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Abstract

More recently, a number of interferometric experiments with electrons, neutrons,
and atoms have been performed in the gravitational field of the earth and in non-
inertial frames of reference. In atomic interferometry, additional high-precision exper-
iments are expected to be done in the near future. The results obtained with electrons,
neutrons, and atoms, respectively, can be understood by means of the Schrodinger
or, in the polarized case. by means of the Pauli equation, both of which are coupled
to the external gravito-inertial field. Based on the characteristic features read off
from these experiments, one can set up a constructive axiomatic approach for estab-
lishing an appropriate spacetime geometry and can, independently, develop a gauge
theoretical formalism for gravity. Both constructions make the Riemann-Cartan ge-
ometry of spacetime manifest. This geometry carries torsion as well as curvature.
The Riemannian geometry of Einstein’s gravitational theory can be recovered as a
limiting case for the motion of classical point particles and light rays. We put the
Dirac equation, formulated in a non-inertial frame of reference, into an arbitrary
gravitational field represented by the spacetime geometry obtained. We compute the
consequences for interferometric experiments and provide thereby a theoretical basis
for future experiments.
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1. Introduction

In these lectures we want to illustrate and to support the following thesis: Quan-
tum objects are fundamental for the establishment of the structure of spacetime and
thereby, also, for the theory of gravity.

To do so, we start our reasoning by drawing attention to the experimental foun-
dations of the interaction between quantum objects and gravity. Today, matter wave
interferometry with electrons, neutrons, and atoms provides an ever increasing num-
ber of experiments in which the influence of gravity and inertia on quantum objects
can be studied in a very direct and precise way. A simple description of these funda-
mental experiments makes use of the Pauli equation in a homogeneous gravitational
field and in a non-inertial frame of reference. There is presently still a big gap between
this experimental level on the one hand side and the theoretical level at which gravity
is quantized on the other hand side. But if one restricts oneself to classical gravity,
it is possible to read off from the experimental results some characteristic traits on
which a theory of the structure of classical spacetime can be founded.

Matter wave interferometry convincingly demonstrates the importance of gravity
and inertia in the quantum domain. Accordingly, we need a corresponding theory
which, however, presupposes a framework for the spacetime structure in the quantum
domain. How can it be established? We know from the corresponding situation
in classical physics that it would be unsatisfactory to put the postulate ‘Spacetime
obeys a Riemannian geometry™ at the outset of a theory of spacetime. What we rather
need is a physically conclusive reasoning which will eventually lead to a statement
of this type. For classical physics, there have been many efforts to establish such
a statement as a result of basic postulates related to the equivalence principle for
classical matter fields or, in the constructive axiomatic approach, to the behavior
of point particles and light rays. In experiments point particles and light rays are
typically realized by satellites and radar signals and, conversely, they characterize the
domain of application of this approach. It is evident that, for instance, the interior
of the hydrogen atom including its nucleus cannot be explored in this way. On the
other hand, to refer for the quantum domain once more to the postulate cited above,
would be as unsatisfactory as it has already been in the classical domain. Instead, we
have to take into account quantum mechanical experience right from the beginning.
This is what we are going to do.

A further reason for this procedure is the following: There is a hierarchy within
the theories of matter. Quantum physics is more fundamental than classical physics.
The latter is contained in the former as a limiting case. Matter, classically described,
such as satellites, stones, and other candidates for point particles, is composed of
quarks, leptons. and their gauge bosons. The gravitational and inertial behavior of
the complex objects should be a consequence of the behavior of the more elementary
objects. It is therefore reasonable, if not compelling. to relate a theory of the structure
of spacetime to the more fundamental theoretical framework of quantum mechanics,
which means, by the same token. to base it on the more primitive objects, namely
on the elementary particles. And this even more so, because the influence of gravity
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on classically described matter can be derived. as a limiting case, from the more
fundamental quantum approach.

This is not to be confused with the fact that quantum mechanical experiments
are performed using classical measuring devices. For a quantum based constructive
axiomatics, for example, only empirical facts will be used which can be read off in a
geometry-free way.

Finally we mention still another reason for relying on quantum objects as prim-
itive objects when exploring the structure of space-time: quantum objects, as com-
pared to classical point particles and light rays, are the deeper searching probes. The
interference experiments demonstrate that massive fields with spin couple to gravito-
inertial fields in accordance with the strong equivalence principle. The experimental
results depend on the parameters mass and spin. Based on this richer structure of
the primitive objects, additional physical structures can be geometrized yielding more
specific statements on spacetime geometry. For example, the torsion of spacetime can
be “sensed” if spacetime is explored by particles carrying spin. This makes it im-
plausible to restrict gravitational theory to the torsion-free Einstein theory from the
outset without giving a physical justification for this restriction of vanishing torsion.
Only after having established a theory of spacetime with torsion, one can try to look
for experiments which may show that torsion is negligibly small in certain domains.

Guided by these heuristic considerations and founded on an empirical basis, the
following two different procedures for establishing the geometrical structure of space-
time seem to be natural: (i) The gauge approach to gravity which represents the
generic gravitational theory for quantum mechanical matter fields and which incor-
porates the equivalence principle in an essential way. Following Einstein, the structure
and form of the gravitational potentials are read off in flat spacetime from the iner-
tial forces arising in non-inertial frames. Following Cartan (1986), in a second step,
arbitrary non-inertial reference frames are identified with a field of orthonormal (an-
holonomic) tetrads. (ii) The constructive axiomatics, as an alternative approach, does
not refer to special relativity. Instead. nearly all elements of spacetime geometry are
built up by reformulating as postulates experience largely gained from matter wave in-
terferometry. Both approaches independently result in a Riemann-Cartan spacetime,
carrying torsion as well as curvature, thus validating the thesis stated above.

The article is organized as follows: As experimental background, in Sect.2, matter
wave interferometry is described with reference to the Pauli equation which is coupled
to an external Newtonian gravitational field. In Sect.3, the fundamental physical
consequences are pointed out. Based on this, in Sect.4, the constructive axiomatic
approach and, in Sect.5, the gauge approach are concisely presented. Finally, in
Sect.6, starting from the spacetime structure established, an approximation scheme
is given for the description of interference experiments in gravitational and inertial
fields. It can be used when searching for new measurable effects.

Acknowledgments: We are grateful to the W.&E.Heraeus-Stiftung and to Dr. Gerhard
Schafer for the invitation to present lectures at the Bad Honnef School on Gravitation.
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2. Experimental background

2.1. Interferometers

Interferometry belongs to the fundamental experiments in physics. By means of
interferometry one can study the structure of the interferring light and matter waves
as well as the type of interactions of these waves with external fields.

Interferometry of light waves has been known for quite some time. It can be
described by means of the eikonal approximation of the Maxwell equations. Interfer-
ometry of matter waves can be understood only if one takes into account the quantum
theory of matter (at least within a certain approximation). Therefore matter wave
interferometry provides a tool for testing some principles of quantum theory as well
as the influence of external fields on quantum matter.

Up to now there are three types of matter waves at our disposal!) for which
interference had been observed and which can be used to study the interaction with
external fields. These are electrons, neutrons, and atoms. The corresponding inter-
ferometers are mostly of the Mach-Zehnder type, that is, there are spatially sepa-
rated matter beams as, for instance, in the Bonse and Hart (1965) perfect crystal
interferometer. Other types of interferometric setups are also possible, such as the
atomic fountain setup of Kasevich and Chu (1991). Furthermore, by means of exciting
trapped atoms, one can do interferometry of atoms which remain at the same place.

Electrons and neutrons are most conveniently described by means of the Pauli
or the Dirac equation. Atoms are, of course, more complex objects and should be
described in an n-particle approach. In some approximation, this yields a Pauli-
type equation with magnetic and electric dipole moments or its respective relativistic
version. This represents a center-of-mass motion with additional degrees of freedom.
In the following we will restrict the external forces to gravitational and inertial forces,
that is, we study the influence of the spacetime geometry on quantum matter.

Electrons are the first matter waves proper interferometry has been done with.
Today charged particle interferometry is still based on electrouns.

The advantages of ncutron interferometry consist in the simplicity and the macro-
scopic dimensions of the interferometer. The comparatively large separation of the
neutron beams provide a device to study quantum mechanics in macroscopic dimen-
sions.

(1) As the earliest matter wave ‘interferometer’. sensitive to an external gravitational
field, one may consider the K% K%-meson system as described by Good (1961).
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Figure 1. a) The triple biprism interferometer, b) the electron optical set up, c) the
path of the electron beams [taken from Hassclbach and Nicklaus (1988)].

In comparison to neutron interferometry, atomic beam interferomietry provides
several advantages: (i) By means of laser cooling and trapping, atomic beams can
be prepared with very low velocites, (ii) atoms have a larger mass and hence smaller
deBroglie wavelengths [this together with (i) yields for a large class of interference
experiments an increased accuracy], (iii) there are much more possibilitites to ma-
nipulate atomic beams because of their internal degrees of freedom, (iv) sources of
atomic beams are much easier to handle, and (v) because of the internal degrees of
freedom there are additional effects which may possibly be tested with atom beam
interferometry based on new types of interferometer experiments. However, because
of the low velocities of the atoms, the experiments are not well suited for testing
relativistic effects.

