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ABSTRACT 

We apply Bohm's quantum potential interpretation to quantum cosmology or 

quantum geometrodynamics. In quantum geometrodynamics based on the Arnowitt

Deser-Misner canonical formalism, the equations of motion for the universe acted on 

not only by classical potentials, but also by quantum potentials are given. We study 

in detail the de Sitter minisuperspace model by introducing "extended" Robertson

Walker time. It is shown that the behavior of trajectories of the universe depends, 

especially in classically forbidden region, on the choice of the operater ordering in 

the Wheeler-DeWitt equation. We also discuss briefly chaotic inflationary models. 
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I. INTRODUCTION 

In quantum cosmology, the whole universe is described by a wave function W, 

which is defined on the superspace (the space of all three metrics and matter field 

configurations). The wave function W is a solution to the Wheeler-DeWitt(WDW) 

equation /I'll' = O. Since superspaceis of infinite dimensions, the full formalism 

of quantum cosmology is very difficult to deal with in practice. In addition to the 

technical difficulties in solving the WDW equation, we also encounter a nontrivial 

interpretational problem about the wave function of the universe. This problem has 

been discussed by many authors It seems that the "Copenhagen" interpretation 

for the quantum mechanics is inapplicable to quantum cosmology from the following 

several reasons. Firstly, since the WDW equation is a hyperbolic second-order differ

ential equation, there exists no conserved positive-definite probability density, at least 

Jlt the very early universe, as in the case of the Klein-Gordon equation. Secondly, 

:tIhe "Copenhagen" formalism assumes a possible division of the world into "observer" 

~nd "observed". However, in quantum theory of the universe, there can be no fun

.£:'dan1ental division into observer and observed. Also, measurement and observer can 

m	not be fundamental at early universes, since both can not exist at the early stage 

of the evolution of the universe. Thirdly, the ((collapse" of the wave function in the 

"Copenhagen" scenarios requires a description involving time evolution. It is not 

usually easy to introduce "time" in the WDW equation, since the WDW equation is 

a "timeless" equation. 

An alternative interpretation of the quantum theory was proposed by Bohm 


based on the notion of a particle acted on, not only by classical potential but also 


by "quantum potential". The quantum potential is determined by a solution to 


SchrOdinger equation. In this quantum potential interpretation of quantum theory, 


for exari1ple, electron is a certain kind of particle following continuous and well
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defined trajectories. In quantum potential interpretation, it was explained that all 

sorts of quantum processes, such as transition between states, quantum interference 

in the two-slit experiment are able to take place, in principle, without the need for 

a observer and also for collapse of the wave function [4]. Therefore, we think that 

Bohm's quantum potential interpretation is very suitable for quantum theory of the 

universe. This interpretation was already applied by Vink [5] to the WDW equation 

for minisuperspace, for a special value (p = 1) of the factor-ordering parameter p (see 

Sec.lV). 

In this paper, we apply this quantum potential interpretation to quantum ge

ometrodynamics based on the ADM canonical formalism and give the equations 

of motion of a universe subject not only to classical potential, but also to quantum 

potential. We study in detail the de Sitter minisuperspace model by introducing 

"extended" Robertson-Walker time, which describes well-defined trajectories of the. 

evolution of the universe not only in classically allowed region but also in classically 

forbidden region. It is shown that this "extended" Robertson-Walker time is identified 

with the usual one in classically allowed region by an appropriate shift of this time 

(axis), and the behavior of trajectories of universe (especially in classically forbidden· 

region) depends on the choice of operator ordering in the WDW equation. We also 

discuss briefly chaotic inflationary minisuperspace model. It is also shown that, in 

a simple minisuperspace model, probability density is always positive (even in clas

sically forbidden region) if the universe is expanding (see Sec.v). Comparison with 

other interpretations will not be discussed in this paper. We begin in Sec.II where 

we briefly review Bohm's quantum potential interpretation. In Sec.III we apply this 

interpretation to quantum geometrodynamics. In Sec.IV we study in detail the de 

Sitter minisuperspace model. In Sec.V we discuss chaotic inflationary minisuperspace 

models. We summarize and conclude in Sec.VI. 

