - s- Lllflip 
U'f' - W· --. (2.2.8)

Vo 

This effect has not yet been detected. However, for neutron interferolnetry a phase 

shift of 10-2 7r [Mashhoon 1988)J is expected and for the atolnic fountain configuration 

of Kasevich and Chu (1991) a phase shift of 7r Inay be possible. 

2.2.5. Linearity of matter field equations 

In addition to the effects described by (2.2.6), we Inention here a Inatter wave 

interference experhnent which is illlportant for the general structure of quantum me­

chanical field equations. 

Into the Schrodinger equation non-linearities of the type bIn( 1'~'12 )11', b = const., 
have been introduced, which still allow to construct a conserved current. By bringing 

in attenuators at different positions into the neutron beallls, Shull et al. (1980) found 
out that the paranleter b, characterizing the strength of the non-linearity, has to be 

smaller than 4 x 10-13 eV. 

14 



3. Consequences of matter wave interferometry 

Having the results of the interferolnetric experilnents at hand, together with a 
simple theoretical description, we are now in a position to address the question of 
how to read off froin these findings the appropriate description of the spacetinle in 
which the nlatter fields propagate. 

We will first turn our attention to the superposition principle and to the lnass 
dependence of the phase shift of a l1latter field. These principles represent fundalnental 
knowledge which is instnuuental in a constructive approach to spacetilne axioluatics. 
Then, more specifically, we will exploit the experilnentally verified 'Pgrav¥J-coupling 
and compare it to the way a point particle couples to the gravito-inertial field. The 
relationship of the 'Pgrav¥J-coupling to the equivalence principle (EP) will be described 
in some detail. 

3.1. Superposition principle 

The linearity of quantluu luechanics represents a very fundaluental principle. In 
order to learn luore about quantlllu luechanics. this principle has been questioned 
by Shilnony (1979) and Weinberg (1989). aluongst others. The experilnental results, 
described in Sect.2.2.5, iluply that luatter waves are governed by linear field equa­
tions. Other types of experiluents give even stronger estiluates, see Physics Today 
The linearity of the field equations will be fundaluental for establishing a spacetime 
structure by starting froln quantulu principles. 

3.2. Mass dependence of phase shift 

The phase shift in (2.2.6) is 'lnass~ dependent. Here 'IUasS' denotes a paralueter 
n1, which is assigned to different types of lllatter fields. such as electrons or neutrons, 
for exanlpIe. 

If one used the saIne interferollleter for different 11latter waves, the resulting phase 
shifts would differ in accordance to the 'nlass' of the quantlllu objects. In particular, 
the positions of the interference fringes for different particle types can be cOlllpared 
without any reference to geonletry. R,esults of this type we shall use in SectA.3. 

What in point 11lechanics is called 'nlass\ attributes to a quantlun object a certain 
property related to its wave character. The paralneter 111 is essentially a proportion­
ality factor between the phase shift 8¢ and the gravito-inertial field {111ultiplied by 
the interferonleter area}. Or. turning the argul11ellt around, one 11lay define the Inass 
of a Inatter wave by this kind of experiluent. 

3.3. Structure of the gravito-inertial coupling to the Inatter field 

We now turn to the l110re specific fonu of the coupling to the gravito-inertial field. 
As shown above, it has been experilllentally verified that the 'Pgrav¥,-coupling appro­
priately describes the behavior of a luatter wave in an external gravitational field. 
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The Pauli equation (2.2.1), however, which we used in Sect.2.1.1 for the derivation 
of the general formula (2.2.6) for the phase shift, represents only the non-relativistic 
approximation of the gravitationally coupled Dirac equation. Consequently, we have 
to understand the coupling of gravity to the Dirac equation and how this is related 
to the way gravity influences the nlotion of a point particle according to Einstein's 
heuristic derivation of general relativity theory (GR). 

3.3.1. Point particles and the 'InV!Pgrav-coupling 

Let us have a look at Table 1 (see next page). Consider a nlass point with IllasS 
m and velocity u i := dxi/ds = ,(l,'v), where ,:= 1//1- v 2 • In the flat Minkowski 
spacetime M4 , the point particle's force-free nlotioll in an inertial fralne of reference 
(i.e. in Cartesian coordinates) is governed by the equation 

(3.3.1) 


Observe that for the description of a world line xi = xi{s) of a point particle (holo­
nomic) coordinates xi with i, j, k ... = 0,1,2,3 is all we need from the geometrical 
backgroud. The natural (or coordinate) basis f)'i, which is linked to the coordinates, 
will, however, not be sufficient for describing, say, a spinoI' field 4' in a non-inertial 
frame. Then we IllUSt turn to an orthononnal fraille eo: with (anhoionoillic) indices 
Ct, (3" ... = 0, 1,2,3. In general, eo: will not be a natural fraIne, that is, the tetrad 
coefficients e i 

0: in the deconlposition eo: = e i 
0: Oi will no longer be integrable. We will 

COllle back to this question in Sect.3.3.3. 

The star on top of the equality sign in (3.3.1) Ineans that the relation is valid 
only with respect to the specific basis under consideration, here an inertial reference 
frame represented by a (natural) Cartesian coordinate fraille. In a non-inertial frame, 
eq.{ 3.3.1) beconles: 

d 'l 


'u' { .j. }, j, k _

'In ds + 'In jk U U - 0 . (3.3.2) 

The inertial forces elnerge as additional tenns nt {/k} ui'ukbilinear in the velocity 

u i of the particle. For slnall velocities v ~ 1 and a static Inetric gij, which deviates 
from its inertial values TJij ~ diag( -1~ 1, L 1) only weakly, (3.3.2) yields 

dv'In-+rnV.... (gOO)- ~o. (3.3.3)
dt 2 
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Table 1. 

gauge approachEinstein's approach 

elementary object in SR nlass point 111 Dirac spinor 'ljJ( x) 

Cart.coord. xi ortholl. hoI. tetrads
inertial fraille 

ds 2 ~ 1Jij dxi dx j ea = c5~8i' ea' e{3 = 1Ja{3 

force-free 

motion in IF 


orthon. anhol. tetrads
arb. curvilinear 

non-inertial fraille ea = e i 
a 8icoord. xi' 

eiadxicofranle {)a = 

force-free 

Dlotion in NIF 


i } {)a. r a {3 = _rf3a{ jknon-inertial objects 
40 16 + 24 

T(oe.e,r)=o, R(or.r)=oR(o{}~ {}) = 0
constraints in SR 

20 24 + 36 

global IF g'i.j = * "Iij , { jki} = * 0 

T =/=0, R =/=0R =/=0switch on gravity 
RieTnarvn Rie'l1~ann - Gartan 

local IF 

Ric - ttr(Ric) rv 1nass
field equations Ric- ttr(Ric) rv'lnass 

Tor + 2 tr(Tor) rv spin 
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Accordingly, in Newtonian parlance, the Christoffel sYlllbols {j~} subsulne the 

gravitational field strength whereas the Inetric 900/2, with a suitable additive con­
stant, represents the gravitational potential. 