2.1.1. Electron

Interference of electrons has first been observed by Marton et al. (1953) by
using crystal plates as beam splitters where the electrons undergo Bragg scattering.
An effective type of electron interferometer was built by Mollenstedt and co-workers
(1954, 1961) using a triple biprism (see Fig.1). They achieved a beam splitting of
about 100 um and a path length of about 10 cm. The electrons had an energy of 1
keV and hence a velocity of about v = 0.06 ¢, where c is the velocity of light.

Also a double-slit interferometer for electrons has been built by Méllenstedt and
Jonsson (1959).



Figure 2. The single crystal interferometer for neutrons of Bonse and Hart (1965).
The incoming neutron beam is spit at the first slab. The second slab serves as mirror
and at the third slab the beam is recombined. The intensity of the interfering beams

can be read off from the counters D1 and D2. @ is the Bragg angle. D3 is a reference
counter.

2.1.2. Neutron

The neutron interferometer designed by Rauch. Treimer. and Bonse (1974) is,
because of its conceptual simplicity, a very successful interferometer for quantum
matter waves. It demonstrates the wave aspect of matter on macroscopic scales.

The interferometer consists of a silicon single crystal (see Fig.2). Three slabs
are cut from the crystal. The first two slabs serve as beam splitter and mirror,
respectively, whereas the last one recombines the two beams such that the information
related to the interference is coded onto the beams leaving the third slab of the
interferometer. By means of this set-up, one does not observe any interference pattern
directly as, for instance. in the case of a double slit experiment with light where the
interference fringes are displayed on some screen. Instead, this neutron interferometer
set-up is designed for observing phase shifts induced by varying external parameters,
like the orientation in the gravitational field or the strength of some magnetic field
influencing one of the neutron beams.

Neutron waves entering the crystal undergo Bragg scattering at the atomic planes.
Within the crystal the neutron beams propagate perpendicular to the crystal face.
When leaving the crystal they split into a forward and a backward beam.(?) The
height and the length of the interferometer are of the order of 10 em. This means that

(2) Actually, the propagation within the crystal is more complicated because there
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one can do quantum mechanics on a macroscopic scale. The matter waves used are
thermal neutrons with a wavelength of about 0.1 um, which is equivalent to a velocity
of about 2000m/s. The coherence length of such a neutron is about 30 um, whereas
the extension of the wave packet is of the order of 1 cm.

A double slit set-up for neutron interferometry has been built by Klein et al.
(1981) to confirm the Fizeau effect for neutrons.

2.1.3. Atom

Today there are five types of atomic beam interferometers working around the
world.

(i) The first one, based on a double slit as mechanical beam splitter, was build by
Carnal and Mlynek (1991) [see also Carnal (1992)]. The slit width is 1 um and
the two slits are 8 um apart. The length of the path is about 1 m (see Figs.3 and
4). Helium atoms are used with a velocity of 500m/s.

N
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Figure 3. Schematic representation of the atomic beam interferometer of Carnal and
Mlynek (1991). N: nozzle system and gas reservoir; EE electron impact excitation; A:
entrance slit; B: double slit; C: detector screen: SEM: secondary electron multiplier.
d=8 um,L=L'=064cm.5; =2 pm.sa=1 um.

(ii) Keith et al. (1991) took a grating as mechanical beam splitter with about the
same geometric dimensions as the double slit.

(iii) Riehle et al. (1991) used a totally different device as beam splitter: As pointed
out by Bordé (1989), one can use four travelling laser waves for transmitting to

are two slightly different propagation directions which, by interference, yield the so-
called ‘pendellosung’. Hence four beams leave one slab leading to eight possible paths
within the interferometer. which all interfere at the last slab. Since the phase shifts
as, for example, those induced by gravito-inertial effects, depend on the geometry of
the paths, it influences the interpretation of the measuring data. This problem is still
under investigation, see Horne (1986) and Werner and Kaiser (1990).
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Figure 4. Experimental setup of the Carnal-Mlynek (1991) interferometer. EC:
expansion chamber (N nozzle system, SK skimmer orifice); EI: electron impact exci-
tation area; CH chopper (velocity selector); EX: experimental chamber (insertion of
double slit, etc.); SEM: secondary electron multiplier.

the atoms well defined momenta. By resonant absorption and emission processes,
energy and momentum is exchanged between atoms and photons (see Fig.5). A
wave packet with momentum p and internal state |a > is put at the splitter 1
into a superposition of states |a, py > and |b,p+ Ap > by the momentum transfer

11
| b.my > Ic.z>/

fa.m,>

Figure 5. Beam split-
ting of an atomic beam
by means of optical
Ramsey excitation us-
ing four travelling laser
fields. In the first (left)
interaction zone the
atomic matter wave 1s
coherently split. The
second and third inter-
action zones act as mir-
rors. In the last zone
the beams recombine
and interfere with one
another [Bordé (1989)].
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(iv)

(v)

Ap = hk from the laser wave. After similar laser induced transitions |b,p +
Ap >— |a,p > and |a,p >— |b,p — Ap > in points 2 and 3, the two
atomic waves interfere at point 4 after interaction with a fourth laser beam.
(A second possiblity is represented by the dashed lines in Fig.5. This optical
beam splitter allows coherent separation and recombination of atomic beams.
In the realisation of Riehle et al., Calcium atoms are used with a velocity of
about 700m/s and a momentum transfer of about 2 x 10728 kgm/s correspond-
ing to a deflection angle of 22 urad.

Note that because of the small beam separation it is not possible to put anything
between the paths. However, because the position of the atom for the transitions
between the internal states is not relevant, this configuration provides a high
atomic beam flux.

The same type of interferometer, but using Magnesium atoms, has recently been
built by Ertmer (1991).

Kasevich and Chu (1991) used Ra-
man transitions of Sodium atoms
to transmit a well defined momen-
tum from the laser light to the
atoms. They used laser cooled
atoms with a temperature of 30
pK, which is equivalent to a veloci- 4,
ty of 18 cm/s. They have done this ' ) e /

for two configurations: the Mach- 4 /
Zehnder and the atomic fountain / /
configuration. = Whereas in the
Mach-Zehnder configuration the h / /
atom beams are spatially separa-
ted, the atoms move in one direc- ;T
tion only in the fountain config- A
uration (see Fig.6). They absorb . At At t
and emit momenta from the laser o ‘
light in the direction of motion in
such a way that, before recombi-

N

_
\
~N

Figure 6. Space-time diagram of an

nation, half of the atoms in the atomic beam interferometer using an
. . . atomic_fountain. Solid lines:
beam is travelling faster than the |1,p>. Dashed lines: g%ﬁ:elfg:iA;?.te

other half.

The most recent atomic beam interferometer was built by Shimizu, Shimizu, and
Takuma (1992). They use ultra-cold 1s; metastable Neon atoms the trajectories
of which are determined only by the inital velocity of the atoms and by the
gravitational acceleration (see Fig.7).

Other beam splitters and mirrors for atomic beams are under construction: Ex-

amples are beam splitters based on the Kapitza-Dirac effect [Kapitza and Dirac
(1933)], on Bragg scattering of atoms from standing light waves [Martin et al. (1988)],
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on the Stern-Gerlach effect [Miniatura at al. (1991)], or using the concept of velocity-
tuned resonances [Glasgow et al. (1991)].

2.2. Gravito-inertial experiments and their simple theoretical description

In this section we describe the outcome of the interference experiments with the
help of the simplest theory, that is, by means of the Pauli equation in a rotating
and linearly accelerating frame under the influence of Newtonian gravitation. The
measurability of the corresponding effects has been discussed for atomic beam inter-
ferometers by Clauser (1988) and Audretsch and Lammerzahl (1992).

2.2.1. General formula for the phase shift

We use the Pauli equation as field equation for describing the propagation of
matter waves with spin 1/2 in an external constant gravitational field g:

’-2
A+ wg,.a.,,]d) = [-——-I:-—-A —Mgg - 7"]'111. (2.2.1)

h?
[ 2m;

2m;

Here we distinguish between the inertial imass m,; and the gravitational mass m.
We transform to a frame with constant rotation & and linear accceleration @. Then,
to first order in & and @, we find

2
ih——-*q[:z[ h

B I
_-277-;1—.& +w - ([ x thV + 5’0’) - (mgg -_— mta) . 7-]1/}, (222)

where & represents tlie Pauli matrices.

The phase shift for a matter wave interference experiment can be calculated in the
the semi-classical WKB approximation: ¢ = pexp (%qﬁ) , with Vo ~ 0 and VV¢ ~ 0.
Substitution of this ansatz into (2.2.2) yields

2

Bo= |+ @ (L4 5) - (myd = ma)- 7] 0. (223)

with L := 7 x P denoting angular momentum, S spin angular momentum, and E :=
~04¢ and 7 := —V¢ energy and momentum, respectively. We choose ¥ = 0 at the
beam splitter.

An interference experiment must be done under quasi-stationary conditions, oth-
erwise the interference fringes may wash out. For the theoretical description, however,
we assume strict stationarity. Nevertheless, the results obtained may be used in or-
der to describe adiabatic changes of parameters. In the calculation we take FE to
be constant. Now we solve (2.2.3) with respect to p and have, to first order in the
interactions,

N E;
p= \/Qm,; [Ek;,, — & L+ (my§ — mid) ~F] ~po (11— ) (2.2.4)
2Ekin
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2
with Ey;y, = Po s Biny 1= @ - (7 x
2m;
Po) + (mgg — m;@) - 7, and py be-
ing the modulus of the momentum
of the matter wave at the position

of the beam splitter.

