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Abstract 

We concretely show that, in 3 +1 dimensions, the Wheeler-DeWitt equation 

to leading order in powers of Planck mass of the wave function is renormal­

izable, and briefly discuss about the renormalizability of the Wheeler-DeWitt 

equation for N + 1 dimensional Lorentzian manifolds (N > 3). 
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In my previous papers [1] [2], we showed that the dimensional reduction in quantum 

gravity can occur at the scale which is much smaller than Planck scale under the analysis 

of the Wheeler-DeWitt (WDW) equation, and showed that "New phase" (the dynamical 

system described by the three dimensional quantum Einstein gravity) exists at the region 

beyond Planck scale or at the very early stage of the evolution of the universe. In our new 

scenario of the evolution of the universe, time axis is born when the size of the created 

universe from nothing approaches the Planck size. In this paper we concretely show that 

the WDW equation to leading order in powers of Planck mass of the wave function is 

renormalizable, and briefly discuss about the renormalizability of the WDW equation for 

the Lorentzian manifolds with extra dimensions. 

It is well known that perturbative approach to quantum gravity which depends on fixed 

background metric(Minkowski space-time) is not renormalizable [6]. Quantum gravitational 

effect becomes important at the Planck scale. In the region beyond Planck scale, space-time 

structure may be very different from Minkowski space-time by quantum effect of space-time. 

However, usually, perturbative approach to quantum gravity assumes that the space-time 
" 

structure at the region beyond Planck scale is also Minkowski space-time in the sense of 

back-ground metric. In ref. [1] [7], it was discussed that dimensional reduction can occur at 

the region beyond Planck scale by quantum effect of space-time, and, in ref. [1], it was shown 

that quantum geometrodynamics based on the WDW equation ( which does not depend on 

the background metric) to leading order in powers of the Planck mass of the wave function 

is renormalizable by nonperturbative effects of gravitation at very small scales. 

This picture of space-time structure at the region beyond Planck scale is very different 

from that of string theories [8]. Superstring theory assumes that, at the region beyond 

Planck scale, space-time is ten dimensional, and extra dimensional space is compactified 

to Kahler manifolds with Calabi-Yau metric [9] or orbifolds [10], which are classical spaces 

with Planck size. It is usually thought that, in superstring theory, our universe was a 

ten dimensional space-time at the very early stage of the evolution of the universe, and 

the compactification of extra dimensional space occurs at the early stage in which the size 
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of our universe is probably Planck size. In string theories which are expected to unify 

the gravitation and matter fields, nonexistence of ultraviolet divergence comes from the 

competition of gravitational wave modes and other matter fields modes [8]. In our case 

(WDW equation), the renormalizability of quantum gravity comes from nonperturbative 

effects of quantum geometrodynamics, in other wards, from only the quantum effect of 

space-time. 

2. We summarize our results in my previous paper [1]. Wheeler-DeWitt equation [3] [4] 

IS 

(1) 

(2) 

where hij are spatial metrics, h = deth ij , R(3) denotes the three dimensional scalar curvature, 

Gijk1 = !h-l/2(hikhjl + hilhjk - hijhkl ), mp is the Planck mass, 161fG = 11m;, G is the 

Newton constant, and A is the cosmological constant. The WDW equation stands in need 

of regularization because the two functional derivativ~s act at the same point in space. 

So, for example, ~(x) acting on R(3)(y) is proportional to (5(X,y))2, which is meaningless. 

Therefore, we shall construct a regulated operator, ~t/J, that preserves the three dimensional 

general coordinate transformation. Then, the finite version of the WDW equation will be 

(3) 

If we attempt an expansion of the wave function in powers of the Planck mass as follows 

w(h) =exp( -S(h)) = exp( - L
00 

m!nSn), (4) 
n=l 

the WDW equation becomes 

1 1 5S 5S 2 Il( (3)
-~t/JS - -Gijkl-- + m y h R - 2A) = O. (5)
m 2 m 2 5h .. 5hkl pp p I) 

So that to lowest order, eq.(5) becomes 

(6) 
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We should not expect our approximation (6) to leading order in our expansion (4) to resemble 

the WKB approximation ( the semi-classical approximation). Eq.(6) gives a very different 

wave function from that given by the WKB expansion (S = L:=1 C,!2 )n-2Wn) which would 
p 

contain propagators, and so be non-local. We state how to regurate the Wheeler-DeWitt 

equation. We will replace 6. in the Wheeler-DeWitt equation by a regulated operator 6.</J' 