II. QUANTUM POTENTIAL INTERPRETATION 

We briefly review the main feature of the quantum potential approach. The 

SchrOdinger equation for a single particle is expressed as 

.0'II ___1 V2'I1 +V(x)\I1, (h 1). (1)~8t - 2m 

We write the wave function in the form 'II = Rexp(i8), where Rand 8 are reaL Then 

SchrOdinger equation reduces to the following two equations: 

OP V8 . 
!l+V . (P-) = 0, With P R2, (2)
vt m 

08 (V8)2 V Q (3)8t+~+ + 0, 

-1 V 2R
Q=---.

2m R 

We note that multiplication of the wave function by a constant does not change the 

quantum potential Q. A causal reinterpretation of the quantum theory is based on 

the following assnmptions [3]. (i) Thew-field satisfies Schrodinger equation. (ii) A 

quantum-mechanical system, such as an electron, consists of a particle with a definite 

coordinate, which is a well defined continuous function of the time. Its velocity is 

assumed to be given by v(x, t) = ;;. (iii) P R2 is assumed to be the probability 

distribution of particles in a statistical ensemble of well-defined trajectories. This 

probability density P satisfies a continuity equation + V . (Pv) = 0, which is 

obtained from eq.(2). 

Bohm deduced that the equation of the particle acted on by the classical potential 

V(x) and the quantum potential Q(x, t) is [3] 

Jlx 
m dP = - V {V(x) +Q(x, tH· (5) 

We note that this equation can be obtained from the following equations 

x= {x, IIQ }" (6) 
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p = {p, HQ }", 	 (7) 

where HQ = ~ + V(x) + Q(x,t), which is a "Hamiltonian" containing quantum 

potential, and { }" stands for the Poisson bracket. Alternatively, eq.(5) is ob

tained from the Euler-Lagrange equation for the "Lagrangian" containing quantum 

potential:LQ = !mx2 - (V(x) + Q(x, t)). 

III. APPLICATION TO QUANTUM GEOMETRODYNAMICS 

We apply the quantum potential interpretation to the quantum geometrodynam

ics. We recapitulate the ADM canonical formalism. The (3 + 1) decomposition of the 

metric reads 

ds2= -(Ndt)2 + (dx' + Nidt)(dx' + Njdt)hi" (8) 

where N, N i and hi, are the lapse, shift functions and spatial metrics. The action for 

the Einstein gravity plus a real scalar field in the unit 161rG = 1, is cast in the form, 

J " " 

8 =Jd"x..;=gR(4.) - ~Jd4.x..;=g[g#W8p </>8,,</> + V(<b)l + surface term 

Jd"xN Vh(J(ijJ<ij [(2 + R(3») + surface term 

1'2 Nt . N" 1· 2 N 
+ d xYh[2N</> - Ji8,</></>- 2'h" 8i </>8j </>+ 2N(N'8i </» - 2'V(</»J, (9) 

where J<'j = 2~(hij - Niu Njli) is the extrinsic curvature, J( = hijJ<ij is its trace, 

a dot stands for the differentiation with respect to time and R(3) denotes the three 

dimensional scalar curvature. The stroke indicates the covariant derivative defined 

by the spatial metric hij , The canonical conjugate momentum 1r,j to hij is given by 

i1r , = Vh(I(ij - hij J<). 	 (10) 

It is straight forward to obtain the action in the phase space, 

8 = Jd4. X [1rijhij - N H NiHi] + surface term, (11) 

HI.. 1 
= ..fh(1r 

l
' 1rij - i 1r2) - VhR(3) 

+ _1 1r~ !" ij Jh
Vh 2 + 2Y hh 8.</>8j </> +2 V(</», (12) 

H' = -21r~ + 1r~8'</>, (13) 

where 1r = h.j 1r'j and 1r~ = YJ.¢ Vh~i8t </> is the canonical conjugate momentum to 

</>. The wave function ofthe universe W(hi,(x), </>( x)) satisfies the equations (assuming 

that the Universe is closed) [IJ 

2
6 	 6" (3) 1 6 1,,· . 1 " [h-q-hqG"kl- + Y hR +-- - -y hh" 8·.l.8.1. - -y hV(.I.)Jw = 06hij I, 	 2Vh 6</>2 2 Iv-',v-' 2 v-' ,6hkl 

(14) 

6 . 6 
(15)i[2Dj 6h,j - h" 8j </> 6</>]w = 0, 

where h = det(hij ), the parameter q represents the factor-ordering ambiguity, Dj is 

a covariant derivative in the metric hij , and Gijkl th-1(2(h,khjl +hilhpc - h'jhkl ). 