Vacuum
enclosure Then the resulting phase shift
in an interference experiment with
1s; Ne . .
symmetric paths is given by
1
bp=— Qp-dr
¢=< f P
1
— "'E Ei“tdt ) (225)
where dt has to be calculated from
MCP  FssoTossessy the classical path and the group ve-
Fluorescent : locity of the wave packet as deter-
plate mined by the plane wave solutions.
Figure 7. Experimental setup of the Shimizu et ‘ Herewith we obtain the well-known
al. (1992) interferometer. After being trapped, - formula [see Heer (1961), Overhau-
the atoms fall freely through the double slit. .
The experiment is done for different positions ser and Colella (1974), Page (1975),
(heights) of the screen (fluorescent plate). Anandan (1977)]

1 (myg —mia)A il -
¢ = %j([‘ﬁ'("?xﬁo)+('m,g§'-ml-5:).7:°]dt: ﬁ(”ljg vm a) + Q%w.A |
0
‘ J Y )
grav.& acceleffect Sagnac type effect

(2.2.6)
where A is the interferometer area. Note as characteristic results that even for m; =

mgy the mass parameters do not drop out and that § and @ have an equivalent influence.

The interaction energy o - S of (2.2.3) can only be observed if for one path a
spin flip is imposed after splitting and before recombination of the two beams, see

Mashhoon (1988).

Effects of tidal forces, that is space variations of the eath’s gravitational field g,
seem to be too small to be detectable in the laboratory by present-day interferometers.
Some detailed derivations are given in Sect.6.

2.2.2. Effect of acceleration & gravity

Using the neutron interferometer, the effect of the earth’s gravitational field [eq.
(2.2.6) for @ = & = 0] has been measured by Colella, Overhauser, and Werner (1975).
This is usually called the COW-experiment. Bonse and Wroblewski (1983) have
obained exactly the same interference pattern in a reference frame accelerated with

12



d = g [for & = 0 and no influence of gravity] (see Fig.8). Assuming the equality
of inertial and gravitational mass, m; = m,, this experiment proves the complete
equivalence of acceleration and gravity as reflected in (2.2.4). Nevertheless, the effect
remains mass dependent. This will be important for the subsequent discussion of the

strong equivalence principle for matter fields.

Figure 8. Experimen-
tal setup of Bonse and
Wroblewski (1983). n:
incoming neutron
beam; 1: fore crystal;
2: interferometer on
traverse; 3: loudspea-
ker magnets; 4: func-
tion generator; 5: posi-
tion transducer; 6: neu-
tron detector measur
ing the inteusity; 7: po-
sition-to-pulse-height
converter; 8: pair of
single channel analyzer;
9: Al phase shifter.

Gravitational acceleration has also been observed for atomic beam interferome-
ters by Kasevich and Chu (1991) and Shimizu, Shimizu, and Takuma (1992). Shimizu
et al. measured by interference at a double slit the change of the deBroglie wavelength
arising from the gain in energy during the free fall of the atoms in the earth’s grav-
itational field (see Fig.9). In this way they tested not only the linear approximation
in g but the complete expression,

5¢=ffE,/1-—?-"-"L"-‘J—gg-fdt, (2.2.7)
m; vy

which is a direct consequence of (2.2.3).

An important feature of this experiment is the fact that the center of mass of the
wave packet moves in downward direction mass independently like a classical point
particle (¥ = —g), i.e.. in accordance with the weak equivalence principle (m; = mg).
On the other hand, the double slit at the same time causes a quantum uncertainty to

the vertical momentum component leading to a mass dependent interference pattern.
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2.2.3. Sagnac type effect"

The Sagnac effect for light has been ver-
ified by Michelson and Gale (1925). For mat- 2004

ter wave interferometry, the Sagnac effect is s

a consequence of the coupling of the rotation

of the reference frame to the angular momen- 100 -

tum of the matter wave. For neutrons it was

Fringe separation (um)

measured for the rotating earth by Werner %]

et al. (1979) and for a rotating turntable by
Atwood et al. (1984). Riehle et al. (1991) G0 80 100 120 140 180 180 200
measured the influence of the rotation of a Time (ms)

turntable on atomic beams. For electrons

the effect was measured by Hasselbach and Figure 9. Fringe separation versus

. transit time of the atoms crossing the
Nicklaus (1988, 1989, 1991). interferometer of Shimizu et al. (1992).

2.2.4. Spin-rotation coupling

On the non-relativistic level, by using matter wave interferometry, this coupling
can only be measured by flipping the spin along one of the two paths. Let the length

of the path, where the spin is in its flipped state, be Alg;,. Then the phase shift will
be
al Alﬂip

$p=a-8 . (2.2.8)
Vo

This effect has not yet been detected. However, for neutron interferometry a phase
shift of 1027 [Mashhoon 1988)] is expected and for the atomic fountain configuration
of Kasevich and Chu (1991) a phase shift of 7 may be possible.

2.2.5. Linearity of matter field equations

In addition to the effects described by (2.2.6), we mention here a matter wave
interference experiment which is important for the general structure of quantum me-
chanical field equations.

Into the Schrodinger equation non-linearities of the type bln(|4|?)v, b = const.,
have been introduced. which still allow to construct a conserved current. By bringing
in attenuators at different positions into the neutron beams, Shull et al. (1980) found
out that the parameter b, characterizing the strength of the non-linearity, has to be
smaller than 4 x 10713 eV.
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3. Consequences of matter wave interferometry

Having the results of the interferometric experiments at hand, together with a
simple theoretical description, we are now in a position to address the question of
how to read off from these findings the appropriate description of the spacetime in
which the matter fields propagate.

We will first turn our attention to the superposition principle and to the mass
dependence of the phase shift of a inatter field. These principles represent fundamental
knowledge which is instrumental in a constructive approach to spacetime axiomatics.
Then, more specifically, we will exploit the experimentally verified ¢grq,%-coupling
and compare it to the way a point particle couples to the gravito-inertial field. The
relationship of the 4,4, %-coupling to the equivalence principle (EP) will be described
in some detail.

3.1. Superposition principle

The linearity of quantum mechanics represents a very fundamental principle. In
order to learn more about quantum mechanics. this principle has been questioned
by Shimony (1979) and Weinberg (1989). amongst others. The experimental results,
described in Sect.2.2.5, imply that matter waves are governed by linear field equa-
tions. Other types of experiments give even stronger estimates, see Physics Today
The linearity of the field equations will be fundamental for establishing a spacetime
structure by starting from quantum principles.

3.2. Mass dependence of phase shift

The phase shift in (2.2.6) is "mass’ dependent. Here 'niass’ denotes a parameter
m which is assigned to different types of matter fields. such as electrons or neutrons,
for example.

If one used the same interferometer for different matter waves, the resulting phase
shifts would differ in accordance to the ‘mass’ of the quantum objects. In particular,
the positions of the interference fringes for different particle types can be compared
without any reference to geometry. Results of this type we shall use in Sect.4.3.

What in point mechanics is called ‘mass’, attributes to a quantum object a certain
property related to its wave character. The parameter m is essentially a proportion-
ality factor between the phase shift 6¢ and the gravito-inertial field (multiplied by
the interferometer area). Or, turning the argument around, one may define the mass
of a matter wave by this kind of expernnent.

3.3. Structure of the gravito-inertial coupling to the matter field

We now turn to the more specific form of the coupling to the gravito-inertial field.
As shown above, it has been experimentally verified that the ¢g.q.,4-coupling appro-
priately describes the behavior of a matter wave in an external gravitational field.
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The Pauli equation (2.2.1), however, which we used in Sect.2.1.1 for the derivation
of the general formula (2.2.6) for the phase shift, represents only the non-relativistic
approximation of the gravitationally coupled Dirac equation. Consequently, we have
to understand the coupling of gravity to the Dirac equation and how this is related
to the way gravity influences the motion of a point particle according to Einstein’s
heuristic derivation of general relativity theory (GR).

3.3.1. Point particles and the m@'%pgmv-coupling

Let us have a look at Table 1 (see next page). Consider a mass point with mass
m and velocity u* := dz*/ds = y(1,7), where 7 := 1/v/1 — v2. In the flat Minkowski
spacetime My, the point particle’s force-free motion in an inertial frame of reference
(i.e. in Cartesian coordinates) is governed by the equation
du’ *

m—

— = 0. (3.3.1)

Observe that for the description of a world line z* = z*(s) of a point particle (holo-
nomic) coordinates z* with 4,5, k... = 0,1,2,3 is all we need from the geometrical
backgroud. The natural (or coordinate) basis 9;, which is linked to the coordinates,
will, however, not be sufficient for describing, say, a spinor field ¢/ in a non-inertial
frame. Then we must turn to an orthonormal frame e, with (anholonomic) indices
a,B,v...=0,1,2,3. In general, e, will not be a natural frame, that is, the tetrad
coefficients e*,, in the decomposition e, = e*, 9; will no longer be integrable. We will
come back to this question in Sect.3.3.3.

The star on top of the equality sign in (3.3.1) means that the relation is valid
only with respect to the specific basis under consideration, here an inertial reference
frame represented by a (natural) Cartesian coordinate frame. In a non-inertial frame,
eq.(3.3.1) becomes:

du’ i -
md—z +m {J‘k} wuk =0. (3.3.2)

The inertial forces emerge as additional terms m {J‘k} uu® bilinear in the velocity

u* of the particle. For small velocities v < 1 and a static metric g5, which deviates
from its inertial values 7;; < diag(—1,1,1.1) only weakly, (3.3.2) yields

ol

dv = 900
771-(—1—1-/- + mV(——)

5) 0. (3.3.3)
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Table 1.