In Newtonian mechanics~ the equation of nlotion for a point particle with inertial 
mass mi and gravitational 111asS 171g reads 

(3.3.4) 

If and only if the proportionality (in suitable units: equality) of inertial and gravita­
tional mass is valid (weak equivalence principle, or weak EP), then (3.3.3) and (3.3.4) 
coincide, provided we have approxiInately 

900 	::::::: -1 + 2 CPgrav· (3.3.5 ) 

This line of reasoning is represented in the 2nd cohunn of Table 1 and, for histor­
ical reasons, nalned as "Einstein's approach". As is evident fronl (3.3.3) and (3.3.4), 
the mVcpgrav-coupling or. sYllonynlously, the nl,{ }-coupling. can be considered as its 
characteristic feature. And then the weak EP directly yields the universality of the 
free-fall, that is, the nlass independence of the equation of nlotion (3.3.4) or (3.3.2), 
respectively; compare the discussion in Einstein (1955). 

It should be clear, however, that even if the equation of nlotion is Inass indepen­
dent, the (tinle-independent) Halnilton-Jacobi equation for the point particle in the 
gravitational field 

(VS)2 ... _ 
- - rtlg9' r = E 	 (3.3.6) 

2rtli 

does depend on the Inass also after the application of the weak EP (Dehnen, private 
communication). The analogous effect is then expected to occur in Schrodinger type 
equations for Inatter fields. 

3.3.2. Different equivalence principles 

We applied in (3.3.4) the weak EP to a point particle. However, it should also be 
possible to fonnulate it for nlatter fields. Since a point particle is localized whereas 
a field is spread over spacetiIne. the EP has to be discussed separately for these two 
cases. Conventionally, an EP is called weak if, within sonle theoretical fralnework, it 
leads to the universality of free fall (see Sect.3.3.l). It is called stron9, if it iInplies a 
special fonn for the equation of nlotion of a point particle and for dynalnical equations 
in general. We will use this tenuinology. 

If we abstract fronl the Newton-Einstein type of equation of nlotion of Sect.3.3.l, 
then for a classical point particle the weak and the strong EPs read, respectively: 

(i) 	 In the absence of any interaction other than gravitation, point particles, with 
the saine prescribed velocity in sOlne point of spacetiIlle, 1110ve alollg the saine 
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path irrespective of their lnass. This gives rise to a path structure of spacetilne 
according to [cf. Ehlers and Kohler (1977) and Colelnan and Korte (1980)] 

. dx i 


'U 
1-

:= d)" , (3.3.7) 


for sonle paralneter ).. and sonle function a. In the context of Newtonian physics, 
this lneans the equality of inertial and gravitational nlass. 

(ii) 	 Strong EP or the equivalence of gravity and acceleration: Locally, the acceleration 
caused by gravity can be transfol'lned to zero for a point particle provided there 
are no fields present other than gravity. In other words, locally the point particle 
is not accelerated in SOlne specific coordinate systeln and for SOlne parametriza­
tion of the path: ulL ... O. In the general-relativistic case, this leads to a projective 
structure, 

(3.3.8) 


for 	SOlne connection r jk i. 

3.3.3. Matter waves and minimal coupling 

Turning now to lnatter waves, we will follow up the discussion of the ~gauge 
approach' colunln in Table 1. Taking a Dirac field in the Minkowski spacetilne M4 as 
the generic case, we have to study the Dirac equation in inertial and in non-inertial 
frames according to the standard fonualisln [cf.McCrea (1987, 1989)]: 

A spinor field is linked essentially with the notion of orthononnality, since it 
derives ulthnately fronl the representations of the Lorentz group. By contrast, a ten­
sor can easily be generalized to linear transfonnations. To define a spinor field in an 
M 4, we need an orthonoT17utl TeJeTence Jntme at each event, i.e. a basis of four vectors 
{eo} (a = 0,1,2,3) such that 

(3.3.9) 


The vector basis eo can be deconlposed with respect to the tangent vectors Oi of the 
coordinate lines according to eo: = ei 

o Oi. The 1-forln basis rfj0 will be defined, in the 
usual way, by 

(3.3.10) 


Its deco111position reads rfj!3 = ej!3 dx j . In an M 4 , both torsion and curvature vanish, 

!3 . - dr !3 - r "f r !3 - 0ARa'- 0 0 1\ "f - , (3.3.11) 

with r o!3 = rio!3dxi as the connection 1-fonn and r(o!3) = 0 (lnetricity). Therefore 
there exist global fralnes for which 

(3.3.12) 
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and 
diYYl = o. (3.3.13) 

These are the so-called inertial fralnes. By (3.3.13)~ such franles are holonolnic in an 
M4 , i.e. there exist coordinates systenls {xi} (spatial Cartesian coordinates + tinle) 
such that 

(3.3.14) 

Thus', in an M 4 , the Cartesian coordinate bases already provide us with the global 
orthonormal frames necessary for the description of spinoI' fields. However, for the 
transition to gravitational theory via the strong EP, we have to use non-inertial franles 
and these must be anholononlic (d{}o. =f. 0 and ro.,8 =f. 0) if they are to relnain orthonor­
mal. 

Let be given the Dirac equation in an inertial fralne of reference (i"'/' a'i - 'In)'ljJ ~ O. 
The ,i denote the Dirac lnatrices fulfilling ,(i,i) = TJ ij . The ilnportant step consists 
in the transition to a non-inertial fralne. And here we take recourse to the COW­
experinlent [Colella et al.(1975)] and to the BW-experhnent [Bonse & Wroblewski 
(1983)], see the discussion in Sect.2.2.2. The COW-experhnent verifies the CPgrav'lj;­
coupling of the Newtonian potential to the nlatter field, as given in (2.2.2). The 
BW-experhnent, on the other hand. shows that the gravitational field in (2.2.2) can 
be simulated by lneans of a linear acceleration. The corresponding (mia· rhb-tenn, 
however, had been derived by fornullating the Pauli equation with respect to an ac­
celerated fraine. Consequently, this procedure of transforining a Inatter field equation 
from an inertial into a non-inertial fralue of reference has been verfied by COW in 
conjunction with BW. Needless to say that also the Sagnac ternl in (2.2.2), which we 
won by evaluating the Pauli equation on a turntable, belongs to the established results 
of matter wave interferoinetry, see Sect.2.2.3. In other words, the 4Mashhoon'-tenn is 
the only hypothetical one in (2.2.2). 

Returning to the Dirac equation~ we transforill it into a non-inertial fralne in an 
analogous way as we did it for the Pauli equation. naluely by rotating the local fralues 
eO. into a non-inertial position. Thus we relax the conditions (3.3.12) and (3.3.13). 
This results in (see Table 1): 

(3.3.15) 

We recognize that the gravitational potentials ei (or e/3 ) and r.i ,8"Y, which becolue Q 

manifest in non-inertial fralues. deviate frol11 their inertial values 

(3.3.16) 

In other words, the (e i ,8 ~ r i,8'Y) describe the gravito-inertial field, or rather its poten­

tials. In an M4 the potentials can be 'trivialized' globally, since both torsion T,8 and 
curvature R,8"Y vanish. 
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The leading additional tenns, picked up by the Dirac equation in a non-inertial 
frame with ei 

0: = 6~ + hi0: and hi 0: , r i.B'")' <t:: 1, read, 

(3.3.17) 

It is of the general type of coupling the nlatter wave function 'ljJ to the gravitational 
potentials. In non-relativistic approxhnation, COlnpare, for instance, Hehl et al. (1990, 
1991) or Lamlnerzahl (1991), it degenerates to the <t'grav'l/I-coupling of (2.2.2). And 
this coupling has been experhnentally verified, as we saw in Sect.2.2.2. 