This regularization and renormalization procedure introduce an arbitrary function ¢ on 

which 6.</J depends. This is an inevitable consequence of isolating the finite part of a divergent 

quantity. Physical quantities should be independent of this arbitrariness, e.g. by absorbing 

it all into the couplings. To construct ~</J, we begin by "point-splitting" the functional 

derivatives. Consider the operator 

(7) 

where the I<i1j1kl is a bi-tensor at both x' and x, satisfying some heat equation with the 

initial condition 

(8) 

If E denote the space of sums of products of three-dimensional integrals of local functions of 

hij with finite coefficients, then 6. acts on a typical element of E. We will replace 6. in the 

WDW equation by a regulated operator, ~<P' which does have a finite action on elements 

of E and maps E to itself. There are many choices of heat-kernel. For simplicity of our 

analysis, we choose the heat-kernel to satisfy the following heat equation 

~R"" 'Ikl = DI . D'Ii 'I 'Ikl (9)Of ' J t J , 

where D:, is a c,ovariant derivative with respect to X~, in three dimensional space. We need 

to know the diagonal matrix elements of I{i1j1kl (x', x; f) for short "times". These may be 

computed using a standard technique that assumes the existence of expansions of the f<;lrm 

[5] 

1/2( I ) _ 6(zl ,z) 00 

,. (I ) 6. x ,x e 2E "" n (n) (I )
Is."j 'kl X , X j f = J ~ f ai'J'kl x , x , (10) 

(411'fP n=O 
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where the bi-scalar a(x', x), which we shall call the geodetic integral is equal to one half 

the square of the distance along the geodesic between x and Xl, and ~(Xl, x) is a bi-scalar, 

A( ) = h-1j2( ')D( / )h-1j2() D = -d t(D- ,) D- , = - -- . '/ ' d t th .L\ x ,x - X X , X x, - e t'J' t'J - a;.,J ., Z J eno es e covan­

ant differentiations with respect to xiI and xj [5]. a~~~kl(XI, x) is a bi-tensor at both x, and 

x. The prefactor in (10) solves the ordinary heat equation. The initial conditions (8) are 

satisfied by taking 

(11) 


Inserting (10) into eq.(9) and making use of !a;ila;il = a and a ijlaij'i = aii [5], one finds [5] 

;m' (/ ) (0) (') - 0a x ,x ai'j'klim' x ,x - , (12) 

;m/( I ) (n+1) (/ ) ( 1) (n+1)( I )a x ,x ai'j'kl;m' x , x + n + ai'jlkl x, x 

Using (10),(11) and the recursion relations (12), (13), a~ter the tedious calculation, we have 

~f Jd3x,j"hR(3) = a1 E- Sj2 ,j"h + a2 E- 3j2 ,j"hR(3) + E- 1j2(a3,j"h(R(3»)2 + a4,j"hR~J>R(3)ij 

+ as FhR~i3)i) + O( E1j2 ), (14) 

(15) 

where ai and /3i are numerical constants, a1 = 3/(2(41r)-3j2), a2 = -11/(24(41r)-3 j2), and 

/31 = -21/(8(41r)-3 j2). The proper-time Ehas the dimensions of [mp ]-2, whilst Ll f has 

dimensions of [mp ]6. These results (14),( 15) are also suggested by dimensional analysis. We 

can extract a finite result for AfO' when E = 0 using analytic continuation in an analogous 

fashion to zeta function regularization, where aEE. We take the action of ~<P on an arbitrary 

element, aEE to be [13] 

(16) 
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where the integral on the right-hand side is defined by analytic continuation in s. It is 

assumed that ¢(p) is a differentiable function equal to one at the origin (¢(O) = 1) and has 

the property limp_oo ¢(p)f(p) = 0, where f(p) is also a differentiable function. For the more 

detailed discussion about this regularization scheme, see ref. [13]. We take .6. at proper-time 

p2 rather than p because of the square roots appearing in (14) and (15). Then (14) and (15) 

become 

.6.</J Jd3x-/hR(3) = ~~ ¢(5) (O)-/h + ~~ ¢(3) (O)-/hR(3) 