Eq,(14) is the Wheeler-DeWit (WDW) equation, We write Win a polar decomposition 

as w(h ij , </» = A(hij ,</»exp(i8(hij , in terms of which the WDW equation (14) 

reads 

68 68 	 1 1 68 2 " 3Gijkl--+--(-) -yh(R() QG)
6hij 6hlcl 	 2.fh 6</> 

1"" lr. 
+ i Y hh" 8i</>8j </> + i Y h(V(</» + QM) 0, (16) 

62 q
-1/2 1 ( A _q6h Gi jkl 6A ) (17)QG(hij,</»=-h A' Gij/cl6hij6hkl +h ~6hkl' 

1 62A 
QM(hij , </» = -h-IA'( 6</>2)' (18) 

_6_[ q .. ~ 2J ~[~68 2]_
6hij 2h G"kl 6hkl A + 6</> .fh 6</> A - O. (19) 

These two equations (16){ 19) come from the real and imaginary part of the WDW 

equation(14) respectively. In the same way, eq.(15) reads 
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«SA .. oA 
2Dj Ohij - hl'l)jq, «Sq, =0, (20) 

«SS .. oS 
2Dj «Sh - hl'l)jq, oq, = O. (21) 

ij 

We shall call QGand QM the gravitational quantum potential and the matter quantum 

potential. We can construct a conserved current for the WDW equation as follows 

J .. -~[hqG· 'k (,T," ~ ow· ,T,)] (22)I, . I, I «Shkl 'J''J' ,Ohk1 

i h9 oW oW· 
J." = ---[w·- - -w] (23)

2 ../h oq, oq, , 

oJ,j oJ4I (24)«Sh +6f = o. 
ij 

This current can be regarded as the probability flux in superspace. Using the polar 

decomposition of W, eq.(22) and eq.(23) become 

oS 2
JI,.. = 2hqa"I,k1 -A ' (25)ohkl 

(26) 

Inserting (25) and (26) into (24), we see that the continuity equation(24) just agrees 

with eq.(19), which come from the imaginary part of the the wnw equation. Fol

lowing qua.ntum potential interpretation, we assume that 

oS ../h. N',fh(I{kl - hkl K), oS - _.I. _ .Jh-l)iq,. (27)= 7r41 = N'Y Nohkl 

Then, eq.(16) and eq.(19) become 

.. kIll :J r. (3)
Gijkl1rIJ1r +"2 ,fh1r~ - V heR QG) 

1 r. .. 1 r.
+"2vhhIJl)jq,l)jq, + "2v h(V(q,) + QM) = 0, (28) 

7 

qO~ii [2h A:J Kii]+ :q,[hqA:J ~7r4l] = 0, (29) 

where we have used Giikl7r/d = Kij. Clearly eq.(16) resembles the Hamilton-Jacobi 

equation except for additional terms QG, QM. This suggests that we may regard the 

iquantum universe as a universe with momentum 7r ; = 6t~j' 7r~ = ~ subject not only 

to the classical potentials, but also to the quantum potentials QG, QM. If we adopt 

the gauge choice N = 1, Ni = 0, eq.(29) becomes 

o . o· 
oh ; (Phij ) + oq, (Pq,) 0, with P == h9A:J. (30)

i

Eq.(30) is regarded as the continuity equation. iii == phij , i~ == P~ is assumed 

to be the probability flux of the universe in a statistical ensemble of well-defined 

trajectories, in the gauge choice N = 1, Ni O. Generally, from eq.(29), iii == 

2PKij, i~ == P*7r~ is regarded as probability flux. The equations of motion of a 

universe are 

. 2N N 
hii = ../h7rii - ../hhiihmn1rmn +Nib + Nili' (31) 

irij N../h{Rii !hii (R(3) _ QG) + oQG}
2 ohij 

N h ij 1 2 2N . . 1 .. 
+ __(1rmn1r - -7r ) - _(7rlm1r' - -h 1rmn1r")

2 ../h mn 2 ../h m 2 mn 

N{m 1rmj- - Nfm1rmi + (1rij Nm),m +Vh(Nlii - hii Nil:::) 

+ N [! hi) 1r~ _ !hij hmnl) .1.8..1. _ .Jhl)i.l.l)i.l.
2 2.Jh 'f' 2 m'Yn'Y 'Y 'Y 

0QM- !.Jhhij(V(q,) +QM) _ .Jh ], (32)
2 ohij 

• 1r41 . 
q, = N ,fh + N'l)iq" (33) 

ir = l)·(N.Jhhiil) . .I.) - N../h(oV(~) + OQM) N,fh°QG +fJ(Ni1r) (34)
41, ,'Y 2 oq, oq, oq,' ~ . 
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These equations can be obtained by the variation of the following "action" containing 

quantum potentials: 