Instead of putting the Dirac equation into a non-inertial fraIne, as in Table 1 
or in (3.3.15), we start in Sect.5 directly with the ordinary special-relativistic Dirac 
Lagrangian. In non-inertial fralnes, the Lagrangian picks up tenus of the type given in 
(3.3.17). Thus for fields~ the strong EP can be fonnulated as the principle of minimal 
gravitational coupling to the nlatter Lagrangian. It is no longer necessary to speak 
about objects which one observes directly, like the point particles in the Einstein 
approach, but rather about the corresponding luaterial Lagrangian. Apparently, this 
version of the strong EP is general enough for acconuuodating 111at tel' fields carrying 
spin and the corresponding equations of nlotion. for spinning particles [see Sexl & 
Urbantke (1983)]. A detailed presentation of this principle of luinhnal coupling has 
first been given by Scialua (1962). 

To SUll1 up: We only need to know the behavior of a (first order) Lagrangian in 
a non-inertial refe7~ence /7~ame. then the coupling to gravity is detenuined. Violations 
of the strong EP would require the existence of non-lninhllal (Pauli type) ten11S in 
the Lagrangian containing the gravitational field strengths torsion and/or curvature 
explicitly. This ends our heuristic considerations. 

4. Constructive axiomatic approach to spacetime geometry 

We now turn to the first of the two independent procedures for establishing the 
geometrical stucture of spacethne: the constructive axiolnatic approach to spacetime 
geoll1etry using eleluents of quallttUn luechanics. 

The ain1 of a constructive axiol11atics is to discover and to describe the geo­
metrical structure of spacetil11e by Ineans of the behavior of appropriately selected 
physical systen1s, called 1n"imitive objects, and of particular physical effects, called ba­
sic experience. The intended final theorenl is of the type: ., If spacetilue is the entity 
which dictates the particular prilnitive objects their typical behavior, then spacethne 
ll1athelnatically is ... " The 11lethod thereby is to enrich the Inanifold step by step 
with lllatheluatical structures read off fronl experience. The postulates used must 
be formulated in a geoilletry-free luanner. Our procedure will be analogous to the 
one followed by Ehlers, Ph'ani, and Schild (1972), who have used free point particles 
and light rays as prhnitive objects. Instead, we will use luatter fields 'ljJ : M ~ cn 
as priluitive objects. Mass a.nd spin, as their degrees of freedolll, will be essential 
in our schelne in order to establish the full richness of spacethne geolnetry. In the 
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following we will briefly sununarize a SilUplified version of the schelne as developed 
by Audretsch and Lanlluerzahl (1991a, b) and Lanllnerzahl (1990): 

4.1. 	Establishing the matter field equation 

Because it is difficult to operationally justify frolu basic observations particular 
field equations for quantunl objects (like the Dirac equation)~ we will start froln the 
fundamental experience related to the dynalnics of quantunl ll1atter fields. We will 
derive a general partial differential equation governing the dynaluics of the luatter 
field considered. It will turn out that the structure of this field equation is essentially 
deternlined by delnanding a detenninistic evolution with finite propagation speed as 
well as a superposition principle. 

(i) We 	postulate a detenninistic evolution of the field as an ordered behavior 'in 
time': There is a (1 +3 )-slicing of the 4-dhnensional lnanifold M with nl0noton­
ically increasing paralneter t such that, given a field on sonle hypersurface, the 
field will be detennined uniquely on a subsequent or 'later~ hypersurface. The 
hypersurfaces for which this stateluent holds true are called spacelike. 

(ii) 	 For introducing the superposition principle, we require the evolution of an ar­
bitrary sunl of initial data to result in the sunl of the separately propagated 
fields. Hence the evolution nUlst be linear. One finds an abstract Cauchy prob­
lenl :t'ljJt = Gt'~'t, where '~It is the field 1/.' for fixed t and G t the generator of the 
dynaluical evolution. If as initial data derivatives of the field are needed in order 
to uniquely detel'lnine the field on a 'future' hypersurface, then we arrive at a 
higher order Cauchy probleln, see Audretsch and Lanuuerzahl (1991a). 

(iii) According to experience, signals cannot propagate with infinite velocity. There­
fore for all initial data with conlpact support we delnand that, after some time, 
the propagated field still has conlpact support. This requirelnent hnplies for the 
generator G t to be local. This has the ilnportant lnathelnatical consequence that 
the evolutionary systenl reduces to a partial differential equation of first order 

(4.1.1) 

where ,i and Mare sonle conlplex n x n Inatrices (not necessarily Dirac matri ­
ces). In addition, this first order systenl can be shown to be weakly hyperbolic, 
that is, the spacelike hypersurfaces are non-characteristic and all zeros of the 
characteristic equation H(x, k) := det(,ih~i) = 0 are real; for a weaker version of 
postulate (iii), see Audretsch and Lanlluerzahl (1991a). 

(iv) 	The probability interpretation of quantuln Inechanics is based on a real current 
ji which is bilinear in the fields. Its zeroth cOluponellt jO is interpreted as prob­
ability density for finding a particle at a certaiu location. The only object in 
our theory which carries a contravariant vector index is Ii. Therefore we require 
ji(x) = 'ljJ+ A,i4' to be real for SOlne lnatrix A and for all 4"s. This iluplies that 
A,i is hennitian: (A,i)+ = A,i. 
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4.2. Establishing the conformal structure 

(v) 	The shock waves (that is, the singularities or characteristics) of the field equation 
(4.1.1) represent our first class of prhnitive elelnents. Junlps of lowest order along 
a hypersurface </> = 0 obey 

(4.2.1) 


with sonle a E en describing the helicity states on the hypersurface and ki = ai </>. 
The solvability condition of (4.2.1) is t.he characterstic polynonlial 

( 4.2.2) 

with SOlne real tensor gi1 ...i n • Postulate (v) fonnalizes the experience that there 
is only one light cone at any point. x (that is one future and one past light cone) 
and there are only two helicity states. The latter hnply that the nlultiplicity of 
the zeros of the characteristic polynoluial He nlust be two: 

(4.2.3 ) 


The uniqueness of the light cone leads to 

(4.2.4) 


Accordingly, n = 4 (that is, '¢' has 4 conlplex conlponents) and "'/ and Mare 
4 x 4-matrices. 
The 	important consequence is that there nUlst exist a class of real second rank 
tensors gij(x). Because eleillents of this class of gij are fixed by the procedure 
given above only up to a positive scalar function, we are led to the notion of 
a confornlal structure.These gij can be proven to be uon-singular and to have 
signature ±2. By lneans of the confonnal structure we can construct orthotetrads 
e~ fulfilling gije~e~ = TJo:{3, where TJo:{3 is the Minkowski 111etric. Therefore we are 
able to represent Lorentz-t.ransfonnations. 