+ ¢(l)(O)(a3Vh( R(3»)2 + a4 VhR~PR(3)ij + as VhR~l)i), (17) 

!:l~ / d3x../h = ~; ¢(3)(O)../h + ,824P) (O)../hR(3) , (18) 

h A,(n)(o) - dn</J(p) Iwere,+, = dpn p=o, for n = 1, 2,3, . ". We have done part of the job of renormal­

ization. If the quantum theory of gravitation based on the WDW equation is not anomalous, 

the regularized Hamiltonian constraint (H ~ 0) and momentum constraints (Hi ~ 0) should 

constitute closed algebras such as in the classical theory of gravitation based on Arnowitt­

Deser-Misner canonical formalism [11] [12]. If we compute the following commutator, we 

get 

[/ d3X~(x)H(x), / d3YrJ(x)H(y)] 

= i / d3x(~(x)rJ(X);i - ~(x);irJ(x))Hi(x) + .6.f, (19) 

(20) 

where c is a numerical constant. An additional term (second term of right hand side) arises 

from the cross commutator of .6.</J and VhR(3) as we will concretely show later. This term 

is also suggested by dimensional analysis. The closure of the algebra (19) requires that 

¢(1)(0) = O. Under the consideration of (17) and (18), we find that the solution to eq.(6) is 

(21) 
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where 

(22) 

In our formulation, the renormalizability of the theory requires that all physical quantities 

must be independent of the arbitrary functions ¢(n)(o) except for ¢(1)(O), so that, to leading 

order, the wave function should be independent of ¢(n)(o) except for ¢(1)(O). We may define 

a J3-function for m! as J3 =p~ (m!) where p =(¢(3)(O))1/3 which is a parameter of the 

dimension of [mp]. If we require that the wavefunction to leading order is independent of 

p, we get J3 = 3m;(p). This means that m;(p) ex p3 (G(p) ex p-3/2), where 161TG(p) = 

l/m;(p). Thus gravitational constant G(p) decreases as p increases. 

We shall briefly discuss the WDW equation to next leading order in powers of Planck 

mass of the wave function. The WDW equation to next leading order is given by 

(23) 

From (21) and eq.(23), the wave function to next leadi~g order would be of the form 

where we have introduced a mass parameter p. ii4» /34>, 14> and 84> are dimensionless constants 

expressed by ~(n)(o) = ¢(n)(O)p-n. From the above expression (26), we see that the next 

leading contribution will be suppressed if we take p ~ mp. This may mean that if we take 

a "renormalization" scale p to be much greater than m p , the wave function may be given by 

\li[h] ~ exp( - ~qI Jd3 yVh(R{3) - 2AqI» 

for p ~ mp(v ~ lp) and R(3) p2(V-2), R~J)R(3)ij f"V p4(V-4). (27)f"V 
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where v =/J-l, lp == limp, lp is the Planck length. The exponent of the wave function (27) 

is the three dimensional Einstein gravity action with the "renormalized" Newton's constant 

Gcp and the "renormalized" cosmological constant Acp. Three dimensional Einstein gravity 

theory does not contain gravitational wave modes, and the theory is the dynamical system 

of the finite degrees of freedom which come from different topologies of the manifolds. As 

we have an approximation for W we will be able to compute expectation values of some 

operators O[hij] such as the Wilson loop [14] in which case 0 can be taken independent of 

_i_O_. 
Ohij' 

<0> (28) 

(29) 

where Gcp == tGcp. But this is the functional integral for the vacuum expectation value of 0 

in the three dimensional Euclidean Einstein action with Gcpl Acp. This expression (29) may 

mean that time axis vanishes at the scale which is much smaller than Planck scale, and four 

dimensional Einstein Gravity is described by three dimensional Einstein Gravity effectively 

at this scale, or our universe was a three dimensional Euclidean universe effectively at the 

very early stage of the evolution of the universe, in which the size of the universe is much 

smaller than Planck size. 