SQ =Jd4x[7ri;h:; + 7r",~ - NHQ (7r i
;, hi;) NiH'(7ri;,hi;)], (35) 

1.. 1 2 "(3)HQ v;;.(7r"7ri; - 27r ) - vh(R QG) 

,,1 .. v;;.
+ 2 + V h2'h"8,tP8;tP + T(V(tP) +QM), (36) 

Hi = -27r~1 +1r",8itP. (37) 

To solve eq.(31) eq.(34) is very difficult, since we must solve the WDW equation fV 

(14) first and obtain the quantum potentials QG, QM. Hereafter, our attention will 

be concentrated on minisuperspace models in which the infinite number of degrees of 

freedom of the gravitational and matter fields are restricted to a finite number. 

IV. THE DE SITTER MINISUPERSPACE MODEL 

We shall consider the de Sitter minisuperspace model [7][9]. It is described by 

the closed Robertson-Walker metric 

ds2 = u2[-N 2dt 2+ a(t)2dS1~]. (38) 

2where u = ~~, a(t) is the scale factor and dS1~ is the metric on the unit three-sphere. 

The Einstein action with (rescaled) cosmological constant for this metric is 

2 
1 J aaS = 2' dtN[- N2 + a Aa3

]. (39) 

The WDW equation in this model is given by [9] 

P 8 2{8a
82 

2 + ~8a - a2[1 a A]}w(a) = 0, (40) 

9 

where the parameter P represents the factor-ordering ambiguity. We write 'If in a. 

polar decomposition as 'If(a) = A(a)exp{iS(aH, in terms of which eq.(40) eM be 

rewritten as 

_(8S)2 a2 +af(A +Qa(a» = 0, (41)
8a 

8a (aPA28aS) O. (42) 

These two equations come from the real and imaginary part of eq.( 40), respectively, 

and the gravitational quantum potential is 

-4! 8
2
A +e8A ). (43)QG(a) a A(8a2 a 8a

Following quantum potential interpretation, we identify 8aS with the canonical mer 

mentum Pa to a: 

8S 
(44)-aa ==Pa = 8a' 

eq.( 41) and eq.( 42) become 

a2 -1+a2(A+Qa(a», (45) 

8a (Pa) 0, with P == ap+1A2 , (46) 

where a dot stands for the differentiation with respect to "extended'! Robertson-

Walker which describes causally deterministic l.lo.J~.... '.vlJ of the universe not 

only in classically allowed region (Aa2 > but also in classically forbidden region 

(Aa2 < 1). In the region of minisuperspace where IQal <: A, eq.( 45) a.pproaches to 

the classical equation of motion for the de Sitter space. We note that the probability 

density ja == Pa is conserved if a(t) is a solution to eq.( 44). The continuity equation 

(46) implies conservation of probability density. The choice P 1 corresponds to 

10 



the minisuperspace model (with a scalar field) dealt with in ref.[5]. We will keep the 

value of p unspecified. With the choice p = -1, eq.(40) can be solved exactly [8]. 

The solution corresponding to the Vilenkin boundary condition is (disregarding the 

normalization constant.) 

'iii 
v 

Ai(z) + iBi(z) 
Ai(zo) + iBi(zo)' 

(47) 

where 

z = (2A)-f(1 - a2A), (48) 

Zo z(a = 0), and Bi(z) are Airy functions. In this case, gravitational 

quantum potential (43) becomes 

QG(a) (2V)~a-2{(Ai'2 + zAi2+ Bi'2 + zBi2)(Ai2 +Bi2t l 

- (AiAi' +BiBi')2(Ai2 +Bi2t 2 
}, (49) 

where dash stands for the differentiation with respect to z. "Total potential" W(a) == 

1- a2(A +QG(a» is shown in Fig.!. Fig.l shows that the universe can start at a ::::: O. 