4.3. 	Establishing the Riemannian structure 

(vi) 	 In the next step we return to (4.1.1). We select a special class of 111atter wave 
solutions, so-called apprOxill1ate plane wave solutions, by 111aking, according to 
the WKB-procedul'e. the ansatz 1/' = aexp (is). We deluand that derivatives of 
a, that is, variations in the alnplitude. are negligible. We then arrive at 

o= ('/pi - M(O»)a. (4.3.1) 

i'/lJia = M(l)a, ( 4.3.2) 

for some 4 x 4-1natrices M(O) and Jtvl(l). The solvability condition of the first 
equation gives a polynoillial of fourth order in P, the Haluilton-Jacobi equation: 
H(x,p) = (gi jp.i,pj)2 +CJ(p3) = O. 
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The subclass of f7'ee nlatter waves obeying (4.3.1) and (4.3.2) will be our second 
type of prinlitive elelnents. The property 'free~ is represented by the requirell1ent 
that H{x,p) = 0 exhibits the sYlllluetry given by the cOllfonual structure. Ac­
cordingly, if a InOluenttllu p is solution of the given Haluilton-Jacobi equation, 
then another nlOluentunl pi, which results frolu the first one by an active Lorentz 
transfornlation pi = Lp~ should also solve the Haluilton-Jacobi equation. By 
means of the fUlldaluental theorelll for vector invariants it follows that H{ x, p) 
must be of the fonu 

(4.3.3) 

with two scalar mass functions VI and V2 and the luetric gij as introduced above. 
Then HK,{x,p) = gijPiPj - V,.;(x) = 0, I\, = 1,2 gives the equation of 1110tion for 
the group velocity vi = g'ij Pj of a wave packet. The nlass functions V,.; (x) turn 
out to be real. 

(vii) 	Up to now it is not excluded that different types of quantlllu objects (denoted 
by the index A), which all obey the aforeluentioned requirelnents, Inay lead to 
different scalar IUasS functions V.>." (x). Based on experience with lllatter wave 
interferometry, we require for free Inatter waves the following: For the same 
physical set-up (the salue interferolueter apparatus under identical conditions), 
we perfonn interference experiIuents at all points of spacetiIue with different 
quantum objects, such as electrons~ neutrons, etc.. Then the pattern of the 
interference fringes. up to a constant factor. IUUSt be identical. This 111eanS 
that V'>'I( = 111,~t( VII' with 111,.>." = const .. Therefore dividing H.>. .. by VI1 and 
introducing gij := -rrf-rgii, we find H.>...: (x,p) = ?/jPiPj -1n~ . Causality requires

IVI I I 	 " 

m~ to be positive. With gij we arrived at a Riernannian metric. Note that this 
does not mean that torsion is vanishing, it has siIllply not yet been established. 

4.4. Establishing axial torsion 

In the aforeluentioned reasoning we have used so far the properties of the Halnil­
ton-Jacobi equation only. Using further properties of the nlatter fields, as displayed in 
equation (4.3.2) governing the differential behavior of the aluplitude a, it is possible to 
introduce torsion [see e.g. Lanullerzahl (1990)~ COlupare Audretsch and Lanllnerzahl 
(1987)]. For this purpose, frolu (4.3.2), we can derive an equation of 1l10tion for 
the all1plitude a, which is of the fo1'111 V1'Oia = v'ir i{X )a. In addition, we can show 
that the ,-lnatrices obey the Clifford algebra rule ,(i,j) = gij which the usual Dirac 
algebra can be derived fron1. Then one can prove that the only independent bilinear 
expressions are the probability current 'lfi,i,~, vi and the spin current '¢'5,i'ljJ. Byrv 

nleans of the propagation equation for the aluplitude it follows that the propagation 
equation for the spin current reads 

(4.4.1) 
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for sonle axial vector K. Thus the propagation of the spin vector introduces an axial 
torsion. 

To S1un up, we have shown: If spacetime is the entity which IJrescribes the behavior 
of the characte'ristics. of the free rnatier waves. and of the spirt states in the way 
specified above. then spacetirne is a Rierna:nn-Cartan spacetime with axial torsion. 

By building wave packets out of free nlatter waves, it is possible to obtain the 
paths of the nlaxilna of the wave packets thus introducing a path structure. These 
paths are the geodesics 

(4.4.2) 


of a Rielllannian spacetill1e with the lnetric [i'ij defined above. Indices are l1loved with 
gii and its inverse and the Christoff'els are also built frolll this Inetric. Hence the 
equation of Illotion (4.4.2) is. with respect to the Christoffel connection, the saIne 
for all types of quantunl objects. Therefore it defines a Riell1anniall spacetillle. It 
delll011strates that the results of the axiolnatics of Ehlers, PiI'ani~ and Schild (1972) 
and, in addition, the restriction frolu Weyl geOll1etry to a R.ielnanIl geoilletry [Au­
dretsch (1983), and Audretsch, Gahler. and StraUll1ann (1984)] is obtained as limiting 
case of our axiolnatics based on lllatter fields. 

In retrospect we can specify the elell1ents of quantunl 111echanics which the ap­
praoch is based on: They essentially agree with the elelnents which are necessary to 
physically describe Illattel' wave interference. 

5. Gauge approach to spacetime geometry 

Having in the last section been led to a specific spacethne geolnetry by the ax­
iOlnatic approach, which is itself based on experience extracted froln 111atter wave 
interferoll1etry. we are now turning our attention to a gauge approach of gravity. 
These considerations will be independent froln those of Sect.4. However, a gauge 
approach is fundalllentally based on the notion of a Illatter field and its invariance 
properties. In other words. the notion and the existence of rnat tel' waves (or fields) is 
the connecting elelllent of both approaches. In this sense. they are not independent 
but rather both based on the quantulli lllechanical 'l/l-fielcl. Accordingly, it is not by 
chance that the letter 1/1 (with an analogous lueaning) features in Sect.4 as well as in 
Sect.5. In the following we will reS1une the considerations of Sect.3.3. 

Soon after Yang and Mills (1954) coupled the conserved isospin current and its 
Noether-related SU(2)-invariallce to their newly introduced B-gauge-field, Utiyalna 
(1956, 1980) extended the Yang-Mills idea to other non-Abelian groups [see O'Raifear­
taigh (1979)] and applied it. in particular. the the Lorentz group SO(1,3). In the 
context of ~gauging' the Lorentz group, Utiyalna was able, using SOine additional hy­
potheses, to recover general relativity (GR). Since in Newton-Einstein gravity the 
source of the gravitational field is the 111a..-,S, i.e. the 11l011lentunl current, and the cor­
responding syn1luet.ry t.he t1'anslat'lon invariance, clearly a gauging of the full Poincare 
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group as the seillidirect product of the translation group T4 and the Lorentz group 

SO(1,3) was desirable. This was carried out by Sciailla (1962) and Kibble (1961). 
They found that the Rieillannian spacetillle of GR nlust be enriched by a torsion field 

[Cartan (1986)] such that the connection reillains 111etric-colllpatible, in other words 
the length of a vector l as in general relativity, still stays constant under parallel 

transport. 

