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1. The wave function of the universe is defined on the superspace (the space of all three
metrics and matter-field configurations). The wave function ¥ obeys the Wheeler-DeWitt
(WDW) equation [1], H¥ = 0. It is usually thought that, at the early stage of the evolution
of the universe, the quantum state of the whole universe is well described by the WDW
equation [4] [5] [6]. However, the region which is much smaller than Planck scale has not
been analyzed. We will investigate the region.

Generally speaking, there are mainly two problems in the WDW equation. One of
the problems is concerned with the interpretation of the wave function of the universe [7].
The other problem is the technical difficulty to solve the WDW equation on the infinite
dimensional space (superspace). In this paper, we try to solve the WDW equation by using
heat-kernel regularization [8]. We attempt an expansion of the wave function of the universe
in powers of Planck mass and discuss the physical meaning of the wave function of the
universe to leading order.

In Ref. [2], G. ’t Hooft stated that nature is much more crazy at the Planck scale than
even String theorists could have imaged, and stated that, at Planck scale, our world is not
3+1 dimensional, i.e. dimensional reduction occurs at this scale under the requirement that
the physical phenomena associated with gravitational collapse should be duly reconciled
with the postulates of quantum mechanics. We shall show that the dimensional reduction
in quantum gravity can occur at the scale which is much smaller than Planck scale under
the analysis of the WDW equation.

2. Wheeler-DeWitt equation [1] [3] is

[ —5A() + miyA() (RO (@) - 20)]u () =0, (1)
P
52
Alz) = Gi’k'(m)ﬁhij-(x)éhkg(:c)’

where h;; are spatial metrics, h = deth;;, R® denotes the three dimensional scalar curva-

(2)

ture, Gi = sh™2(hihg + huhyk — hijhu), my is the Planck mass, G = 1/m}, G is the
Newton constant, and A is the céétriglogical constant. The WDW equation ‘s‘t‘gands in need:

of regularization because the two ":fpihc'vt':i(mal derivatives acts at the same point in spac
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So, for example, A(z) acting on R©®)(y) is proportional to (6(z,y))?, which is meaningless.
Therefore, in the next section, we shall construct a regulated operator, Ay, that preserves

the three dimensional general coordinate transformation. Then, the finite version of the
WDW equation will be

[~ + m2VR(R®) — 20)](h) = 0. 3)

p

If we attempt an expansion of the wave function of the universe in powers of the Planck

mass as follows

U(h) = exp(—S(h)) (4)
= exp(——m;" Z Sn): (5)
n=1
the WDW equation becomes
1 1, 65 é6S 2 (3) oAy
m§A¢S - G”"‘ﬁh;, st m2Vh(R® — 2A) = 0, (6)

So that to lowest order, eq.(6) becomes
AsS1 + VR(R® — 2A) = 0. (7)

On the other hand, in the WKB approximation (the semi-classical approximation), if we

expand S = Zle(;nl%—)""2wn, we obtain the Hamilton-Jacobi equation up to leading order

—Gi,~kl%%§gj + VA(R® = 2A) = 0. (8)
We should not expect our approximation (7) to leading order in our expansion (5) to resemble
the semi-classical approximation (8). Eq.(7) gives a very different wave function of the
universe from that (8) given by the WKB expansion which would contain propagators, and
so be non-local.

In eq.(7), Ay will act on integrals of the invariant functions under three dimensional
general coordinate transformation to produce three dimensional functions with finite coeffi- -

cients. So we can look for a solution for Slthatls itself the integrals of a local function. In

the next section we will show that




1 . :
S = o [ & aVh(R® ~2,), (9)

) « . L
where Gy, Ay are the “renormalized” gravitational constant and the “renormalized” cosmo-

logical constant, as we will see in the next section. To leading order the wave function of

the universe is

V(h) = exp(-a-l;-/d%\/ﬁ(}z“) —27,)). (10)