Einstein’s approach

gauge approach

elementary object in SR

mass point m

Dirac spinor ()

inertial frame

Cart.coord..:c": '
ds? = n;; dridz?

orthon. hol. tetrads
€a = 6:18i1 €a'€3 = TNap

force-free
motion in IF

du' *
ds =0

(i7'0; — m)h = 0

non-inertial frame

arb. curvilinear
-7
coord. z*

orthon. anhol. tetrads
€q = €'40;

coframe 9% = e¢;*dx?

force-free
motion in NIF

[i7*€'a(0; + Ti) — mjy = 0

I‘i = %F§77577

non-inertial objects

1904‘ I'\aﬁ — _Fﬁa
16 + 24

constraints in SR

R(9{}.{}) =0
20

T(9e,e,T)=0, R(OT.T)=0
24 + 36

global IF

9i5 = nijs {1} =0

(e:%, T2P) = (62,0)

switch on gravity

R#0

Riemann

T +#0, R#0

Riemann — Cartan

local IF

gisle =mij . {3 }lp =0

(e;% T2P)|p = (62.0)

field equations

Ric— %tr(Ric)wmass

Ric — %tr(RiC) ~ mass
Tor + 2 tr(Tor) ~ spin
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Accordingly, in Newtonian parlance, the Christoffel symbols {;&} subsume the

gravitational field strength whereas the metric goo/2, with a suitable additive con-
stant, represents the gravitational potential.

In Newtonian mechanics, the equation of motion for a point particle with inertial
mass m; and gravitational mass m, reads

-~

d —
mid—: = -MmgVsray - (3.3.4)

If and only if the proportionality (in suitable units: equality) of inertial and gravita-
tional mass is valid (weak equivalence principle, or weak EP), then (3.3.3) and (3.3.4)
coincide, provided we have approximately

goo = -1+2 Pgrav - (335)

This line of reasoning is represented in the 2nd column of Table 1 and, for histor-
ical reasons, named as “Einstein's approach”™. As is evident from (3.3.3) and (3.3.4),
the m‘?cpgm,,-coupling or. synonymously, the m{ }-coupling. can be considered as its
characteristic feature. And then the weak EP directly yields the universality of the
free-fall, that is, the mass independence of the equation of motion (3.3.4) or (3.3.2),
respectively; compare the discussion in Einstein (1955).

It should be clear, however, that even if the equation of motion is mass indepen-
dent, the (time-independent) Hamilton-Jacobi equation for the point particle in the
gravitational field

(V)"

2m;

-myg-T=FE (3.3.6)

~

does depend on the mass also after the application of the weak EP (Dehnen, private
communication). The analogous effect is then expected to occur in Schrédinger type
equations for matter fields.

3.3.2. Different equivalence principles

We applied in (3.3.4) the weak EP to a point particle. However, it should also be
possible to formulate it for matter fields. Since a point particle is localized whereas
a field is spread over spacetime. the EP has to be discussed separately for these two
cases. Conventionally, an EP is called weak, if, within some theoretical framework, it
leads to the universality of free fall (see Sect.3.3.1). It is called strong, if it implies a
special form for the equation of motion of a point particle and for dynamical equations
in general. We will use this terminology.

If we abstract from the Newton-Einstein type of equation of motion of Sect.3.3.1,
then for a classical point particle the weak and the strong EPs read, respectively:

(i) In the absence of any interaction other than gravitation, point particles, with
the same prescribed velocity in some point of spacetime, move along the same
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path irrespective of their mass. This gives rise to a path structure of spacetime
according to [cf. Ehlers and Kohler (1977) and Coleman and Korte (1980)]
: : . dx?
u' 4+ H(z,u) = au", ut = — (3.3.7)
dA
for some parameter A and some function a. In the context of Newtonian physics,
this means the equality of inertial and gravitational mass.

(ii) Strong EP or the equivalence of gravity and acceleration: Locally, the acceleration
caused by gravity can be transformed to zero for a point particle provided there
are no fields present other than gravity. In other words, locally the point particle
is not accelerated in some specific coordinate system and for some parametriza-
tion of the path: @#* = 0. In the general-relativistic case, this leads to a projective
structure,

a0t + Djtufuf = au (3.3.8)

for some connection I'j;".

3.3.3. Matter waves and minimal coupling

Turning now to matter waves, we will follow up the discussion of the ‘gauge
approach’ column in Table 1. Taking a Dirac field in the Minkowski spacetime My as
the generic case, we have to study the Dirac equation in inertial and in non-inertial
frames according to the standard formalism [cf.McCrea (1987, 1989)):

A spinor field is linked essentially with the notion of orthonormality, since it
derives ultimately from the representations of the Lorentz group. By contrast, a ten-
sor can easily be generalized to linear transformations. To define a spinor field in an
My, we need an orthonormal reference frame at each event, i.e. a basis of four vectors
{ea} (@ =0,1,2,3) such that

gap = g(eq.ep) = diag(—1,1,1,1). (3.3.9)

The vector basis e, can be decomposed with respect to the tangent vectors 0; of the
coordinate lines according to e, = €, 9;. The 1-form basis 9% will be defined, in the
usual way, by

9P (eq) = 6P, (3.3.10)

[

Its decomposition reads 9° = eJﬂ dz?. In an My, both torsion and curvature vanish,
T :=d9* +Tp* AP = 0. RP = dloP —T, " AT P =0, (3.3.11)

with T,? = I';oPdz* as the connection 1-form and I'e#) = @ (metricity). Therefore
there exist global frames for which

ref =0 (3.3.12)
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and
d9* = 0. (3.3.13)

These are the so-called inertial frames. By (3.3.13), such frames are holonomic in an
My, i.e. there exist coordinates systems {z'} (spatial Cartesian coordinates + time)
such that

9 = 62dz’. (3.3.14)

Thus, in an My, the Cartesian coordinate bases already provide us with the global
orthonormal frames necessary for the description of spinor fields. However, for the
transition to gravitational theory via the strong EP. we have to use non-inertial frames
and these must be anholonomic (d¥® # 0 and I'*? # 0) if they are to remain orthonor-
mal.

Let be given the Dirac equation in an inertial frame of reference (iy* 8; —m)vy = 0.
The 7 denote the Dirac matrices fulfilling v(*4?) = . The important step consists
in the transition to a non-inertial frame. And here we take recourse to the COW-
experiment [Colella et al.(1975)] and to the BW-experiment [Bonse & Wroblewski
(1983)], see the discussion in Sect.2.2.2. The COW-experiment verifies the @g,q, ¥-
coupling of the Newtonian potential to the matter field, as given in (2.2.2). The
BW-experiment, on the other hand, shows that the gravitational field in (2.2.2) can
be simulated by means of a linear acceleration. The corresponding (m;a - 7¥)1-term,
however, had been derived by formulating the Pauli equation with respect to an ac-
celerated frame. Consequently, this procedure of transforming a matter field equation
from an inertial into a non-inertial frame of reference has been verfied by COW in
conjunction with BW. Needless to say that also the Sagnac term in (2.2.2), which we
won by evaluating the Pauli equation on a turntable, belongs to the established results
of matter wave interferometry, see Sect.2.2.3. In other words, the ‘Mashhoon’-term is
the only hypothetical one in (2.2.2).

Returning to the Dirac equation. we transform it into a non-inertial frame in an
analogous way as we did it for the Pauli equation. namely by rotating the local frames
e, into a non-inertial position. Thus we relax the conditions (3.3.12) and (3.3.13).
This results in (see Table 1):

[i’y"eia (8,; + i—I‘,;S"'ygfy‘,) - m] P =0. (3.3.15)

We recognize that the gravitational potentials e’,, (or ejﬁ) and T';?7, which become
manifest in non-inertial frames, deviate from their inertial values

(e,ﬂ, 1“,,4’7) 2 (5,{%", 0) . (3.3.16)

In other words, the (e,ﬁ, I‘,;m) describe the gravito-inertial field, or rather its poten-

tials. In an M, the potentials can be ‘trivialized’ globally, since both torsion T? and
curvature R#7 vanish.
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The leading additional terms, picked up by the Dirac equation in a non-inertial
frame with e’ = 6°, + h', and ht,, I';/?7 < 1, read,

% [hia 0; + 6:;:1—[‘;-&7377]1/7 = (ihia w)a,-w + (EI’Q‘B"va'Y[ﬁ'yv])t/) . (3.3.17)

It is of the general type of coupling the matter wave function % to the gravitational
potentials. In non-relativistic approximation, compare, for instance, Hehl et al. (1990,
1991) or Lammerzahl (1991), it degenerates to the g q,1-coupling of (2.2.2). And
this coupling has been experimentally verified, as we saw in Sect.2.2.2.

Instead of putting the Dirac equation into a non-inertial frame, as in Table 1
or in (3.3.15), we start in Sect.5 directly with the ordinary special-relativistic Dirac
Lagrangian. In non-inertial frames, the Lagrangian picks up terms of the type given in
(3.3.17). Thus for fields, the strong EP can be formulated as the principle of minimal
gravitational coupling to the matter Lagrangian. It is no longer necessary to speak
about objects which one observes directly, like the point particles in the Einstein
approach, but rather about the corresponding material Lagrangian. Apparently, this
version of the strong EP is general enough for accommodating matter fields carrying
spin and the corresponding equations of motion for spinning particles [see Sexl &
Urbantke (1983)]. A detailed presentation of this principle of minimal coupling has
first been given by Sciama (1962).