The asymptotic forms of the Airy functions at large value of z(z ~ +00) are [10]: 

Ai(z) fV ~7f-!z-texp(-C), 

Bi(z) fV 7f-'! z-texp«), (51) 

Ai(-z) fV 7f-tz-~sin« +7f/4), (52) 

Bi(-z) fV 1I"-tz-tcos« +11"/4), (53) 

where (= ~zt. We assume that 0 < A < 1 in Planck unit. Using these asymptotic 

forms, gravitational quantum potential (49) for small scales (a ~ 0) and large scales 

(a ~ 00) is given by 

1 
QG(a) ::::: a-2 - A, for a < VA' (54) 

QG(a)::::: 0, for a > 1 
(55) 

Then, eq.( 45) becomes 

1
0.2 ::::: 0, (56)for a < VA' 

0.2::::: -1 + a 2 A, for a> (57) 

For the exact gravitational quantum potential (49), we have solved eq.(45) numerically 

(see Fig.2). Fig.2 and eq.(57) shows explicitly that "extended" Robertson-Walker 

time is identified with the usual one at large scales (Aa2 > 1) in classically allowed 

region (Aa2 > 1) by an appropriate shift of this time (axis). 

Another proposed boundary condition is the Hartle-Hawking wave function, which 

in tlte choice p = -1 is given by [9] 

Ai(z) 
(58)'iiiH = Ai(zo)' 

In this case, gravitational quantum potential (43) becomes 

QG(a) = a-2(1 - a2A). (59) 

Then, for all scales, eq. (45) becomes 

b? =0. (60) 

Naively, eq.(60) means that universe is at rest. This result is an unsurprising fact 

because the wave function 'iii H is real, so that we obtain po ~~ = 0 (see (44». 

This situation resembles that of the problems of a stationary state of an atom with 

zero angular momentum, or a "free" particle contained between two impenetrable and 

11 12 
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perfectly reflecting walls, which have been discussed by Bohm Quantum potential 

interpretation to the HartIe-Hawking wave function will not be further discussed in 

this paper. 

Next, we shall discuss the quantum potential interpretation to the wave function 

for any value of the factor-ordering parameter p. The wave function is calculated by 

using the WKB approximation. The WKB approximation is an expansion in power 

of A <: 1. We look for a solution to eq.(40) in the form (w == exp( is)) of an expansion 

S = So + SI + ... , (61) 

where Sn Q( An-l. We obtain the following expression for the wave function up to SI 

in the classically forbidden region (Aa2 < 1) [8J: 

w(a) = Ca-(p+l)/2(1- Aa2)-1/4exp{- 3~ [1 (1- Aa2)3/2]), (62) 

where C is a constant. The wave function in the classically allowed region (Aa2 > 1) 

can be found by means of analytic continuation [8]: 

W(a) == Celw
/ 4a-(p+1)/2(Aa2 - Itl/4exp{ - 3~ [1 + i(Aa2 - 1)3/2l}. (63) 

This wave function(63) corresponds to a positive frequency out-going mode. In clas

sically allowed regions the positive frequency mode corresponds to the expanding 

universe [8][9][11]. From (62), (63) and (43), quantum potential is given by 

Qa(a) == - (p + 1).(p 3) a-6 + ~A2a-2(1 Aa2)-2 + a-2 (1- Aa2), for Aa2 < 1, 

(64) 

Qa(a) = (p + 1).(p - 3) a-a + ~A2a-2(1 _ Aa2)-2, for Aa2 > 1. (65) 

Then, "total potential" W(a) == 1 - a2(A +Qa(a)) is given by 

W(a) (p + I)(p 3) a-4 _ ~A2(1 _ Aa2t2, for Aa2 < I, (66) 

4W(a) = 1- a2A + (p + l).(p - 3) a- - ~A2(1- Aa2t2, for Aa2 > 1. (67) 

The behavior of with respect to a depends on the value of p (see Fig.3 and 

Fig.4). For -1 ~ p ~ 3, W(a) is always negative. So, the universe can start at a ~ O. 

For Aa2 <: 1 and -1 < p < 3, W(a) ~ (P+1~p-3)a-4. Then, from eq.( 45), the time 

evolution of scale factor is obtained as 

3=[i{(p + 1)(3 p)}1/2t + toP/3, for Aa'l <: 1. (68) 

where to is an initial time. For Aa2 < 1 and p = -1 or p 3, W(a) = -lA2(1 

Aa2)-2. Then, in the same way, we have 

a(t) = _I-tanh{v'5A3/ 2(t for Aa2 < 1. (69)VA 2 + 

For p < -1 or p > 3, W(a) < 0 for a > c and W(a) > 0 for a < c, where 

(p + 1)(p - 3) V5(p + 1)(p - 3) )1/2, for p :f: -2 and p :f: 4, (70)
c = ( {(p + 1)(p - 3) 5}A 

1 
c = VfA' for p == -2 or p 4. (71) 

So, the universe can start at a = c (c I'V -fA, since 0 < A <: 1). Thus, in quantum 

potential interpretation, the behavior of causally determined trajectories of the uni

verse depends on the choice of factor-ordering parameter p, especially in classically 

forbidden region. For -1 ~ p ~ 3, the universe can start at a ~ O. On the other 

hand, for p < -1 or p > 3, the universe can not start at a :::::: O. 