Now that we have an approximation for ¥ we will be able to compute expectation values of

some operators [h;;] such as the Wilson loop [9] in which case  can be taken independent

of —z’gffz;
cq> = L Dhi ¥ (hi)Ri; ]V (hiy) (11)
J Dhiy U= (hi;)¥ (ki)
th,-jQ[h,'j]exp(—-—g; f d:’a:\/_}-z-(Rm - 21\¢))
o~ 12
[ Dhyexp(—2= | dov/h(RO) = 21.,)) (2)
where Gy = 3G4. But this is the functional integral for the vacuum expectation value

of Q in the three dimensional Euclidean Einstein action with couplings G4, A;. What
does this expression(12) mean ? This may mean that time axis vanish at the scale which
is much smaller than Planck scale, and four dimensional Einstein Gravity is described by
three dimensional Einstein Gravity effectively at this scale, or our universe is described by
three dimensional Euclidean universe when the size of our universe was much smaller than
Planck size, as we will discuss later. This picture may resolve the problem about the origin
of the beginning of time (axis).

3. We will now address the crucial question of how to regulate the Wheeler-DeWitt
equation. We will replace A in the Wheeler-DeWitt equation by a regulated operator A,.
This regularization and renormalization procedure introduces an arbitrary function ¢ on
which Ay depends. This is an inevitable consequence of isolating the finite part of a divergent
quantity. Physical quantities should be independent of this arbitrariness, e.g.by absorbing
it all into the coupling. To constngl_ic:t,\ Ay, w;f;v‘begin by “point-splitting” the funct_idqgl

. derivatives. Consider the operator = %




5 s N
Sy (@) Sha(z)’ (13)

A(z) = /dafl"ﬁ’,‘tjim(ﬂ?,,.’ll;f)

where the Ky is a bi-tensor at both z’ and z, satisfying some heat equation with the

initial condition
Ei_ri_%](i’j'kl(xl: :L’;E) = G,‘jkl(Z‘)(S(CE’,fL'). (14)

If ¥ denote the space of sums of products of three-dimensional integrals of local functions of
h;; with finite coefficients, then A acts on a typical element of ¥. We will replace A in the
WDW equation by a regulated operator, Ay, which does have a finite action on elements of
Y. and maps X to itself.

The coefficients of integrals resulting from the action of A, on £ will contain powers of
¢ some of which diverge as ¢ — 0. These powers of ¢ may be determined from dimensional
analysis. We will choose K,/ to preserve three dimensional general coordinate transfor-

mation invariance, so, given the local character of A, we have, for example,

A /d"‘x AR® = a1 e™?Vh + aye*VRR® + e 12 (a3 VR(RP)? + agVhR RO

+ asVARYY) + O(e1?), (15)

A. / Pyvh = B2V h + B2V RRD 4 O(12), (16)

where the proper-time ¢ has the dimensions of [m,]~2, whilst A, has dimensions of [m,]®,
and «; and f; are numerical constants, which should be determined from the heat equation.
We note that Rffg, does not arise in eq.(15) since, in three dimensions, Rfle can be expressed
in terms of R®® and RE?). We can extract a finite result for Ao when ¢ = 0 using analytic

continuation in an analogous fashion to zeta function regularization, where oeX. We take

the action of A, on an arbitrary element, ge¢Z to be [8]

Dyo = lirrés /x dpp’_lcb(p)Apm, - (17)
$— 0 . :

[




where the integral on the right-hand side is defined by analytic continuation in s . We take

A at proper-time p® rather than p because of the square roots appearing in (15),(16). For

example,

Ay / LovVhR® = 5‘5‘%435(5)(0)\/% + %,%‘3)(0)\/5}2(3)

+ ¢0(0)(as VA(R®)? + s VRRY RYY 4 ay /R R, (18)

Ay [ vk = %—gb(”(())\/ﬁ + 56 (0)VRR®, (19)

where ¢(®(0) = %%QIFO, for n=1,2,3,---. We have done part of the job of renormal-
ization. However, (10) can not become the solution to the equation (7) generally under the
consideration of (18) and (19), if we do not take the requirement ¢)(0) = 0. Therefore,
for the moment, we require the “strange” condition ¢(*)(0) = 0. This condition will be dis-
cussed later. The rest, ensuring that Physical quantities are independent of ¢(")(0) except
for #(1)(0), remains to be done. We now turn to the choice of heat-kernel. There are many

choices of heat-kernel. Here we choose the following simple form
Ix",':]:k,(:c', T, E) = exp(eD' . D’)ilj'kzé(:lll, .'L‘), (20)

where D}, is a covariant derivative with respect to z/, in three dimensional space. Eq.(20)
satisfy the heat equation