To sum up: We only need to know the behavior of a (first order) Lagrangian in
a non-inertial reference frame, then the coupling to gravity is determined. Violations
of the strong EP would require the existence of non-minimal (Pauli type) terms in
the Lagrangian containing the gravitational field strengths torsion and/or curvature
explicitly. This ends our heuristic considerations.

4. Constructive axiomatic approach to spacetime geometry

We now turn to the first of the two independent procedures for establishing the
geometrical stucture of spacetime: the constructive axiomatic approach to spacetime
geometry using elements of quantum mechanics.

The aim of a constructive axiomatics is to discover and to describe the geo-
metrical structure of spacetime by means of the behavior of appropriately selected
physical systems, called primitive objects, and of particular physical effects, called ba-
sic experience. The intended final theorem is of the type: "If spacetime is the entity
which dictates the particular primitive objects their typical behavior, then spacetime
mathematically is ...” The method thereby is to enrich the manifold step by step
with mathematical structures read off from experience. The postulates used must
be formulated in a geometry-free manner. Our procedure will be analogous to the
one followed by Ehlers, Pirani, and Schild (1972), who have used free point particles
and light rays as primitive objects. Instead, we will use matter fields ¢ : M — C”
as primitive objects. Mass and spin, as their degrees of freedom, will be essential
in our scheme in order to establish the full richness of spacetime geometry. In the
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following we will briefly summarize a simplified version of the scheme as developed
by Audretsch and Lammerzahl (1991a, b) and Lammerzahl (1990):

4.1.

Establishing the matter field equation

Because it is difficult to operationally justify from basic observations particular

field equations for quantum objects (like the Dirac equation), we will start from the
fundamental experience related to the dynamics of quantum matter fields. We will
derive a general partial differential equation governing the dynamics of the matter
field considered. It will turn out that the structure of this field equation is essentially
determined by demanding a deterministic evolution with finite propagation speed as
well as a superposition principle.

(i)

(i)

(i)

We postulate a deterministic evolution of the field as an ordered behavior ‘in
time’: There is a (1+3)-slicing of the 4-dimensional manifold M with monoton-
ically increasing parameter ¢t such that, given a field on some hypersurface, the
field will be determined uniquely on a subsequent or ‘later’ hypersurface. The
hypersurfaces for which this statement holds true are called spacelike.

For introducing the superposition principle, we require the evolution of an ar-
bitrary sum of initial data to result in the sum of the separately propagated
fields. Hence the evolution must be linear. One finds an abstract Cauchy prob-
lem %d’t = Gy, where 1/ is the field ¢ for fixed t and G, the generator of the
dynamical evolution. If as initial data derivatives of the field are needed in order
to uniquely determine the field on a ‘future’ hypersurface, then we arrive at a
higher order Cauchy problem, see Audretsch and Lammerzahl (1991a).

According to experience, signals cannot propagate with infinite velocity. There-
fore for all initial data with compact support we demand that, after some time,
the propagated field still has compact support. This requirement implies for the
generator Gy to be local. This has the important mathematical consequence that
the evolutionary system reduces to a partial differential equation of first order

i (x)0:¢(z) — M(z)p(z) =0, (4.1.1)

where 4* and M are some complex n x n matrices (not necessarily Dirac matri-
ces). In addition, this first order system can be shown to be weakly hyperbolic,
that is, the spacelike hypersurfaces are non-characteristic and all zeros of the
characteristic equation H(z,k) := det(y*k;) = 0 are real; for a weaker version of
postulate (iii), see Audretsch and Lammerzahl (1991a).

The probability interpretation of quantum mechanics is based on a real current
j* which is bilinear in the fields. Its zeroth component j° is interpreted as prob-
ability density for finding a particle at a certain location. The only object in
our theory which carries a contravariant vector index is 4*. Therefore we require
j*(z) = ¢+ Ay* to be real for some matrix A and for all +’s. This implies that
A~* is hermitian: (A4*)T = A4".
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4.2.

Establishing the conformal structure

(v) The shock waves (that is, the singularities or characteristics) of the field equation

4.3.

(vi)

(4.1.1) represent our first class of primitive elements. Jumps of lowest order along
a hypersurface ¢ = 0 obey
0= Av'kia, (4.2.1)

with some a € C™ describing the helicity states on the hypersurface and k; = 9;¢.
The solvability condition of (4.2.1) is the characterstic polynomial

HC(SL', ]\,) — det(A’yiki) — gil.,.‘i-n ki1 N kin =0, (422)
with some real tensor g**~*». Postulate (v) formalizes the experience that there
is only one light cone at any point z (that is one future and one past light cone)

and there are only two helicity states. The latter imply that the multiplicity of
the zeros of the characteristic polynomial H. must be two:

He(z, k) = (Ho(z. k)’ (4.2.3)
The uniqueness of the light cone leads to
Hy(z, k) = g*(z)k;k; = 0. (4.2.4)

Accordingly, n = 4 (that is, % has 4 complex components) and 7' and M are
4 X 4-matrices.

The important consequence is that there must exist a class of real second rank
tensors ¢*/(x). Because elements of this class of ¢g*/ are fixed by the procedure
given above only up to a positive scalar function, we are led to the notion of
a conformal structure.These g”/ can be proven to be non-singular and to have
signature 2. By means of the conformal structure we can construct orthotetrads
e, fulfilling g,-_,-ei,eg, = Nag., Where 7,4 is the Minkowski metric. Therefore we are
able to represent Lorentz-transformations.

Establiéhing the Riemannian structure

In the next step we return to (4.1.1). We select a special class of matter wave
solutions, so-called approximate plane wave solutions, by making, according to
the WKB-procedure. the ansatz ¢ = aexp (15). We demand that derivatives of
a, that is, variations in the amplitude. are negligible. We then arrive at

0=(y'pi— MP)a. (4.3.1)
iv'0;a = MWaq,

for some 4 x 4-matrices M(® and M(Y). The solvability condition of the first
equation gives a polynomial of fourth order in p, the Hamilton-Jacobi equation:

H(z.p) = (¢"pip;)* + O(p*) = 0.
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(vii)

4.4.

The subclass of free matter waves obeying (4.3.1) and (4.3.2) will be our second
type of primitive elements. The property ‘free’ is represented by the requirement
that H(z,p) = 0 exhibits the symmetry given by the conformal structure. Ac-
cordingly, if a momentum p is solution of the given Hamilton-Jacobi equation,
then another momentum p’, which results from the first one by an active Lorentz
transformation p’ = Lp, should also solve the Hamilton-Jacobi equation. By
means of the fundamental theorem for vector invariants it follows that H(z,p)
must be of the form

H(z,p) = (¢"pip; — Vi(z)) (¢ pip; — Va(z)), (4.3.3)

with two scalar mass functions V; and V, and the metric g™/ as introduced above.
Then H(z,p) = g¥pip; — Vu(z) = 0. £ = 1,2 gives the equation of motion for
the group velocity v* = g*7p; of a wave packet. The mass functions V,.(z) turn
out to be real.

Up to now it is not excluded that different types of quantum objects (denoted
by the index A), which all obey the aforementioned requirements, may lead to
different scalar mass functions V) _(z). Based on experience with matter wave
interferometry, we require for free matter waves the following: For the same
physical set-up (the same interferometer apparatus under identical conditions),
we perform interference experiments at all points of spacetime with different
quantum objects, such as clectrons. neutrons, etc.. Then the pattern of the
interference fringes. up to a constant factor, must be identical. This means
that Vy, = m?\lel . with my_ = const.. Therefore dividing Hy,_ by V;, and
introducing g7 := Wi—,T g, we find Hy (x.p) = §pip; —m3_. Causality requires
m? to be positive. With g/ we arrived at a Riemannian metric. Note that this
does not mean that torsion is vanishing, it has simply not yet been established.

Establishing axial torsion

In the aforementioned reasoning we have used so far the properties of the Hamil-

ton-Jacobi equation only. Using further properties of the matter fields, as displayed in
equation (4.3.2) governing the differential behavior of the amplitude a, it is possible to
introduce torsion [see e.g. Lammerzahl (1990). compare Audretsch and Lammerzahl
(1987)]. For this purpose, from (4.3.2). we can derive an equation of motion for
the amplitude a, which is of the form v*8;a = v'T;(x)a. In addition, we can show
that the y-matrices obey the Clifford algebra rule 4{*4?) = ¢* which the usual Dirac
algebra can be derived from. Then one can prove that the only independent bilinear
expressions are the probability current ¢y*¢ ~ v* and the spin current ¢y;vy*t). By
means of the propagation equation for the amplitude it follows that the propagation
equation for the spin current reads

4 ‘
0*(D;S* + €;;*' K,87) ~ S* (4.4.1)
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for some axial vector K. Thus the propagation of the spin vector introduces an axial
torsion.

To sum up, we have shown: If spacetime is the entity which prescribes the behavior
of the characteristics. of the free matter waves. and of the spin states in the way
specified above, then spacetime is a Riemann-Cartan spacetime with azial torsion.