3. Now we shall concretely show that ~r (20) arises from the cross commutator ~cp and 

VhR(3) , within our choice of heat equation (9). Classically, Hamiltonian constraint (H ~ 0) 

and momentum constraints (Hi ~ 0) constitute the following closed algebras [11] [12] 

{f d3X~(x)H(x), f d3Y1](y)H(y)}p 


== f d3X(~(X)Oi1](X) - (Oie(x))1](x))H i (x), (30) 


{f d3X~i ( x) Hi (X), f d3yrf (y )Hj{y) } p 


== f d3x(~i(x)Oirf(X) - (Oi~j(x))1]i(x))Hj(x), (31) 
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(32) 

where 

(33) 

H·(x) = -2htJ..Dk1['JOk 
(34)t - , 

1['ij are the canonical conjugate momenta to hij . { }p represents the Poisson brackets. Such 

closed algebras ((30), (31) and (32)) should be also realized for the quantum theory of 

gravitation described by the reguralized WDW equation if our theory is not anomalous. 

The reguralized Hamiltonian constraint (if ~ 0) contains heat kernel ](i1j1kl. Left-hand side 

of eq. (19) is given by 

limf d3Xd3Y~(X)1J(y)[if(x; t), if(Yi t)]
e-O 

- limf d3Xd3Y~(X)1J(y){[f(x, t), f(x; t)] + [f(x; t), V(y)] + [V(X), f(y; t)]
e-O 

+ [V (x ), V(y ) ] } , (35 ) 

where 

if(x,t) =f(x;t) + V(X), (36) 

T-(x' t) = _1_ f d3x'K· (x' X' t)1['kl(x)1['iljl(x')° , - 2 t'J'kl, , , (37) 
mp 

(38) 

We shall calculate the commutators [f, f], [f, V], [V, f], [V, V]. Firstly, we calculate 

[f, f]. 

lim [ f(x;t),f(y;t)]
e-O 

. [1 f d3 I Y' (' ) kl( ) iljl( ') 1 f d3 '}r (' ) pq( ) mln/( ')]= hm - x Ai1j'kl X ,x; t 1[' X 1T x, -2 Y lm'n'pq Y ,y;t 1[' y 1T Y 
~O~ m p p 
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= lim ~Jd3x' d3y'{Kiljl kl ( x', Xj E)1rkl (x )[1riljl (x'), ]<mlnlpq(Y', Yj E)]1rpq(y )1rmlnl (Y') 
e-+O mp 

} ' (' )[ kl( ) R' (' )] iljl( ') pq( ) mlnl( )+ 	iiljlkl X ,x; E 1r x, m'n'pq Y ,Y; E 1r X 1r Y 1r Y 


I )[R' (' ) pq()] mlnl( ) kl( ) iljl( ') 
+ K minipq (Y , Y; E i 'j I kl X , X; E ,1r Y 1r Y 1r X 1r X 

T (' 	 ) pq( )[K (' ) mlnl( ')] kl( ) iljl( I)}}+ \m'n'pq Y , Y; E 1r Y i'j'kl X , x; E ,1r Y 1r X 1r X 

= ~4 Jd~X'{lim ]<iljlkl (x', Xj E)1rkl (x)[1r
i'jl (x'), Gmlnlpq(Y)]1rpq(y )1rmlnl (y)

m 	 e-+O 
p 

+ lim ]<iljlkl( x', Xj E) [1rkl (X), Gmlnlpq(Y )]1riljl(X')1rpq(y )1rmlnl (X')}
e-+O 

mlnl+ ~4Jd3yI{lim Kmlnlpq(Y/, Y; E)[Giljl k1 ( x), 1rpq(y )]1r (Y')1rkl (x )1riljl (x)
m 	 e-+O 

p 

+ lim Kmlnlpq(Y', Yi E)1rpq(y )[Giljlk1 ( x), 1rmlnl(y l )]1rkl (x )1riljl (x)}
e-+O 

= 0, 	 (39) 

where we have used (8) and [1riljl (Xl), Gmlnlpq(Y)] = A~'~/pq(X')O(Y, x') etc, where 

iii' (') _ i rs (i'j') (i'j') (i'j')Amlnlpq x - 47h{h o(rs) (hmlphnlq + hmlqhnlp - hmlnlhpq) - (o(mlp)hnlq + hmlpo(nlql) + 
(i'j') (i'j') (i'j') (i'j') (i')') 1 'I 'I'I 'I

O(mlql)hnlp + hmlqO(nlp) - O(mlnl)hpq - hmlnIO(pq) )}, O(rs) = 2(O~ O~ + O~ o~), etc. Clearly, 

we have 

[V(x), V(y)] 	= o. (40) 