V. CHAOTIC INFLATIONARY MINISUPERSPACE MODELS 

Finally, we briefly discuss chaotic inflationary minisuperspace models. For dosed 

Robertson-Walker metric, the action is 

2aa a3~2 
S = Jdti[-"N 

1 
+ N + Na- Na3V(qS)J, (72) 
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where the scalar field ¢> is assumed to be homogeneous and isotropic, and the matter 

potential V(¢» is the chaotic inflationary type (V(¢» m2¢>2 or )..¢>~) [12]. The 

canonical conjugate momenta to a and ¢> are 

3 • 
Po = p., = a¢>. (73) 

where we set N = 1. The corresponding WDW equation is [9] 

P 8 1 82 

{-8
2 

+ -- - a2[1- a2V(¢»]} lJi (a, ¢» = O. (74)
8a2 a 8a 

Then the conserved current j = (jo, j.p) is given by [8][9] 

j4 = ~a"(lJi·84lJi -lJi84lJi*), (75) 

j.p = -~a"-2(lJi·O.,lJi -lJi8.,lJi*), (76) 

84j4 + 8.,j.p O. (77) 

We write the wave function in the form lJi = A(a, ¢»exp(iS(a, ¢>)). Then the WDW 

equation (74) can be rewritten as 

_(80S)2 + 12 (8.,S)2 - a2 + a4(V(¢» +Qa +QM) 0, (78) 
a 

Qa(a, ¢» = a-~~(8~A + ~80A), (79) 

QM(a, ¢» = -a-6~8~A, (80) 

-80 (a"A280S) + 8.p(a,,-2A2o.pS) = O. (81) 

Eq.(78) and eq.(81) come from the real and imaginary part of eq.(74), respectively. 

In quantum potential interpretation, 80S and 8.,S are identified with momenta P. 

and p.,: 

-aa Po = 80 S, a3~ p., = O.,S. (82) 

Then eq.(78) and eq.(81) become 

+ a2~2 - 1 + a2(V(¢» +Qa + QM) = 0, (83) 

80 (Pa) + 8.,(P~) = 0, with P a,,+l A2. (84) 

Eq.(84) is the continuity equation, which implies conservation of probability flux 

i. == Pa, j., == P~. Also, the continuity equation (77) just agrees with eq.(81), which 

comes from the imaginary part of the WDW equation (74), because, using polar 

decomposition of lJi, eq.(75) and eq.(76) become jo = -a"A28a.S, j., = a,,-2 A2o.,S. 

ia. can be interpreted as the probability density for ¢> at a given value of a. We note 

that the probability density p.,(a) = j(J Pa is always positive (even in classically 

forbidden region) if the universe is expanding (a > 0). Equations of motion of the 

universe acted on by classical potentials and quantum potentials are 

a '2 a;; + 2¢> (V(¢» +Qa + QM) 2"(80Qa + 80QM) = 0, (85) 

.. a· 1 
¢> + 3(;;)¢> + 2"(8.pV(¢» +o.pQa + 8.pQM) = O. (86) 

These equations can be obtained from the following equations 

a= fa. I1Q}", Po = {Po, I1Q}", (87) 

~ {¢>,I1Q}P) P.p={P.p,I1Q}", (88) 

where 

1 [P2 1 2 2 "'( ( ) ]HQ --2 4 - 2P.p + a a V¢>+ Qa +QM). (89) 
a a 
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Alternatively, eq.(85) and eq.(86) are obtained from the Euler-Lagrange equations for 

the "Lagrangian" containing quantum potentials: 

1 aa2 a3~2 
LQ = i[-N + N + Na - Na3(V(tP) + Qa + QM)]. (90) 

To solve equation (74), we make an assumption that V is small compared to 

Planck scale (0 < V <: 1) and is a slowly varying function of tP, i.e. 