By building wave packets out of free matter waves, it is possible to obtain the
paths of the maxima of the wave packets thus introducing a path structure. These
paths are the geodesics

01950 + { 'L }vj'v" =av (4.4.2)

j
of a Riemannian spacetime with the metric g;; defined above. Indices are moved with
G and its inverse and the Clristoffels are also built from this metric. Hence the
equation of motion (4.4.2) is. with respect to the Christoffel connection. the same
for all types of quantum objects. Thercfore it defines a Riemannian spacetime. It
demonstrates that the results of the axiomatics of Ehlers, Pirani, and Schild (1972)
and, in addition, the restriction from Weyl geometry to a Riemann geometry [Au-
dretsch (1983), and Audretsch, Gahler. and Straumann (1984)] is obtained as limiting

case of our axiomatics based on matter fields.

In retrospect we can specify the elements of quantum mechanics which the ap-
praoch is based on: They essentially agree with the elements which are necessary to
physically describe matter wave interference.

5. Gauge approach to spacetime geometry

Having in the last section been led to a specific spacetime geometry by the ax-
iomatic approach, which is itself based on experience extracted from matter wave
interferometry. we are now turning our attention to a gauge approach of gravity.
These considerations will be independent from those of Sect.4. However, a gauge
approach is fundamentally based on the notion of a matter field and its invariance
properties. In other words. the notion and the existence of matter waves (or fields) is
the connecting element of both approaches. In this sense. they are not independent
but rather both based on the quantum mechanical y-field. Accordingly. it is not by
chance that the letter ¢ (with an analogous meaning) features in Sect.4 as well as in
Sect.5. In the following we will resume the considerations of Sect.3.3.

Soon after Yang and Mills (1954) coupled the conserved isospin current and its
Noether-related SU(2)-invariance to their newly introduced B-gauge-field, Utiyama
(1956, 1980) extended the Yang-Mills idea to other non-Abelian groups [see O’Raifear-
taigh (1979)] and applied it. in particular. the the Lorentz group SO(1,3). In the
context of ‘gauging’ the Lorentz group. Utiyama was able, using some additional hy-
potheses, to recover general relativity (GR). Since in Newton-Einstein gravity the
source of the gravitational field is the mass, i.e. the momentum current, and the cor-
responding symmetry the translation invariance, clearly a gauging of the full Poincaré
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group as the semidirect product of the translation group Ty and the Lorentz group
SO(1,3) was desirable. This was carried out by Sciama (1962) and Kibble (1961).
They found that the Riemannian spacetime of GR must be enriched by a torsion field
[Cartan (1986)] such that the connection remains metric-compatible, in other words
the length of a vector., as in general relativity, still stays constant under parallel

transport.

In the Sciama-Kibble approach [see also Trautman (1973, 1980) and Hehl et al.
(1976)], which used structures investigated earlier by Cartan (loc.cit.), the analog
of the Hilbert Lagrangian of the underlying Riemann-Cartan spacetime was used in
the gravitational action function. As a consequence. the torsion field is confined to
matter, i.e. in vacuo the spacetime remains Riemannian. as in general relativity. Sub-
sequently gravitational models with propagating torsion were proposed, leading finally
to a general framework of a Poincaré gauge theory with a gravitational Lagrangian
quadratic in torsion and curvature.(®)

Here we will merely sketch the appropriate gauge field-theoretical formalism for
a matter field, represented by a spinor- or tensor-valued p-form, interacting with the
gravitational potentials (9. T*?) of (3.3.16) using the calculus of exterior differential
forms [see Thirring (1986)].

5.1. Poincaré invariance in Minkowski spacetime

Let us firstly suppose that there is no gravitational field and that consequently
the spacetime is Minkowskian, or M. In an My the group of motions is the (4 + 6)
parameter Poincaré group. which is generated by translations and Lorentz rotations.
The state of a particle is associated with an irreducible unitary representation of the
Poincaré group and is characterized by its mass and spin. as well as by its momen-
tum.(®) If one realizes a representation of the Poincaré group by means of a matter
field over a Minkowskian spacetime. the matter field ¥ (z) transforms as a spinor or
tensor under Lorentz transformations, depending on whether we are dealing with a
fermion or a boson, respectively. The spinorial matter field is fundamental — leptons

and quarks are described in this way — and its characteristic features are essential in
our later considerations.

() One may consult in this context the articles of Goenner (1987), Ivanenko &
Sardanashvily (1983). Kibble & Stelle (1986). Kopczyiiski (1990), Lord & Goswami
(1986), Meyer (1982), McCrea (1987, 1989), Mielke (1987), Ne’eman (1980), Ne’eman
& Regge (1978), Nester (1984), and Hehl (1980).

(4) Compare, for example. the very clear and intuitive description of Sexl and Ur-
bantke (1982).
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5.2. First order Lagrangian of a matter field

The dynamical behaviour of fermionic and bosonic matter in an Mj is determined
by their Lagrangian 4-form L which we here refer to Cartesian coordinates and hence
to the inertial frames of (3.3.14),

L= Ly, dy), (5.2.1)

where the p-form 4 is the matter field. In the sense of conventional Lagrangian field
theory, L may depend at most on first derivatives of the matter field ¥. Via the action
principle one finds the matter field equation depending at most on second derivatives:

6L 9L oL
— = — — (=1)?d(=—)=0. (5.2.2)
oy QY ady

For an isolated system. i.e. if external fields do not act, the action function
associated with (5.2.1) is invariant under Poincaré transformations. This implies, via
Noether’s theorem, the conservation of momentum and angular momentum:

d¥, =0, drap — g AN Zq =0, (5.2.3)
where oL oL
Ya=¢€q|L - (eq|dP) N (=) — (ea|?¥ — 2.
« = eal L= (eald) A (537) ~ (al¥) A (57) (5.2.4)
is the canonical (and asymmetric) energy-momentum 3-form and
oL
Tap = Glap|¥ A (5@) (5.2.5)

is the canonical spin angular momentum 3-form. If 4 is a 0-form then e, |y = 0
and the last term of (5.2.4) drops. In equation (5.2.5) G|opg] are the spin generating
operators. The “inertial currents” (X,, 7o3) represent in field-theoretical language
the particle’s mass and spin -—— accordingly the appropriate names are momentum
current and spin current. respectively. As is evident from (5.2.3) as well as from the
labels of the irreducible unitary representations of the Poincaré group, the inertial
behavior of, say. a fermion is not only characterized by its mass and its momentum
current, but also a spin concept is necessary for a complete representation of the
inertial properties of the fermion.

5.3. Minimal coupling to gravity
If we now introduce non-inertial reference frames in the My, (5.2.1) reads
L = L(9%. 3. DY) = L(9%, TP, o, dyp) (5.3.1)

with the covariant exterior derivative D := (d+ res Gap). Tetrad and connection,
but not their derivatives. appear explicitly in the Lagrangian.
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As we saw in our discussion in Sect.3.3.3. the strong EP amounts to the following:
Viewed locally, special relativistic matter in a non-inertial frame behaves in the same
way as in a corresponding gravitational field.

To which quantity characterizing a matter field do we apply the strong EP?
Certainly to the Lagrangian (5.3.1). Since the strong EP is a local principle we ought
to apply it to the differentiation level of the lowest possible order. In general, the
matter field equation (5.2.2) is of second differentiation order so that in the presence
of a gravitational field curvature terms could already emerge. Moreover, we know
that the Lagrangian enters explicitly the Feynman-quantization of matter fields and
determines the transition amplitudes. Consequently in the theory of matter fields the
Lagrangian possesses nearly the quality of an observable.

We stress again that in the original Einsteinian argumentation the EP has been
applied directly to the acceleration or the equation of motion of a point particle, i.e.
on the level of (5.2.2). We dispensed with the point particle concept and found only
the level (5.2.1) or (5.3.1) suitable for the application of the EP. Consequently we
indeed recognize (9%, I'*?) as the gravitational potentials. According to (3.3.12) and
(3.3.14), they can be globally trivialized in an My since they are only induced by the
choice of non-inertial reference frames.

5.4. Riemann-Cartan geometry of spacetime

Following McCrea (1989). the transition to gravitational theory is executed by
requiring only the local validity of special relativity and of conditions (3.3.12) and
(3.3.14):

(9%, TP) = (6%dz*, 0), locally. (5.4.1)

Thus we arrive at a Riemann-Cartan spacetime Uy which is characterized by a local
Minkowski metric (3.3.9) and a connection I'*? which is metric (compatible): I'(@8) =
0. Its deviation from a Minkowskian M, is measured by the torsion T'* and the
curvature R*?, which are both defined in (3.3.11). In fact, it is possible to prove that
in a Uy, in a suitable tetrad and in suitable coordinates. condition (5.4.1) can always
be fulfilled. Consequently. in such a ‘local inertial system’ the gravitational potentials
are trivialized and can no longer be perceived, it represents the ‘Einsteinian elevator’
of the Us. Now the Lagrangian (5.3.1) has its special-relativistic form only locally in
a suitable tetrad. The constraints (3.3.11) may be relaxed since torsion and curvature
cannot appear in the Lagrangian(5.3.1):

T*#0, R,°#0. (5.4.2)

Thereby we recognize torsion and curvature as gravitational field strengths, and a
Riemann-Cartan spacetime Us emerges as appropriate for the description of gravi-
tational phenomena. Thus. the gauge approach and the constructive axiomatic ap-
proach independently lead to the same result.