Then, (35) 	becomes 

limJd3xd3y~(x )17(y){[T(x; E), V(y)] + [V(x), T(Yi E)]}

e-+O 

- lim Jd3Xd3yd3x/~(x)17(Y)[-;Kiljlkl(X', Xj E)1rkl (x )1riljl (x'), m;Vh(y)(R(3)(y) - 2A)] 

e-+O 	 mp 

(same, but 	with ~ ~ 17) 

- ~~Jd3xd3yd3X/~(X)17(y)Kiljlkl(X', Xj E) 

X {[1rkl(x), V h(y)(R(3)(y) - 2A)]1rilj/(x') + [1riljl(X') , Vh(y)(R(3)(y) - 2A)]1rk1 (x) 

iljl+ [1rki (x), [1r (x'), Vh(y)(R(3)(y) - 2A)]]} 

- (same, 	but with ~ ~ 17) 

- i Jd3X(~(x)8i17(X) - (8i~(X))17(X))Hi(x) 

- limJ d3Xd3X/~(x)Ki'j'kl(X/, Xj €) oh Ii( ) lih Ii ( I) Jd3Y17(Y)Vh(y)R(3)(y) 
e-+O 	 kl X i'j' X 

10 



We define last two terms in eq.( 41) as 

(same, but with ~ ~ 1]). (42) 

If we compute functional derivatives in (42) [5], we have 

(43) 

where 

~r1 = .! lim Jd3xd3x'~(x )1<i1j1kl(x', x; E)Jh(xl)1](x')(hilml (x')hjlnl (x') 
4e-0 

+ hi'n' (x')hjlml (x') - hi'j' (x')hmlnl (x'))hp1ql (x') 


X [(D~;;~/)(X',X));mlnl + (Di~?nl)(x',x))jplql - (Di~:pl)(x',X));nlq' - (D~=!~/)(x',X));mlq'] 


- (same, but with ~ ~ 1]), (44) 

~r2 =--21HmJd3Xd3X/~(X )l<ilj'kl(X', x; E)
<:-0 

X J h( X')1]( X')[hi'm' (x')R(3)jlnl (x') + hi'n' (x')R(3)jlml (x') + hjlm' (x' )R(3)i'n' (x') 

+ hjln' (x' )R(3)i'ml(x') - hi'jl (x' )R(3)mlnl(x') - hm'n' (x')R(3)i1jl (x') 

- ~W'm' (x'w'n' (x') + hi'n' (x')h)'m' (x') - hi'), (x')hm'n' (x') )R(3)(x')loi~!n')(x', x) 

- (same, but with ~ ~ 1]), (45) 

- (hi'm' (x')hjln' (x') + hi'n' (x')hjlml (x') )f);pf' (x') 

2hi'jl (x')f)imlnl (x') + hi'm'(x')1]jj'nl (x') + hi'n' (x')1];j'ml (x') + hjlm' (x')f);iln l(x') 

+ hj'n' (x')1];ilml (x')]Di~/n/)(x', x) 


- (same, but with ~ ~ 1]), (46) 
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~r 4 =-.!.lim j d3xd3x'f.(X )1<i1j1kl(X', X; t)Jh(x')(hi1ml (x')hjlnl (X') + hi'n' (x')hjlml (X') 
4e-O 

2hi'jl (x')hmlnl (X') )rJ;pl (X') 

X [(8i:;~,)(x',X));nl + (8g~~')(X',X));ml - (8i~!nl)(x',x))jpl] 


- (same, but with f. f-? rJ), (47) 


where 8~~~~,)(X', x) =!(8~,8~, + 8~,8!n, )8(X', x), etc. If we integrate over Xl in (44), (45), (46) 

and (47), we get 

~ r == 	~ lim j d3xVh(x)f.(x)(hilml(x')hj'nl(x') + hilnl(x')hj'ml(x') - hiljl(x')hmlnl(x'))hplql
1 4 %'-+% 

e-O 

X {( rJ;nlm/( X')l<i'j'kl (Xl, Xi t) + rJin' (x') Kiljtkl;ml( x', x, ; t) + rJim' (XI)1<i1j1kl;n l( x', x; t ))8i:!~,) 

+ (rJ;qlpl (XI)1<i1j1kl( Xl, x; t) + rJ;ql( x') KiljlkliPI (x', x, ; t) + rJiP' (x') Kiljlkl;ql( x', x; t) )8~~:n/) 