0 .
;j—g]\'i:jlkl = D’ . DII\’i‘j’kh (21)

subject to the initial conditions
hl’lg ]x",-:j:k,(m', SC;E) = Gijkl(x)é(x,;m)- (22)

We need to know the diagonal matrix elements of K,(z’, z;¢) for short “times”. These
may be computed using a standard technique that assumes the existence of expansions of

the form [10] [11]

1For the more detailed discussion about this regularization scheme, see ref. [8]
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Ar(z',:c

Allz(:c’, 1‘)6“ -

,—-——-----47‘-63 Z € a; IM 1: 1:) (23)

n=0

]X'.;'jlkl(il:l, T E) =

where the bi-scalar o(2’,z), which we shall call the geodetic integral is equal to one half
the square of the distance along the geodesic between z and z’, and A(z’,z) is a bi-scalar,
A(z',z) = h™Y2(2")D(2', 2)h™?(z), D = —det(Dys;), Dir; = —a.;. ;1'j denotes the covari-
ant differentiations with respect to z*' and z’ [10]. af,';-),k,(:t', z) is a bi-tensor at both z' and
z. The prefactor in (23) solves the ordinary heat equation. The initial conditions(14) are

satisfied by taking
lxm a ,k,(m z) \/ﬁGiJk;(x). (24)

Inserting (23) into eq.(21) and making use of 1g,u0" = ¢ and ¢'5,;; = o;; [10], one finds

[10]
o™ (', z)a(, ),k,m (z',2) =0, (25)

o™ a (2!, 2) + (n+ Dajny (2, 2)

1

= A"Y2(2! z) (A3 (2, rz:)a(. s z))m, for n=0,1,2,3,---. (26)

Using (23),(24) and the recursion relations (25),(26), we have

},‘_fg Koz’ z;€) = m\/—GuJ’kz(x) + 0713, (27)
l;lm Ki'J"kl;p‘(mI: T;€) = O(‘f“llz), (28)
1
i Koo (5, €) = P2z g () VRG]
- 1 1 (3) 1 (3) N
+ Sl R @) + RO @hye () VAGu()
\/‘(Gm ]'kl aj)RS:;)I: ( ) -+ (1,:,71'“(1?)}?] Iplg! (3}))] -+ 0(5—1/2)‘ (zq)

Now we shall calculate A, [ @®yv/h and A, [ @yvAR® from the heat kernel. If A(z) (13)

operates on [ @*yvh, we have




1 L . g
z) / PyVh = = VR K u(z, 0) (R0 4 AR B, (30)
Using (30) and (27), we get

A(z) / EPyvVh = are¥*Vh + O(e™1/?), (31)

where
ay = _._._..2_1._ 3
1 8(47'_)3/2' ( 2)
If A(z) (13) operates on [ d*yVAR®, we have
r) f PyvhR® = -2-\/51(0“(:[:, z; €)[R* RV 4 pH ROVE 4 pak ROWE 4 pil RN
_ hin(3)ki _ hklR(B)éj _ l(hikhjl + hilhjk _ hi_jhkl)R(S)]
5 .
1 o 1 N N 4 . 1 N 1.4 11
= VRO R g B S
X [[‘ri'j'kl;n'm"sﬁllq' + I\”,'ljlk);qlpI(S:';i,n:
— KoputanSthy = Kot 88 Tl (33)
where 65 = 1(sF6% + 616%). Using (27),(28),(29) and (33), we get
Al(z) / ByVhR® = by *Vh + by PVRR® + 0(e7V1?), (34)
where
3 11
by = —=7, b=
YT o@am)d P T 24(4m)32 (35)
Our “renormalization” procedure (17) tells us that [8]
1 .
(E_nlz)R‘c‘zO = ;l-l—(ﬁ(n)(()), for n= 1) 27 Y (36)
(En/z)R‘t':O = 0) for n= O: 13 29 U (37)

Then, eq.(31) and eq.(34) become

Aylz) /d y\/-‘ ¢(3)(0 Vi, (38)




b 5 .
By(a) [ @9VRRD = 2400 VE + 2 40(0)VER) (39)

where we have taken ¢()(0) = 0. Substituting (9) to eq.(7), and using (38) and (39), we

find that to leading order the wave function of the universe is

W] = exp(_é; [ EVRED ~20,), (40)
where
3)(0)b
G = __¢3!£n2 g (41)