To support our line of reasoning, we add the following remarks: The strong EP
is a heuristic principle. since the notion ‘local’ used in its formulation is not exact. In
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exploiting the strong EP. we required stronger locality as compared to the one used in
‘deriving’ GR. The following procedure is also conceivable. We rewrite the constraint
of vanishing torsion (3.3.11); in terms of the connection

1
T =0 < Faﬁ = §{ea_ld193 - e)e_[d’ﬂa - (eaJngdﬂp)ﬁ"}. (5.4.3)

When this connection I'*? = T'*A(9, d¥)) is substituted into (5.3.1), then, in non-
inertial systems, L depends on 9 as gravitational potential and only the constraint
of vanishing curvature can be relaxed, whereas torsion remains zero. Accordingly one
arrives at the Riemannian spacetime V4 of GR. However, since it is always possible
to make a tetrad and coordinate transformation at a point so that (5.4.1) is fulfilled
at that point, it follows from (3.3.13) that in a V; the resulting tetrad satisfies the
constraint dd* = 0 at the point. a constraint that is non-local and hence contrary to
the spirit of the EP. Provided we do not wish to stay in the context of point particles
and their trajectories in an Einsteinian elevator’. there seems to be no reason for
requiring the constraint dJ® = 0. Hence everything speaks in favor of leaving the
adjustment of torsion to the dynamics of the gravitational field and not to rule it out
in the context of kinematics. Alternatively, one could have rewritten the constraint
(3.3.11)7 of vanishing curvature in terms of the connection:

*

R’ =0 < T*P =0 (globally) (5.4.4)

i.e. in the case of vanishing curvature there exist global parallel frames. Then, in a
way analogous to above, we would have been led to a teleparallel spacetime Ty, i.e. to
a Uy with vanishing curvature. But a Ty for fermions is no more convincing than the
V4 of GR. For a gravitational theory of fermionic matter, the Uy with its ‘Einstein
elevator’ (5.4.1), which is indispensable for a correct application of the strong EP,
offers the appropriate geometrical framework, but for scalar or macroscopic matter a
Vi or a Ty is already sufficient.

We complete our presentation with a short discussion of the appropriate Lagrange-
Noether formalism. As in any otlier gauge theory, now that the interaction has been
switched on by means of (5.4.2). the Lagrange-Noether formalism, which originally,
in the ‘pure gauge' case, leads to (5.2.2-5). has to be redone. By standard methods,
we find in the Uy the matter field equation

8L _OL _( yp (_0_1:_) , (5.4.5)
and the Noether identities
DT, = (ea|TP) N5+ (ea|RP)NTgy.  Drag—9gAZq=0.  (5.4.6)

The new definitions of the momentum current

6L oL oL
@ 1= 5 = ealL = (€a] DY) A g = (eald) A 50 (5.4.7)

s 37
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and of the spin current

§L oL
- = GO A 5.4.8
p= .-V oDy (5.4.8)

TC!

show that these inertial currents are coupled to the corresponding gravitational po-
tentials.

In an M,, the Noether laws (5.4.6) reduce to (5.2.3). The volume force densi-
ties showing up on the right-hand side of the momentum identity in (5.4.6), namely
(torsion x momentum) and (curvature x spin) i.e. (field strength x current) are re-
markable. There is a close analogy here with the U(1)-gauge field theory (Maxwell’s
theory) where the Lorentz force is exactly of this type.

These Noether laws we will use in the following section for constructing a Con-
served Energy-like quantity.

6. Testing spacetime geometry by interference experiments

In Sect.2.2.1, we had discussed the experimentally verified interference effects
to lowest order. Based on results of Sect.5.4, we are now in a position to continue
in a more rigorous fashion in order to include possible curvature and torsion effects.
This can be done using a WKB-approximation of the Dirac equation [Audretsch and
Lammerzahl (1983)] or by deriving a Hamilton operator for the energy in a station-
ary spacetime using the energy-momentum current of the respective field. This last
mentioned procedure mainly relies on Lammerzahl (1992) using unpublished results
of Hecht (1986) and of Hehl, McCrea, Mielke, and Ne'eman (1989). For other recent
work one may consult Huang (1992).

6.1. Conserved energy

Let us take the Hamilton operator method which describes the energy of the
considered quantum system in a curved spacetime for rotating and accelerating inter-
ferometers. We start from the general material Lagrangian (5.3.1), which is minimally
coupled to the gravitational field. We suppose that the matter field equations (5.4.5)
are fulfilled.

We assume the existence of a syminetry of spacetime, that is. of a Killing vector
¢ = £€%e, which fulfills the symmetry conditions

L’.fg =0. Egraﬂ =0. (6.1.1)
We introduce the abbrevations Dy := eq]D and DP := ¢gP7D., and the transposed

connection I',? := TP + e,|T”? together with its covariant exterior derivative D.
Furthermore. we note for later use

~ {}
Dot? = D8P —€]K,P.  with  K.”:=T." -T.°. (6.1.2)
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Here K*P = —KP* denotes the contortion of spacetime. Then the symmetry condi-
tions (6.1.1) can be rewritten as

- ) -
DEgP) =0 or D¢P =0. and DD.¢? = —¢|RP. (6.1.3)

Note that the last relation is equivalent to LK P = 0.

With these preparations we can find the energy expression £ according to
d€ =0, =%, + (ﬁafﬁ)r"‘ﬁ , E := / £ = const. (6.1.4)
=

where ¥, and 7% denote the material momentum and spin currents of (5.4.7) and
(5.4.8), respectively. The conservation law d€ = 0 can be proved by applying the
Noether identities (5.4.6) and the symmetry conditions (6.1.3). We always integrate
over a space-like hypersurface .

The transition to quantum mechanics is achieved by defining a scalar product by
means of a conserved quantity. Accordingly, we additionally assume the Lagrangian
to be invariant against phase transformations. This yields the conserved quantity

G =0 jlhip.z) =N o= Q=/EJ'('J'«¢’-,:E)- (6.1.5)

This construction will allow the definition of an energy operator in Sect.6.2.

Aa a simple example, we display the results for a Dirac field. Its Lagrangian
depends only on the axial torsion. For the momentum, the spin, and the Dirac
currents we find, respectively.

o= 5 (1Dt = Da*7¥) . 7% = —g¥ {*1.0%} ¥, i=—di*7y.

(6.1.6)
where * denotes the Hodge star and =y := 7, 9% the Dirac matrix 1-form; moreover,

Jap = %['Yae ¥s]-

6.2. Hamilton operator

Explicitly, we introduce a scalar product by nieans of the current j of (6.1.5):
<Yy > = / J(1. ). (6.2.1)
E .

A classical field observable Aq = [y j(4. Aath, z) is identified with the expectation
value Ay, of a quantum measurement Ag, = < ¥ | jqu [ > =[5 J (¢, Aquip, ).
Here Ay, denotes the position representation of the quantum operator ,Zl\qu‘ This
identification implies Ay, = Aq.
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Therefore the energy operator H. using also (6.1.4), can be defined according to

(), H =F = — a 1 B a
[iea) =B = [ = [ (80t (Bat?)r)
= / [€°na(nPSp) + €%(kaP Bp) + (Dat®)7%],  (6.2.2)
=

where we introduced the projection tensor ko? := 6% — non? of the hypersurface ©
with n as its normal. We can identify n? Y as the energy flux density and koP Xs
as momentum flux density. Then the corresponding terms in (6.2.2) can be assigned
to a suitably symmetrized operator expression 3{£*.noHo} and 3{£* Pa} in the
conventional way. Moreover., we assign to the spin flux density 7% the operator s%5.
This yields the symmetrized Hamilton operator

M= 2 (6% naMo} + 3 {67, Pa} + (Dad®s%. (6.2.3)

Each term in this Hamiltonian is hermitian by construction. Note that the compo-
nents of the canonical spin current describe the spin flux density, the spin density, the
energy-dipole-moment flux density, and the energy-diplole-moment density [cf. Hehl

(1976)).

According to (6.1.2), the last term in (6.2.3) splits into a spin-contortion term
and a coupling of the spin to the kinematical properties of the Killing field £ the
trajectories of which later on will be identified with the trajectories of the different
pieces of the interferometer. ’

The velocity u* of these pieces is proportional to the Killing vector £* = eX u*, with
X as the gravi-stationary potential. The projection tensor h! = §7 — u;u? transforms
the vorticity Jj;u;) into the local rotation w;; := hi"hgﬁ[kuq. Eventually, the ‘Christof-

fel’ curl entering (6.2.3) can be decomposed according to D(;&;; = eX(ws; + 2aj;uy)),

A}
where a; = uw? Dju; = —0;x denotes the acceleration of the Kiling field. Consequently,
the spin of the matter wave couples to the acceleration and and to the rotation of the
interferometer.