-	 (rJ;q1nl(x') 1<i.'j1kl(X', x; t) + rJ;q'(X')1<i1j1kl;nl(X', x; t) + rJ;nl(X')Kiljlkl;ql(x', x; t))8i~:pl) 


( ')R'.. (' .) ( I)}V. . ('.) ( ')K. . ('.)) dkl) }
- (rJ;qlm' x t'J'kl X , x, t + rJ;ql XltIJlkl;m' X ,x, t + rJ;m' x t'J'kl;q' X ,x, t U(n'p') 

- (same, but with f. f-? rJ), (48) 

+ hjlnl (x ' )R(3)i 1m' (x') - hiljl (x ' )R(3)m1nl(x') - hm'n' (X')R(3)i1j' (x') 

- ~(hi'm'(x')hj'n' (x') + h"n' (x')hj'm' (x') - h,'j' (x')hm'n' (x') )R(3)(x')lc5I~?n') 

- (same, but with f. f-? rJ) 

== 0,' (49) 

~r3 == 	-.!.lim jd3xJh(x)f.(x)1{i 1j1kl(X', Xi t)[hmlnl(x')(hiljl(x')rJ}'(xl) - rJii.'jl(x'))
2 %'-+% 

e-O 

- (hilml (x')hjlnl (x') + hi'n' (x/)hJ'mi (x/»rJ}' (x') 

_ 2hi'jl (x')rJ;m1n l (x') + hitmt (x')rJ;j1n l (x') + hi'n' (xl)rJ;j'm l (x') + hjtm' (xl)rJ;i1nl(x') 

l+ hjln' (x')rJii1m (x') ]8~~:n/) 


- (same, but with f. f-? rJ), (50) 
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;pl ( ') } , (' ) 'p' ( ) }7 (' )) c<kl)X { ( fJ n' X {i'jlkl X ,X; € + fJ' X 1i' j 
1kl;n X ,X; € U(plm/)' 


( 'p' (')R' (' ) .p/( ')}V (' )) e(ki)
+ fJ'ml X i'j'kl X ,X; € + fJ' X 1.i'jlkl;m' X , x; € U(pln') 

- (same, but with ~ +-+ fJ). (51) 

For the further calculation of ~rl, ~r3 and ~r4, we need to compute limx l_ x ]<iljlkl(X', x; €) 

and limx ' _ x ]<i'jlkl;m/(X', x; E). To this end, firstly, we compute limx l_ x a~~/kl;m/(X" X) etc. If 

Dml operates on eq.(12), we have 

jpl (' ) (0) (') ;pl (' ) (0) (') - 0a m' X ,X ai'jlkl;pl x ,X + a X, x ai'jlkl;plm' x ,X - . (52) 

· (0) (') 011m aiIJ"kl'm' x ,X = . (53)
X'_x ' 

If Dn,Dm' operates on eq.(12), we have 

jq' (') (0) (') ;q' (' ) (0) (')
(j m'ni X ,X ailjlkljql X ,X + (j m' X ,X ai'jlkl;qln' X , X 


;q' (' ) (0) (') ;ql(') (0) (I) _
+ (j n' X ,X ai'j1kl;q1m' X ,X + (j X, X ai'j'kl;q'm'n' X ,X - O. (54) 

we have 

(55) 

In the same way, if DplDnlDml operates on eq.(13), we have 

. (0) (') _ 1 I1h( ( 3)q' (3 )q' )
hm ai'J·lkl.mln'pl X ,X - - -3 V n R i'm'n"p' - R i'p'm/n' Gqljl kl 
X'_x ' " 

1 11 (3)q' (3)q'- "3 V h( R j'm'nljp' - R j'p'm/;n' )Gilqlkl . (56) 

where we have used (53). For n = 0, eq.(13) becomes 
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ip' (I ) (I) (I) (1) (' )(J X, x ailjlkl;pl x ,x + ailjlkl x ,x 

_ A -1/2( 1 )( A 1/2( 1 ) (0) (' ))ipl- ~ X ,x ~ X ,x ailjlkl x , X pi, (57) 