dV 1
IdtP 1<:: max{V, a2 }' (91) 

Then the derivative with respect to tP in eq.(74) can be neglected. If we choose 

Vilenkin boundary conditions [8][9J, the wave function with the choice p -1 is, ( 

up to a numerical coefficient), given by 

W Ai(z) + iBi(z) 
(92)

Ai(zo) + iBi(zo) ' 

where z = (2V)-2/3(1 - a2V) and Zo = z(a = 0). Using the asymptotic forms of Airy 

functions (50)rv(53), we have 

1
W (1 - a2Vt1/4exp{ - 3V[1 (1 - a2V)3/2]) for a2V < 1, (93) 

W= ei1f/4(a2V - 1)-1/4exp{ - 3~ [1 + i(a2V - 1)3/2]} for a2V > 1. (94) 

In the quantum potential interpretation, the wnw wave function defines a family 

of trajectories distributed with probability flux ia = po., i,p P~. The probability 

distribution for tP at a given value of a in classically allowed region can be found by 

using eq.(94) and Pa(tP) == ia with an appropriate normalization constant as follows 

2 2fPa(tP) fV exp(- 3V(tP))/ dtPexp(- 3V(tP))' (95) 

The factor exp( - 3V~,p») means that the probability density for small values of V(tP) 

is exponentially suppressed. This is favorable for the chaotic inflation scenario. 

VI. SUMMARY AND DISCUSSION 

We have applied quantum potential interpretation to quantum geometrodynamics 

based on the ADM canonical formalism, and the equations of motion of the universe 

acted on not only by classical potentials, but also by quantum potentials were given in 

Sec.III. In Sec.IV we have studied in detail the de Sitter minisuperspace model from 

the viewpoint of the quantum potential interpretation, by introducing the "extended" 

Robertson-Walker time which exists even in classically forbidden region. It was shown 

that "extended" Robertson-Walker time is identified with usual one at large scales 

(Aa2 :> 1) in classically allowed region (Aa2 > 1) by an appropriate shift of this time 

(axis), and the behavior of the trajectories of the universe described by the Vilenkin 

wave function depends on the choice of operator-ordering parameter p in the wnw 
equation: for 1 ~ p ~ 3, the universe can start at a ::.:::: 0, for p < -1 or p > 3, 

the universe can not start at a ::.:::: 0, but can start a = c, (c rv *' for 0 < A <: 1) 

(see Sec.IV). We believe that the correct value of the operator-ordering parameter 

exists in the range -1 ~ p ~ 3 from the viewpoint of "creation of the universe 

from nothing" [8][9]. It was also shown that, in quantum potential interpretation, the 

probability density Pa(tP) = ia = po. is always positive (even in classically forbidden 

region) if the universe is expanding (a > 0). In quantum potential interpretation, the 

universe described by Hartle-Hawking wave function is, naively speaking, at rest. But 

we know that our universe is now expanding. A further investigation of the quantum 

potential interpretation to the real wave function of the universe will be needed if we 

want to describe our universe by the real wave function. In Sec.V we have briefly 

studied quantum potential approach to chaotic inflationary minisuperspace models. 

Further investigation of quantum potential approach to inflationary universe models 

will be reported elsewhere. 
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FIGURES 

FIG. 1. "Total potential"W(a) 1- a2(A +QG(a)) for QG(a) given by eq.(49) (solid 

curve), QG(a) = 0 (dashed curve ), with A =0.5 in Planck unit. 

FIG. 2. Solutions aCt) to eq.(45) for QG(a) given by eq.(49)(label A), QG(a) = 0 

(label B), with A 0.5 in Planck unit. The equation for QG(a) given by eq.(49) 

was integrated numerically, by starting from t = 0 at a ~ 0 (in this example, we have 

actually used t =0 at a =0.01). The curve labeled by B represents the de Sitter space 

a( t) = ,*eosh( /At) for t 2: o. 

FIG. 3. For -1 < p < 3, the behaviour of "total potential"W(a) 1 a2(A +QG(a» 

for QG(a) given by eq.(64) and eq.(65) (solid curve), QG(a) 0 (dashed curve). 

FIG. 4. For p < -1 or p > 3, the behaviour of IItotal potential"W(a) == 1 - al(A + 

QG(a» for QG(a) given by eq.(64) and eq.(65) (solid curve), QG(a) =0 (dashed curve). 
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