In particular, for the Dirac case the Hamiltonian (6.2.3) reads

f i 14} . A} N S
Ho = m’y"n,: + '2" 'Y[z’)"’} ’ij + '2'Di'nl, P = kiJDj, s = -8-’7[t"/'7]. (6.2.4)

As special case we recover the Hamilton operator in flat Minkowski space. There,
the most general Killing vector field £* = b* + w'; z? with w;j = —wj; leads to

1 - - =
H={t" +a-7 Holp — (b+at) fu+&-(L+8)¢, (6.2.5)

with the 3-acceleration @ «— w"'j nJ and the 3-rotation & «— —e*7k wjrng and @ < wijnj
[see Lammerzahl (1991) and Hehl & Ni (1990)].
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6.3. Phase shift

In an interference experiment the matter field is localized. that is, it is different
from zero only within a comparatively small region. Hence, in (6.2.2) and (6.2.3), we
can approximate both. the Killing vector, which represents the external gravitational
field, and its derivative 5.5" by a Taylor expansion. At the beam splitter we may
choose the origin O of our coordinate system. The center of mass of the matter wave
packet, the motion of which we will follow up. will be denoted by C. The difference
‘vectors’ Az := & — 7. 8z := x —  are defined to be tangent to the hypersurface :

Az|n = éz]|n = 0. Then the Taylor expansion around O reads, if we use the relations
(6.1.3):

o g
£%(z) = £%(2) + (Ax + 63)|(DEX)(2) +A:c_[£JRﬁ 2)6z° + ..., (6.3.1)
(ea) DEP)(z) = (ea) DEP)(2) + (Az + 6z)|E(Z)|RP(Z) + ... . (6.3.2)

In (6.3.1), we used the Christoffel derivative D since, in comparison with D, only
higher order deviations are expected to arise in (6.2.2). Moreover, according to
(6.1.3)2, the Christoffel derivative is appropriate for the expansion of &. Consequently,
(6.1. 3)3 motivates the use of D in expanding D{ In (6.3.2), R, A(z) will be replaced
by R, ( ), since R,P, in the interferometer region, is assumed to be a slowly varying
field. We also neglect products of the form éz RT.

We substitute (6.3.1) and (6.3.2) into (6.2.3). Then, to first order in the dimension
of the extension 6z of the field and in the distance Az, the Hamiltonian reads:

H = €(2)|nHy + (B,_,gﬁ)(;‘é) (A.’L‘an,@ Ho + %{a‘xa.nﬁm})
+ AmJ(EJ{}%G")(:ﬁ) %{M:%nﬂo} (6.3.3)
+£%(Z) Pa (“af‘?)( ) (A:r Pp+ 5 {6rv 7’[3})
+ Az|( ij A {5m ,Pg)

+ s‘na(< oE2)(E) = (E]KP)(E) + Ac)(E]RA)E)) + ...

We neglected products of the contortion with the rotation or the acceleration, respec-
tively. The results of this and the last section were achieved recently, a more detailed
analysis will be presented in a forthcoming publication.

Our procedure is especially appropriate for evaluating interference experiments.
If we are going to describe an atom by such a matter field and if the external field
is not so strong as to be able to extract an electron from an atom, then the matter
field is always localized. The operator P, will be interpreted as momentum, l"‘ﬁ =
%{6:1:"‘,77;3} as orbital angular momentum. €4 = naHp as energy flux and %5 :=
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%{63:"‘,7157'{0} as energy dipole-moment. Therefore LB .= AzlePPl represents the
angular momentum and E*P .= Azl®efl the energy dipole-moment of the center of
mass with respect to O. Furthermore. j%; := % + €%5 + s%; is the total angular
momentum and energy dipole-moment with respect to the center of mass C. Thus
we find for the Hamiltonian:

H = €%(2) (ca+ Pa) + Hine. (6.3.4)
0 . .
Hin : = DatP(z) ( L% + E% + % ) (6.3.5)
~ =~ ~—
Sagnac accel. inertial spin
coupling

{} o o 0
+ Azf(E)BL)E) (1+6)% +Ac)(E]RL)E) 5% — (E)K)E) 5% -

s s

v e

orbital angular momentum- spin-curvature spin-torsion
Riemann curvature

The first term on the right hand side of (6.3.4) describes the energy and the trans-
lational momentum of the field with respect to the Killing field. In the second term
Hint, according to (6.3.5), the angular momentum and the energy dipole-moment of
the total system are coupled to the rotation and acceleration of the Killing field. These
terms result in the Sagnac type effect. and its time-like analogue, the COW-effect.
Additionally, spin plus orbital angular momentum, that is, the total angular momen-
tum j, also couple to rotation and acceleration thereby generalizing the well known
spin-rotation coupling [Schmutzer (1973), Collier (1977), Audretsch and Lammerzahl
(1983), Mashhoon (1988), Hell & Ni (1990), Lammerzahl (1991)]. The subsequent
terms mediate the coupling of the orbital angular momentum to the Riemannian cur-
vature as well as that of the spin of the matter field to the (total) Cartan curvature.
The last term exhibits an explicit coupling between the material spin current to the
contortion tensor. Note that ounly the spin current ‘feels’ torsion whereas all orbital
terms react only to the Riemannian curvature, as worked out by Yasskin and Stoeger
(1981).

For a pure space-like spin current (as in the case of Dirac matter) we introduce
a more convenient notation by relating s%5 < S, we = d. a® - d. €K, P K,
and Az — Z. Then we find. see Table 2. the lowest order inertial, curvature, and
torsion effects of the matter field Hamiltonian (6.3.4).

The Hamilton operator can be used to calculate the outcome of an interference
experiment with an interferometer of small extension. A particle beam is coherently
split and brought to interference after having travelled along separate paths. The
interferometer is assumed to travel along a Killing trajectory. For describing such
experiments, the semi-classical approximation is appropriate. Accordingly, we assume
that the field equation 6L/éy¥ = 0 possesses an approximate solution of the form
S goexp(%_S ). with $ as the classical phase. Then. in the classical limit, the phase
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shift for one round trip is given by [see Anandan (1977), Audretsch and Limmerzahl
(1983)]

1 i 1
6P = T %(e"‘Eu.,; dz' + P, dz?) = 7 fE;mdt , (6.3.6)

L. L
with a = 1.2,3. The energy F is the eigenvalue in H1p = Fv. The expression u;dz’
is to be calculated according to the particle’s group velocity, and P is the canonical
momentum. Because E is constant by construction. we can simplify (6.3.6) somewhat:

jlée_XEu,: dz* = E / e Xw;; dAY . (6.3.7)

However, it turns out to be very useful in some experiments (with spin-rotation cou-
pling and spin-torsion coupling) to enforce a spin-flip after splitting and before re-
combining the matter wave [sec Mashlioon (1988)]. In these cases E can be extracted
from the integral only for certain parts of the path.

m(d-T) Redshift (Bonse-Wroblewski — COW)
~3-L Sagnac type effect (Page-Werner et al.)
-3-8 Spin-rotation effect (Mashhoon)

p-(@-Z)p/(2m) Redshift effect of kin. energy

S.(@x7p)/(4m) Inertial spin-orbit coupling

z|¢] %aﬁ (I+ €)%, Orb.ang.mom.-{ }-curvature coupling
z]¢|RP 5 Spin-curvature coupling

K.-§=¢|K.,” 5% Spin-torsion coupling

Table 2. Lowest order inertial. curvature, and torsion effects for a

general matter field. The interior product is denoted by |.
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After having performed one interference experiment, we cannot uniquely at-
tribute parts of the total phase shift to the various terms in the Hamiltonian. Rather,
we have to measure phase shifts under different physical situations. These can be
realized, for example, by different boundary conditions (adiabatically changing the
orientation of the interferometer) or by differently preparing the quantum system
(selecting a system with a certain polarization or spin component).

If we insert the energy eigenvalues into the formulas of Table 2, we find a phase
shift for each term. We denote the area of a COW-type interferometer by A, its height
by k, and its length by . Then we have explicitly:

6@ = %hi a acceleration effect
v
2m , o . .
0Psagnac = - @w-A Sagnac (or rotation) coupling
)
2lt0t — . . .
0P, = @-J spin-rotation coupling
v
al . . . . .
0P = = J inertial spin-orbit coupling
lhe {} )
6Py_. = 57 0aa” J%g  orb.ang.mom.-{}-curvature-coupling
v
. Lh® . .
0P, = oho ROM'B S%a spin-curvature-coupling
liot = =
0Ps. = —-ti—t- K-S spin-torsion coupling
v?
OPreqd = 202 0Pacc redshift of kinetic energy

The total phase shift is the sum of all of these contributions:

00 = 6Pucc+6Psagnac +6Psr + 0P +6Po_c+ 6B+ 6Pt +0Preq+... . (6.3.8)

Here I, is the total length of the particle’s path in the interferometer and J
and S are the eigenvalues of the total angular momentum (with respect to the center
of mass) and the spin angular momentum, respectively. The other terms in the
Hamiltonian do not contribute to the phase shift. The spin-rotation, the spin-orbit,
and the spin-torsion phase shifts are only nontrivial, provided the particle’s spin had
been inverted shortly after splitting and. again, shortly before recombining the particle
beam [Mashhoon (1988)]. The inertial effects have also been derived by Hehl & Ni
(1990) by transforming the special-relativistic Dirac equation into an accelerated and
rotating frame. For the spin-curvature phase shift we oriented the interferometer in

such a way that the covector £|R,”S “g has the same direction as the acceleration in
the COW-case.

The phase shift 6®,.. is the leading contribution caused by the redshift of the
energy. Note that the inertial spin-orbit coupling does not depend on the mass nor
on the velocity of the particle, but only on its spin. The remaining terms, up to now,
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have not yet been experimentally verified. If we employ in an atomic interferometer
atoms of atomic weight 40, intrinsic spin 1. and velocity 0.1 m/s, then, for an effective
interferometer area of about 107*m?, the following phase shifts are of the order
8B, ~ 10720, §&,__ ~ 10725, Thus they are not measurable today.
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