36:6%(0) | by

A= — T L L 72
¢ 7 2.5la;3(0) | a

A. (42)

In our formulation, the "renormalizability” of the theory requires that all physical quantities
must be independent of the arbitrary function ¢(™(0) except for ¢(1(0), so that, to leading
order, the wave function is independent of ¢{™(0) except for ¢)(0). We may define a S-
function for m} as f = pff;(mi) where = (¢¢(0))!/3 which is a parameter of the dimension
of [m,]. If we require that the wavefunction to leading order is independent of p, we get
B = 3/mj(u). This means that ma(p) o< p*(G () o p~31?), where G(u) = 1/m2(u), G(p) is
the Newton constant.

4. Next we shall discuss the physical meaning of our expansion (5) of the wave function.
Firstly we shall briefly discuss the WDW equation to next leading order in powers of Planck

mass. The WDW equation to next leading order is given by

65, 65,
AyS; — Gji—————=0. 43
$72 T TR by Shag (43)
Substituting (9) into (43), we have
3 1 1o, 3 ( (3) p(3%

AySalh] = =S Vh ~ Ecéd‘f,\/f;R(B) + Edg(--;\/ﬁ(ﬁ N2 4 2VhRD RO, (44)

where ¢, = ———%%:f;, dy = "‘}G{;. This equation (44) would be solved by the ansatz

m mp

S, = [ Lyle' VR + fVERD + ¢ VR(RP)? + KVRRY ROY, (45)
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where ¢', ', ¢/, h' are some constants. The term 1 dy>VhR®" is not included in S, since it
vanishes identically. Let us introduce a mass parameter u. In terms of u, we may write
r — Ty =5 — £t =T e T e v - = . -

e =eu f' = fluTl g = g% k' = Au~®. Here, all the coefficients e, fl 9" k! are

dimensionless constants. Thus, up to the next leading order, the wave function of the

universe would be found to be of the form

m
U[h] = exp{——m;& - (7;)4m252} (46)
= exp{—m3S; — (11)41'11;52}, (47)

P

1
m;f.S'l = a;/dBy\/iz—(R(g’) — 2A,), (48)
1 , By

miS, = & / Py(asVAR® + B,(VRRD)? + v, VR R ROW), (49)

where [, = 1/m,, v = 1/pu, 1, is the Planck length. «y, B4, v, are constants expressed by
¢ (0). From the above expression (46), (47), we see that the next leading contribution will
be suppressed if we take > m, (v € [,). This may mean that if we take a “renormaliza-
tion” scale 44 to be much greater than m,, or if we take a “renormalization” scale v to be

much smaller than /,, the wave function of the universe may be given by
1 )
U[h] ~ exp(—-—G— /ddy\/};(R("i) —2A4)) for p>m, (v L1,). (50)
¢ o

The exponent of the wave function (50) is the three dimensional Einstein gravity action with
the “renormalized” Newton’s constant GG and the “renormalized” cosmological constant Ag.
Three dimensional Einstein gravity theory does not contain gravitational wave modes, and
the theory is the dynamical system of the finite degrees of freedom which come from different
topologies of the manifolds. Thus the expression (12) may mean that “New Phase” (the
dynamical system described effectively by the three dimensional quantum Einstein Gravity
theory) exists at the scale which is much smaller than Planck scale.

To see physical meaning of our expansion (5) from the viewpoint of minisuperspace
models, we shall discuss the de Sitter minisnperspayce model. The WDW equation in this
model is given by [4] [5]
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+ 5= —a?[1 - Ad’]}¥(a) =0, (51)

where we have set m, = 1, and a is the scale factor, the parameter p represents the factor-
ordering ambiguity. With the choice p = —1, this equation can be solved exactly . If we

choose Hartle-Hawking boundary condition [4], the solution is given by [5]
VUla] = codi(2), (52)

where z = (4A%)73(1 — Aa?), o is a real constant, and A;(z) is Airy function [12]. If we

write

the WDW equation becomes

_‘_12_5_ + (dS)2 +
da? da a da

We shall consider the small scales (a — 0). In this limit the asymptotic behavior of Airy

function is [12]

where { = 22°/2. Using (52), (53) and (55), we have

d*s ds
?1?:1’ — =g, for Aa’<«1 and 0< A1 (56)
o2

Then, we get
-—> (—“C;)2 for 0<a< 1. (57)