In the Scialna-Kibble approach [see also Trautillan (1973~ 1980) and Hehl et ala 
(1976)], which used structures investigated earlier by Cartan (loc.cit.), the analog 

of the Hilbert Lagrangian of the underlying Rielnann-Cartan spacethne was used in 

the gravitational action function. As a consequence, the torsion field is confined to 
matter, i.e. in vacuo the spacetillle reillains Rieillannian. as in general relativity. Sub­

sequently gravitationallnodels with propagating torsion were proposed, leading finally 
to a general fraillework of a Poincare gauge theory with a gravitational Lagrangian 

quadratic in torsion and curvature. (3) 

Here we will lllerely sketch the appropriate gauge field-theoretical fOflllalisnl for 

a matter field, represented by a spinor- or tensor-valued p-forlll, interacting with the 
gravitational potentials (19 0 roJ3) of (3.3.16) using the calculus of exterior differential • 

forms [see Thirring (1986)]. 

5.1. Poincare invariance in Minkowski spacetime 

Let us firstly suppose that there is no gravitational field and that consequently 

the spacethne is Minkowskian, or M4 . In an M4 the group of Inotions is the (4 + 6) 
paralneter Poincare group. which is generated by translations and Lorentz rotations. 
The state of a particle is associated with an irreducible unitary representation of the 
Poincare group and is characterized by its nlass and spin. as well as by its nlOluen­
tunl.(4) If one realizes a representation of the Poincare group by lueans of a 111atter 

field over a Minkowskiall spacethne. the luat tel' field 'z/J( x) tranSfOrlllS as a spin or or 

tensor under Lorentz tranSfOrlllations, depending on whether we are dealing with a 

fernlion or a boson, respectively. The spillorialillatter field is fundaluental -leptons 

and quarks are described in this way - and its characteristic features are essential in 
our later considerations. 

(3) One 111ay consult in this context the articles of Goenner (1987), Ivanenko & 
Sardanashvily (1983). Kibble & Stelle (1986). KOPCZYIISki (1990), Lord & Goswailli 
(1986), Meyer (1982), McCrea (1987,1989), Mielke (1987), Ne'eIllan (1980), Ne'enlan 

& Regge (1978), Nester (1984), and Hehl (1980). 
(4) C0111pare, for exaillple~ t.he very clear and intuitive description of Sexl and Ur­

bantke (1982). 
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5.2. First order Lagrangian of a matter field 

The dynaluical behaviour of fennionic and bosonic luatter in an M4 is detenuined 
by their Lagrangian 4-forn1 L which we here refer to Cartesian coordinates and hence 
to the inertial fralnes of (3.3.14), 

(5.2.1) 

where the p-fornl ,~, is the nlatter field. In the sense of conventional Lagrangian field 
theory, L luay depend at l110st on first derivatives of the 111atter field 1/-" Via the action 
principle one finds the 111atter field equation depending at 1110st on second derivatives: 

8L 8L 8L- =- - (-l)Pd(-) = O. ( 5.2.2) 
8¢ 8¢ 8d~ 

For an isolated systenl. i.e. if external fields do not act, the action function 
associated with (5.2.1) is invariant under Poincare tranSfOl'I11ations. This huplies, via 
Noether's theorenl, the conservation of n101uentlllll and angular I110I11entuln: 

dro.{3 - 'l9[{3 " :Eo.] = 0 , ( 5.2.3) 

where 

(5.2.4) 

is the canonical (and asynlllletric) energy-lnOlllelltlllll 3-forlll and 

(5.2.5) 


is the canonical spin angular n101uenttllu 3-fonn. If 4' is a O-fonll then eo.JlP = 0 
and the last tenn of (5.2.4) drops. In equation (5.2.5) G[o.{31 are the spin generating 
operators. The "inertial currents" (:Eo., r o.{3) represent in field-theoretical language 
the particle's lUasS and spin ~- accordingly the appropriate nalnes are momentum 
current and spin currenL respectively. As is evident fronl (5.2.3) as well as fronl the 
labels of the irreducible unitary representations of the Poincare group, the inertial 
behavior of, say~ a fenllion is not only characterized by its l11ass and its I110luentunl 
current, but also a spin concept is necessary for a conlplete representation of the 
inertial properties of the ferluion. 

5.3. Minimal coupling to gravity 

If we now introduce non-inertial reference fral11es in the M 4 , (5.2.1) reads 

(5.3.1) 

with the covariant exterior derivative D4' := (d +r o.{3 G o.{3 )4'. Tetrad and connection, 
but not their derivatives. appear explicitly in the Lagrangian. 
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As we saw in onr discussion in Sect.3.3.3. the strong EP anl0unts to the following: 
Viewed locally, special relativistic lnatter in a non-inertial fralue behaves in the saIne 
way as in a corresponding gravitational field. 

To which quantity characterizing a luatter field do we apply the strong EP? 
Certainly to the Lagrangian (5.3.1). Since the strong EP is a local principle we ought 
to apply it to the differentiation level of the lowest possible order. In general, the 
matter field equation (5.2.2) is of second differentiation order so that in the presence 
of a gravitational field curvature ternlS could already elnerge. Moreover, we know 
that the Lagrangian enters explicitly the FeYlll11an-quantization of matter fields and 
detennines the transition aillplitudes. Consequently in the theory of lnatter fields the 
Lagrangian possesses nearly the quality of an observable. 

We stress again that in the original Einsteinian arguillentation the EP has been 
applied directly to the acceleration or the equation of nlotion of a point particle, i.e. 
on the level of (5.2.2). We dispensed with the point particle concept and found only 
the level (5.2.1) or (5.3.1) suitable for the application of the EP. Consequently we 

r a(3indeed recognize (19 0 
, ) as the gravitational potentials. According to (3.3.12) and 

(3.3.14), they can be globally trivialized in an M4 since they are only induced by the 
choice of non-inertial reference fralnes. 

5.4. Riemann-Cartan geometry of spacetime 

Following McCrea (1989). the transition to gravitational theory is executed by 
requiring only the local validity of special relativity and of conditions (3.3.12) and 
(3.3.14): 

(5.4.1) 


Thus we arrive at a Rielnann-Cartan spacethne U4 which is characterized by a local 
Minkowski lnetric (3.3.9) and a connection r a f3 which is Inetric (conlpatible): r( o(3) = 
O. Its deviation froln a Minkowskian M4 is lneasured by the torsion TO: and the 
curvature Ra f3, which are both defined in (3.3.11). In fact, it is possible to prove that 
in a U4 , in a suitable tetrad and in suitable coordinates. condition (5.4.1) can always 
be fulfilled. Consequently. in such a 'local inertial systeln' the gravitational potentials 
are trivialized and can no longer he perceived, it represents the "Einsteinian elevator' 
of the U4 • Now the Lagrangian (5.3.1) has its special-relativistic fonn only locally in 
a suitable tetrad. The constraints (3.3.11) 111ay be relaxed since torsion and curvature 
cannot appear in the Lagrangian{ 5.3.1): 

(5.4.2) 

Thereby we recognize torsion and curvature as gravitational field strengths, and a 
Riemann- Gartan spaceti1ne U4 enlerges as appropriate for the description of gravi­
tational phenolnena. Thus. the gauge approach and the constructive axionlatic ap­
proach independently lead to the sarne result. 