· (57) I' A -1/2( I) 1 I' A 1/2.pl ( I) 0 d I' A 1/2;pl( 1 )USIng ,lmx'_x ~ x ,x = , Imx'_x ~ , x, x = an Imx'_x ~ pi x, X = 

_!R(3) [5], we have 

· (1) (') 1 IThR(3)G11m ailjlkl x ,x = - -y n i'j'kl. (58)
X'_x 6 

If Dm' operates on (13), we have 

;ql (I ) (1) (') jq' (' ) (1) (') (1) (')(J m' X ,x ailjlkl;ql x, x + (J x, x ailjlkl;qlml x ,x + ailjlkl;ml x ,x 


A-1/2( I )(.A 1/2( I ) (0) (' ))iql A-1/2( I )( A1/2( I ) (0) (' ));ql
+ ~jm' X, X L.l. X ,X ai'jlkl x , X q' + ~ x ,X ~ x ,X ailjlkl x ,X q'm" (59) 

From eq.(59), we have 

, (1) (') _ 1 (3) ITh 1 ITh( (3)p' q' (3)p' ql )hm ailjlkl'ml x , x - -12R'm/Y nGiljlkl + -6Y n R i'm' .qlGpljlkl + R jlml .qlGilplkl (60)
x'-x" , , 

where we have used (53), lime_o ~1/2(X', x) = 1, limxl_x ~1/2;ql qlml(xl, x) = -/2(R(3)ql q';m' + 

R(3~/m;ql + R(3~;/iql) [5] and (R~:ql - ~hmlqIR(3))jql = 0,: From (10),(11), (58) and (60), we 

have 

. (')' ~1/2(XI,X) ((J(XI,X))~ n(n) (I)
hm J<iljlkl x ,x; E = lim (4 )3/2 exp - 2 L.J E ailjlkl x , x 
X'_X X'_X 1fE E n=O 

1 { I' (0) (') I' (1) (') ( 2)}- ( )3/2 1m ai'J"kl x ,x + E 1m ai'J'lkl x ,x + 0 E
41fE X'_X X'_X 

1 IT ) { 1 (3) } ( 1/2
(41fE)3/2YhGiljlkl(X 1-E6'R (x) +OE ), (61) 

lim Kiljlkl;m/(X', x; E)
X'_x 

A 1/2( ') (I) 00 , [~ x ,X ((J x ,X ) """' n (n) (' )]
hm ( )3/2 exp - 2 L.J E ai'j'kl x ,X ;m'
X'_X 41fE E n=O 

= 

+ 
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1 

Substituting (61) and (62) into (48), (50), (51), we have 

1 1 1 1 21 21 21 7 17 1 7 17 
~r1 ==!~ (41r)3/2£1/2 [48 - 96 - 96 + 48 - 96 - 96 - 48 + 96 - 32 - 48 + 96 - 32] 

x f d3xVh(~(X)17;m(X) - (m(X)17(X))R(3);m(x) + 0(£1/2), 

== 0, (63) 

1 131311 

~r4 == ~~ (41r)3/2£1/2 [6 -16 + 6 - 16 - 2" + 4] 


x f d3xVh(~(X)17;m(X) - (m(X)17(X))R(3);m(x) + 0(£1/2) 

2= - 24(411";3/2 1/2 f d3xv'h(~(X)7);m(X) - ~;m(X)7)(X))R(3);m(X) + 0(01
/ ). (65)

0

Thus, from (43), (49), (63), (64) and (65), we have 

~r == ~r1 + ~r2 + ~r3 + ~r4 
2 = -!~ 24(411":3/2 1/2 f d3Xv'h(~(Xhm(X) - (m(X )7)(X ))R(3);ffl(X) + 0(01

/ ) (66)
0

From (16), our renormalization procedure tells us that 

lim £-n/2 --* ~¢(n)(o) for n == 0 1 2 ... (67)
<:-+0 n! ' " , 

lim £n/2 --* 0 for n == 1, 2, ... , (68)
<:-+0 

where ¢(O) == 1. Thus, from (66) and (67), finally, we get 

[f d3 
X ~ ( x )iI (x ), f d3 Y17( Y)iI (y )] 

== i Jd3x(~(x)8i17(x) - (8i~(X))17(X))Hi(x) + Af, (69) 

where 
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This additional term (~r) is the second term of right-hand side of (19). The closure of the 

algebra (69) guarantees that (21) is the solution to eq. (6). From the quantum mechanical 

commutator lime_o[H{x; f), i J d3y~i(y)Hi(Y)] which corresponds to the left-hand side of (32) 

in the classical theory of gravitation, an additional term does not arise. 