This relation (57) in our simple minisuperspace model suggests that the WDW equation
(1) is approximated as eq.(7) when the radius of the universe is much smaller than Planck
length. Therefore, “New Phase”( the system described by three dimensional quantum Ein-

stein gravity theory) would exist at the very early stage of the evolution of the universe.
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5. Finally, we briefly comment on renormalizability of the WDW equation. Our strange
condition ¢{)(0) = 0 is obtained from the closure of algebras for the regularized Hamiltonian
constraint ff(JJ) and momentum constraints ]?i(m) because, in our heat kernel regularization,

the regularized Hamiltonian constraint H (z) contains heat-kernel K
~ ] P . SN . E
H(z) = — /d‘ax']\'g]:k,(xz z;e)mtd (2 (z) + mi\/}‘z(R(S)(s:) — 2A), (58)
.

where 77 is the canonical conjugate to the spatial metrics hi;. Additional term AT arise

from the cross commutator of Ay and VAR®) as follows,

[ [ dst@ B (z), [ Eyn(z) i) (59)
=i [ @a(E(@)n(e)s - E@)n()) H + AT, (60)

AT = ag(0) [ dz(g(@)n(e); ~ £(z)in(2)) RO (61)

where « is a constant, ¢(*)(0) has the dimension of [m,], H(z) and AT have the dimensions
of [m,]* and [m,]>. AT is antisymmetric under the exchange of ¢ and n. The closure of the
algebra requires that ¢(V(0) = 0. Therefore the WDW equation may be renormalizable. |

6. In summary, we have tried to solve the WDW equation for the wave function of the
universe as an expansion in powers of the Planck mass, by using the heat-kernel regulariza-
tion. We have shown that the wave function of the universe to leading order is expressed
by three-dimensional Euclidean Einstein action, and expectation values computed with the
leading order approximation are reduced to the expectation value in three dimensional Eu-
clidean Einstein gravity theory. This may mean that “New phase”( the dynamical system
described effectively by the three dimensional quantum Einstein gravity theory) exists at
the scale which is much smaller than Planck scale, or our universe was a three dimensional
Euclidean universe effectively at the very early stage of the evolution of the universe, in
which the size of the universe is much smaller than Planck size. The renormalizability of
the WDW equation and the next order contribution in our expansion (5) will be discussed,

in more detail, in another paper.

12




REFERENCES

[1] B. S. DeWitt, Phys. Rev. 160 (1967) 1113,
[2] G.’t Hooft, Preprint THU-93/26.
[3] E. Alvarez, Rev. Mod. Phys. 61 (1989) 561.

[4] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28 (1983) 2960; S. W. Hawking, Nucl.
Phys. B 239 (1984) 257.

[5] A. Vilenkin, Phys. Rev. D 33 (1986) 3560, Phys. Rev. D 37 (1988) 888.
[6] T. Horiguchi, Mod. Phys. Lett. A 8 (1993) 777, Phys. Rev.D 48 (1993) 5764.

[7] Conceptual Problems of Quantum Gravity, ed. A. Ashtekar, J. Stachel, (The center
for Einstein Studies, Boston University, 1991);T. Horiguchi in Proceeding of the Third
Workshop on General Relativity and Gravitation ( January 17-20, 1994) ed. K. Maeda
et al; T. Horiguchi, Mod. Phys. Lett. A 9 (1994) 1429.

[8] P. Mansfield, Nucl. Phys. B 418 (1994) 113.
[9] K. G. Wilson, Phys. Rev. D 10 (1974) 2445.

[10] B. S. DeWitt, Dynamical theory of Groups and Fields (Gordon and Breach, Inc., New
York, 1965).

[11] B. S. DeWitt, Phys. Reports 19 (1975) 295; H. P. McKean, I. M. Singer, J. Diff. Geom.
5(1971) 233; P. B. Gilkey, J. Diff. Geom. 10 (1975) 601, Proc. Symp. Pure Math. 27

(1975) 265.

[12] M. Abramowitz and 1. A. Stegun, Hand book of mathermatical functions ( Dover, New

York, 1972).

13