To support our line of reasoning, we add the following relnarks: The strong EP 
is a heuristic principle. since the notion ;.locar used in its fonllulation is not exact. In 
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exploiting the strong EP~ we required stronger locality as conlpared to the one used in 
"deriving' GR. The following procedure is also conceivable. We rewrite the constraint 
of vanishing torsion (3.3.11) 1 in tenus of the connection 

( 5.4.3) 

When this connection ro:,8 == rQ,8(iI~ rlil) is substituted into (5.3.1), then, in non­
inertial syste111S, L depends on ilQ as gravitational potential and only the constraint 
of vanishing curvature can be relaxed, whereas torsion reillains zero. Accordingly one 
arrives at the Rieillannian spacetillle V4 of GR. However, since it is always possible 
to Inake a tetrad and coordinate transforlllation at a point so that (5.4.1) is fulfilled 
at that point, it follows fronl (3.3.13) that in a ~ the resulting tetrad satisfies the 
constraint rlilQ == 0 at the point. a constraint that is non-local and hence contrary to 
the spirit of the EP. Provided we do not wish to stay in the context of point particles 
and their trajectories in an ·Einsteinian elevator', there seenlS to be no reason for 
requiring the constraint rllJO: == O. Hence everything speaks in favor of leaving the 
adjustlllent of torsion to the dynanlics of the gravitational field and not to rule it out 
in the context of kinenHttics. Alternatively~ one could have rewritten the cOllstraint 
(3.3.11 h of vanishing curvature in tenus of the cOllnection: 

(globally) ( 5.4.4) 

i.e. in the case of vanishing curvature there exist global parallel franles. Then, in a 
way analogous to above~ we would have been led to a teleparallel spacetillle T4 , i.e. to 
a U4 with vanishing curvature. But a T4 for fenllions is no lllore convincing than the 
V4 of GR. For a gravitational theory of fel'mionic rnatte7', the U4 with its ~Einstein 
elevator' (5.4.1), which is indispensable for a correct application of the strong EP, 
offers the appropriate geoluetrical franlework, but for scalar or lllacroscopic lllatter a 
V4 or a T4 is already sufficient. 

We cOlllplete our presentation with a short discussion of the appropriate Lagrange­
Noether forillalisill. As in any other gauge theory, now that the interaction has been 
switched on by nleans of' (5.4.2), the Lagrange-Noether fonnalisnl, which originally, 
in the ~pure gauge' case, leads to (5.2.2-5), has to be redone. By standard lllethods, 
we find in the U4 the luatter field equation 

8L fJL ( fJL )- == - - (-l)P D -- , (5.4.5 ) 
8~ fJ~ fJD~ 

and the Noether identities 

( 5.4.6) 

The new definitions of the nlOlllentunl current 

8L fJL fJL 
~ '= - == e JL - (e JD"") " - - (e J"/')"- (5.4.7)

Q' 8i1O: Q Q 'f fJDV' Q 'f fJ1/' 
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and of the spin current 

(5.4.8) 


show that these inertial currents are coupled to the corresponding gravitational po­

tentials. 

In an M 4 , the Noether laws (5.4.6) reduce to (5.2.3). The vohlllle force densi­
ties showing up on the right-haud side of the nl0111entlllll identity in (5.4.6), naillely 
(torsion x nl0nlentlull) and (curvature X spin) i.e. (field strength x current) are re­
nlarkable. There is a close analogy here with the U(1)-gauge field theory (Maxwell's 
theory) where the Lorentz force is exactly of this type. 

These Noether laws we will use in the following section for constructing a Con­
served Energy-like quantity. 

6. Testing spacetime geometry by interference experiments 

In Sect.2.2.1, we had discussed t.he experilllentally verified interference effects 
to lowest order. Based on results of Sect.5.4, we are now in a position to continue 
in a more rigorous fashion in order to include possible curvature and torsion effects. 
This can be done using a WKB-approxilllation of the Dirac equation [Audretsch and 
Lanll11erzahl (1983)] or by deriving a Haluilton operator for the energy in a station­
ary spacetillle using the energy-nl0111entulll current of the respective field. This last 
Inentioned procedure luainly relies on Lanll11erzahl (1992) using unpublished results 
of Hecht (1986) and of HehL McCrea, Mielke~ and Ne'eluan (1989). For other recent 
work one 111ay consult Huang (1992). 

6.1. Conserved energy 

Let us take the Hanlilton operator l11ethod which describes the energy of the 
considered quantulll systen1 in a curved spacetillle for rotating and accelerating inter­
feroilleters. We start fron1 the general IIIateri al Lagrangian (5.3.1), which is nlinin1ally 
coupled to the gravitational field. We suppose that the 111atter field equations (5.4.5) 
are fulfilled. 

We assU111e the existence of a synl1netry of spacetinle, that is, of a Killing vector 
~ = ~O:eo: which fulfills t.he syulluetry conditions 

(6.1.1)C~g = O. 

We introduce the abbrevations Do: := eo:J D and Df3 := gf3"Y D"Y and the transposed 
connection r0:f3 := r 0:f3 + eo:JTf3 together with its covariant exterior derivative D. 
Furthenuore. we note for later use 

{} 
with K f3 '- r f3 - r f3 (6.1.2)0: .- 0: 0:' 
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Here Ka:{3 = _K{3Ct. denotes the contortion of spacetillle. Then the synl1lletry condi­
tions (6.1.1) can be rewritten as 

{} 
iJ(Ct. ~(3) = 0 or D(Ct.~/:J) = o. and (6.1.3) 

Note that the last relation is equivalent to .cf.,I(o.{3 = o. 
With these preparations we can find the energy expression E according to 

dE = 0, E:= h£ = const. , (6.1.4) 

where ~o. and To.{3 denote the 11laterial nl01llenttllll and spin currents of (5.4.7) and 
(5.4.8), respectively. The conservation law dE = 0 can be proved by applying the 
Noether identities (5.4.6) and the synulletry conditions (6.1.3). We always integrate 
over a space-like hypersurface ~. 

The transition to quantlllll luechanics is achieved by defining a scalar product by 
means of a conserved quantity. Accordingly, we additionally assuille the Lagrangian 
to be invariant against phase transforIllations. This yields the conserved quantity 

dj = 0 (6.1.5) 

This construction will allow the definition of an energy operator in Sect.6.2. 