4. Next we shall briefly discuss about the renormalizability of the WDW equation in 

powers of the "Planck mass" of the wave function for N +1 dimensional Lorentzian manifold. 

The metric is ds2 = gJJvdxJJdxV = -N2dt2 + hii{Nidt + dxi)(Nidt + dxi ) where Nand Ni 

are the lapse and shift functions. In this case, the regularized WDW equation is given by 

[- M! L}.«N)(X) + M;(N) v'h(R(N) - 2A)]1li = 0, (71) 
peN) 

() -jdN '" (' ) 5 5 (72)~ e( N) X = x R i'i I kl X , X; f 5hi'i' (x') 5hkl (x) , 

(73) 

(74) 

where M;(N) = 161r
1
GN' aN is the gravitational constant for N + 1 dimensional space-time, 

R(N) denotes the N dimensional scalar curvature. ~e(N) has the dimension of [mp]2N, M;(N) 

has the dimension of [mp]N-l. If we attempt an expansion of the wave function of the WDW 

equation as follows 

00 

\II = exp( -S) = exp(- L MirN)Sk)' (75) 
k=l 

To leading order, eq.(71) becomes 

(76) 

We will investigate whether eq.(76) has the following solution or not 

4 1 j dN Irh(R(N) A(N-l») (77)Mp(N)Sl = a(N-l) xv n - 2 <p • 

<p 
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We may choose the heat kernel and the heat equation as 

R,(N) (' .) fj.l/2(X',X) (_(j(X',X))~ n (n) (' )
i 1j 1kl X , X, E -,',=====-exp 2 L..t E ai'j 1kl X ,X , (78)

y(41rE)N E n=O 

a AN) 
D ' D,},(N)aE Rj/jlkl . '- 'I 'Ikl (79)

t J ' 

where D:, is a covariant derivative with respect to X~, in N dimensional space. From (78) 

and (79), we have 

(80) 

fj.~(N) / dNX/h 

b~N)E-!f + b~N)E-N22 /hR(N) + b~N)E-N;4 /h((R(N))2 + ... ) + .... (81) 

[ / dNxf,(x)H(x), / dNYfJ(y)H(y)] 

= if dNx(f,(X)fJ;i(X) - (i(X)fJ(x))n"i(x) + fj.f, (82) 

where E has the dimension of [mp]-2, ¢(N-2)(0) has the dimensions of [mp]N-2, a~N), b~N) 

and c(N) are numerical constants which are determined from the heat equation. The closure 

of the algebra (82) requires that ¢(N-2)(O) = O. However, in order that (77) becomes the 

solution to eq.(76), following conditions will be needed 

¢(N-2)(0) = ¢(N-4)(0) = ¢(N-6)(0) = ... = ¢(O) = 0 for N == even integer, (84) 

¢(N-2)(0) = ¢(N-4)(0) = ¢(N-6)(O) = ... ¢(1)(0) == 0 for N odd integer. (85) 

Thus, in the theory with extra dimensions, (77) can not become the solution to eq.(76) 

generally. It seems to be difficult to renormalise the WDW equation for Riemanian manifolds 

with extra dimensions, within our approach. 
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5. In summary, we have concretely shown that an additional term (~r) arises from the 

commutator [H, H] where H ~ 0 is the regularized Hamiltonian constraint. The closure 

(~r 0) of the algebras for the reguralized Hamiltonian constraint and momentum con­

straints guarantees that (21) is the solution to eq.(6) in 3+1 dimensional theory, but does 

not guarantee that (77) is the solution to eq.(76) in N+l dimensional theory (N > 3). This 

means that (77) can not become the solution to eq.(76) generally for N > 3. This result 

about the renormalizabHity of the WDW equation for N + 1 dimensions may partially answer 

the question of "why we live in 3 + 1 dimensions". 

In order to renormalize up to next leading order in 3+1 dimensional theory, we may need 

to choose the heat equation with additional parameters(m, ,); 

ata R" (86)i'j'kl 

In this case, An additional term (~r) in the commutator (19) becomes 

N ext leading order contribution will be discussed, in more detail, in another paper. 
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