Aa a shupie exaillple, we display the results for a Dirac field. Its Lagrangian 
depends only on the axial torsion. For the llloillentunl, the spin, and the Dirac 
currents we find, respectively. 

Ea = ~ (oj. *'YDa'¢'- Daj. *'Y4') , rafj = _~o$ {*'Y ,aa/3}ifJ, j = -if, i*T4', 

(6.1.6) 
where * denotes the Hodge star and 1 := Ia: 1)0. the Dirac lllatrix 1-fofll1; nloreover, 

oa:{3 = ~[/o., 1{3]· 

6.2. Hamilton operator 

Explicitly, we introduce a scalar product by lueans of the current j of (6.1.5): 

(6.2.1) 


A classical field observable Ad := J~ j ('j,~ Acr~'~ x) is identified with the expectation 

value Aqu of a quanttllll lueasureillent Aqu = < 4' I Aqu I 4' > = IE j('lfi, Aqu'l/J, x). 

Here Aqu denotes the position representation of the quantunl operator Aqu. This 
identification hllplies Aqu = Ad. 
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Therefore the energy operator 1-l. using also (6.1.4), can be defined according to 

hj(1j., 1N,x) :=E =h£ =h[€aL:a + (Dae)raJ3 l 

=hWna(nJ3 :EJ3) + €a(ka J3 L:J3) + (Da€J3)raJ31' (6.2.2) 

where we introduced the projection tensor ko:f3 := 6~ - no:nf3 of the hypersurface :E 
with n as its nonnal. We can identify nf3Ef3 as the energy flux density and ko:f3 Ef3 
as mOl11enttUll flux density. Then the corresponding tenus in (6.2.2) can be assigned 
to a suitably synuuetrized operator expression ! { ~o: • no:1-lo} and ! { ~o: , Po:} in the 
conventional way. Moreover. we assign to the spin flux density rO:f3 the operator sO:f3' 

This yields the syuuuetrized Haluilton operator 

(6.2.3) 

Each term in this Hailliltollian is herluitian by construction. Note that the compo­
nents of the canonical spin current describe the spin flux density, the spin density, the 
energy-dipole-nl0111ent flux density. and the energy-diplole-nl01nent density [cf. Hehl 
(1976)]. 

According to (6.1.2). the last tenll in (6.2.3) splits into a spin-contortion ten11 
and a coupling of the spin t.o the kineluatical properties of the Killing field ~ the 
trajectories of which later on will be identified with the trajectories of the different 
pieces of the int.erferoilleter. 

iThe velocity u i of these pieces is proportional to the Killing vector ~i = eX u , with 
X as the gravi-stationary potential. The projection tensor h{ = 6{ - 'Uiuj transfon11s 
the vorticity 8[iUj] into the local rotation Wij := hf h~8[kUl]' Eventually, the 'Christof­

{} 
feP curl entering (6.2.3) can be decoluposed according to D('i~j1 = e'X(wij + 2a[i'uj]), 

.{} 
where ai = u Dju'i -8i X denotes the acceleration of the Kiling field. Consequently, 

' 
the spin of the Inatter wave couples to the acceleration and and to the rotation of the 
illterferoilleter. 

In particular. for the Dirac case the Hailliltonian (6.2.3) reads 

.0 
· - k·1 D· (6.2.4)P l - ~ l' 

As special case we recover the Haluiltoll operator in flat Minkowski space. There, 
the 1110St general Killing vector field fi = bi + Wij x j with W'ij -Wii leads to 

(6.2.5) 

with the 3-acceleration a+-+ wijnj and the 3-rotation w+-+ _€ijkl Wjknl and a +-+ wijnj 

[see Lal11merzahl (1991) and Hehl & Ni (1990)]. 
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6.3. Phase shift 

In an interference experiIllent the nlatter field is localized, that is, it is different 
frol11 zero only within a conlparatively sluallregion. Hence, in (6.2.2) and (6.2.3), we 
can approxhnate both~ the Killing vector \ which represents the external gravitational 
field, and its derivative jj~{3 by a Taylor expansion. At the beanl splitter we lllay 
choose the origin 0 of our coordinate systenl. The center of nlass of the Inatter wave 
packet, the n10tion of which we will follow up. will be denoted by C. The difference 
~vectors' ~x := f - ;~. o;z; := ;r; - f are defined to be tangent to the hypersurface E: 
~xJ11, = 6xJ11, = O. Then the Taylor expansion around 0 reads, if we use the relations 
(6.1.3): 

o 0 Oa o f30 

~a(x) = ~a(x) + (~x + 6x)J(D~a)(x) + ~xJ~JRf3 (x)6x + ... , (6.3.1) 

(eaJjj~f3)(x) = (eoJjj~f3)(~) + (~x + 6x)J~(f)JRaf3(f) + .... (6.3.2) 

o 
In (6.3.1), we used the Christoffel derivative D since, in conlparison with D, only 
higher order deviations are expected to arise in (6.2.2). Moreover, according to 
(6.1.3h, the Christoffel derivative is appropriate for the expansion of ~. Consequently, 
(6.1.3h 1l10tivates the use of D in expanding jj~. In (6.3.2), Raf3(f) will be replaced 
by Raf3(f), since Raf3, in the intcrferolueter region, is assll111ed to be a slowly varying 
field. We also neglect products of the forn1 6x R r. 

We substitute (6.3.1) and (6.3.2) into (6.2.3). Then, to first order in the diInellsion 
of the extension 8x of the field and in the distance ~x, the Hanliltonian reads: 

'It = ~(a;)J It 'lto + (B"e'i)(i;) ( 6.x"'n(3'lto + ~ {ox"'. ll(3'lto} ) 

OJ 10+ ~xJ(~JRc/ )(x) 2{oxa .n/11to} (6.3.3) 

+ ~"'(i;) P'" + (lte)(£) (6.x'" P(3 + ~{ox"" P(3}) 

o f3 10+ ~xJ(~JRa )(x) 2{8xa, Pf3} 

J1: ({} {:3 ,0 f3 0 f3 ~)+ s 13 (Da~ )(x) - (~JKu )(x) + ~xJ(~JRo )(:1,) + .... 

We neglected products of the contortion with the rotation or the acceleration, respec­
tively. The results of this and the last section were achieved recently, a lllore detailed 
analysis will be presented in a forthcoluing publication. 

Our procedure is especially appropriate for evaluating interference experiInents. 
If we are going to describe an atolll by such a lllatter field and if the external field 
is 110t so strong as to be able to extract an electron fr0111 an atolll, then the lllatter 
field is always localized. The operator Po will be interpreted as nlonlent.llln, laf3 := 

!{8xa ,'P/:,} as orbital angular nIOlnentu111. Ea := n o 1to as energy flux and Ea :=f3 

33 



!{6xCi , nj3 Ho} as energy dipole-nloluent. Therefore LCij3 := ~x[Cipj31 represents the 
angular nlOluelltluu and E Ci j3 := ~x[CiEj31 the energy dipole-nloluent of the center of 
mass with respect to O. Furthenuore~ jCij3 := lCij3 + E

Ci
j3 + SCij3 is the total angular 

nlOlllentunl and energy dipole-nlonlent with respect to the center of mass C. Thus 
we find for the Haluiltonian: 

(6.3.4) 

'ci (6.3.5)J j3 
"'-v-' 


inertial spin 

coupling 


+ 
orbital angular nlonlentunl­ spin -curvat ure spin-torsion 

Rienlann curvature 

The first tenn on the right hand side of (6.3.4) describes the energy and the trans­
lational 11lOluentUlTl of the field with respect to the Killing field. In the second term 
Hint, according to (6.3.5)~ the angular luonlenttuu and the energy dipole-lllonlent of 
the total systenl are coupled to the rotation and acceleration of the Killing field. These 
terms result in the Sagnac type effect. and its thne-like analogue, the COW-effect. 
Additionally, spin plus orbital angular nloluenttuu, that is, the total angular momen­
tum j, also couple to rotation and acceleration thereby generalizing the well known 
spin-rotation coupling [Scluuutzer (1973), Collier (1977), Audretsch and Laillmerzahl 
(1983), Mashhoon (1988), Hehl & Ni (1990), Lanuuerzahl (1991)]. The subsequent 
terlllS nlediate the coupling of the orbital angular nlonlenhnll to the Rieillannian cur­
vature as well as that of the spin of the lllatter field to the (total) Cartan curvature. 
The last tenu exhibits an explicit coupling between the luaterial spin current to the 
contortion tensor. Note that only the spin current "feels' torsion whereas all orbital 
terms react only to the Rieluannian curvature, as worked out by Yasskin and Stoeger 
(1981 ). 

For a pure space-like spin current (as ill the case of Dirac nlatter) we introduce 
Cia more convenient notation by relating SCi{3 +-+ 8. Wci{3 +-+ W. a +-+ ii. eJ K ci j3 +-+ K, 

and ~x +-+ x. Then we find. see Table 2. the lowest order inertiaL curvature, and 
torsion effects of the luattcr field Hcuuiltollian (6.3.4). 

The Haluilton operator can be used to calculate the outconle of an interference 
experinlent with an interferonleter of sluall extension. A particle beanl is coherently 
split and brought to interference after having travelled along separate paths. The 
interferonleter is assunled to travel along a Killing trajectory. For describing such 
experinlents, the senIi-classical approxiluation is appropriate. Accordingly, we assuille 
that the field equation 8L / 84' = 0 possesses an approxhnate solution of the fornl 
'l/J ::::: cpexp( kSL with S as the classical phase. Then. in the classical lhuit, the phase 
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shift for one round trip is given by [see Anandan (1977), Audretsch and Lauunerzahl 
(1983)] 

[iiI> = ~ f (e- XE 'U; dxi + Pa dxa) ~ ~ f Eilltdt, (6.3.6) 

with a = L 2, 3. The energy E is the eigcnvalue in 1-f:~' = E',p. The expression Uidxi 

is to be calculated according to the particle~s group velocity, and P is the canonical 
nlonlentuln. Because E is constant by construction, we can siInplify (6.3.6) sOlnewhat: 

(6.3.7) 


However, it turns out to be very useful in SOlne experilnents (with spin-rotation cou­
pling and spin-torsion coupling) to enforce a spin-flip after splitting and before re­
combining the Inatter wave [sec Mashhoon (1988)]. In these cases E can be extracted 
fronl the integral only for certain parts of the path. 

1n (a· x) Redshift (Bonse-Wroblewski ---t COW) 

-w·L Sagnac type effect (Page-Werner et al.) 

-w·8 Spin-rotation effect (Mashhoon) 

p. (a . x) p / (2n~) R,edshift effect of kin. energy 

8 . (a x p) / (4nt) Inertial spin-orbit coupling 

{} 
xJ~JRol3 (l + c)of3 Orb.ang.1110111.- {}-curvature coupling 

xJ~J Rof:3 8 0 
/ 1 Spin-curvatnre COllpiing 

K .8 = ~JKol3 SOI3 Spin-torsion coupling 

Table 2. 	 Lowest order inertial. curvature~ and torsion effects for a 

general lllatter field. The interior product is denoted by J . 
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After having perforlued one interference experiIllent, we cannot uniquely at­
tribute parts of the total phase shift to the various tenus in the Hanliltonian. Rather, 
we have to lueasure phase shifts under different physical situations. These can be 
realized, for exanlple, by different boundary conditions (adiabatically changing the 
orientation of the interferolueter) or by differently preparing the quantum systelll 
(selecting a systenl with a certain polarization or spin conlPonent). 

If we insert the energy eigenvalues into the fOrIuulas of Table 2, we find a phase 
shift for each tenn. We denote the area of a COW-type interferolneter by A, its height 
by h, and its length by 1. Then we have explicitly: 

rnA 

6~a.cc = 1;. a 
 acceleration effect 

ltV 

2111- ..... A..... 
{) ~Sa.glla.C - W • Sagnac (or rotation) coupling

it 
$;';r,. _ 2ltot ...... J­
(}'.I.'S-l' - W spin-rotation coupling 

v 
a1 

8~s-o = J inertial spin-orbit coupling 

_ lha {} {3 a 
8~o-c - 2hv ROaa J f3 orb.ang.nlOnl.- {}-curvature-coupling 

a 
';r,. _ 1h Ro f3 sa spin-curvature-cou pling b'.l.'s-c - 21i aa f3

tV 

8~s-t. = hot K .§ spin-torsion coupling 
V 
2v 

6~red = 2c2 8<I>a.cc redshift of kinetic energy 

The total phase shift is the StUU of all of these contributions: 

Here ltot is the total length of the particle's path in the interferoilleter and J 
and S are the eigenvalues of the total angular nlOlnenttUll (with respect to the center 
of mass) and the spin angular 1110111entunl, respectively. The other tenllS in the 
Hailliltonian do not contribute to the phase shift. The spin-rotation, the spin-orbit, 
and the spin-torsion phase shifts are only nontrivial, provided the particle's spin had 
been inverted shortly after split ting and. again, shortly before recolubining the particle 
beanl [Mashhoon (1988)]. The inertial effects have also been derived by Hehl & Ni 
(1990) by transforillillg the special-relativistic Dirac equation into an accelerated and 
rotating franle. For the spin-curvature phase shift we oriented the interferolueter in 
such a way that the ·covector ~J Raf3 saf3 has the saine direction as the acceleration in 
the COW-case. 

The phase shift 8<I>a.cc is the leading contribution caused by the redshift of the 
energy. Note that the inertial spin-orbit coupling does not depend on the 111asS nor 
on the velocity of the particle, but only on its spin. The reluaining tenns, up to now, 
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have not yet been experilllentally verified. If we eillploy in an atonlic interferoilleter 
atonlS of atonlic weight 40, int.rinsic spin 1~ and velocity 0.171'1,/ s, then, for an effective 
interferolueter area of about 10-4 111,2, the following phase shifts are of the order 
8<Ps - o ~ 10-20 , 8<Ps - c ~ 10-25 . Thus they are not lueasurable t.oday. 
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