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Green-8chwarz Superstring Theory in 1>=4 and 1):10 is formulated. 
in an extended. space including add!tional spinor coordinates of the 
cartan moving frame. These spinor. coordinates realized in the fom of 
the Lorentz harmonics are used for constructing of covariant 
irreducible generotors of femion1c z-s;ynmetry. The generalizations 
of this Lorentz harmonica! superstring formulation to the case of 
super-p-branes with p>1 (includ1Dg supermembranes p=2) are discussed. 
shortlY. 
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1. Recently new approache for solving the problem of the 
covariant description of ~symmetry in superparticles and superstring 
theories [1] has been suggested [2-13] (see also the list of refs in 
[12.13]). One of them suggests an extension of the dynamical variable 
space adding auxiliary fields which can be realized as harmonics 
[13,2-4,8-10]. twistors [14,5-7] or vectors [12.15]. In the framework 
of this approach the BRST covariant quantization of the whole set of 
null super-p-branes, includ.1ng massless superparticles (p=O) , null 
superstrings (p=I) and null supermembranes (p:=2), has been fulfilled 
in the space-time with D=4. 

The central point of the approach [8-10] consists in introduc1Qg 
the splnor variables of the Cartan rooving trame or the so-called 
Newman-Penrose diade basiS [16] (formed by the conmut1Qg Weyl splnors 
1a' "a or, equivalently, by the Lorentz harmonics va-,V + [8]) in thea
target space of null super-p-brane theory and us1Qg them for the 
construction of the action functional. 

The IOOving frame approach is effective not only for null super-p
brane theory. Previously it has been effectively applied in the Yang
Mills, supergravity [17] al1d boSOnic string [16] theories. Thus the 
use of the harlOOnic realiZation of the Cartan vector trame, seems to 
be conceptually important for a relevant formulation of superstring 
theory. This originates in the fact that the problem of the covariant 
description of c£-synmetry has the natural and simplest solution in 
the case when auxiliary spinor reper variables are present in the 
target space and the tWistor-llke action functional is used [8.9]. 

In accordance with this point of view it is important to 
transform the Green-8chwarz superstring theory into an classically 
equivalent one defined for the extended target space conta1n1ng the 
splnor rooving frame coordinates. 

Here we present such new formulations for D=10, N=2B and D=4, N=1 
superstring theories. They contain two sets of raper variables.The 
first ohe comprises the reper var~.ables of the external space-time 
realized in the form of (spinorial, Lorentz harmonics. 'The second set 
containS the zweibeinS of superstring world sheet. We show that the 
problem of the construction of the covariant irreducible ~symmetry 
generator finds its simplest solution in these formulations. We 
stress that the tenSionless 11mit of these formulation given by null 
superstririg' action [9] inay be easily obtained by putting b=O and a=O 
in the action functional (1). I 
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2. The action for 11='10, N=2B and 11=4, N=1 superstrings may OC
t'tpresented in the unified form using the light-like vectors tL ~:t.~ 

1ft 

which are constructed using the spinorial Lorentz harmonic var1auies 
for D=4 [8-10] and for D=tO [19] 

(1) 

+ c b a: i,Lv p'+2lJ,1 qf-2Jv ] 

Here c and b are dimensionless constants;iJ.=O,l are the vector index 
of the world sheet; 

m a a~ :: 411J.X - i. ( 41iJ.e amad rf1 - e a",ad 411J.rf1 ) 
when D=4, N=l with m=Opl,2 p3; a=1,2; 0.=1,2 and are theamad 
relativistic Pauli matrices; 

ea1w.": = 8 Xm- i. ( 8 a ... " e~l + 8 e02 a "A e~2)
~-IJ. IJ. mat3 IJ. ma~ 

when D=10, N=2B with m=0 •••••9; 0.:1 •••••16 and a a.a are 16><16 D=10 
a-matrices defined in [3]. The coordinates of D.:I0, N=2B and D=4. 
N=l superspaces are denoted by means of the symbols 

z'l = (Xm 
, ea , rf1==<ea » and z'l= C£'."'" ea1 •e(2):: (1'",ear) 

respectively. 
The vectors U 

m 

t 
!2J which satisfy the conditions of light-likeness 

ZJ = ZJu t - tl-21m = a u t + u,+zJm 
m m 

(2) 
and normalization 

1 ) Here and below the expressions in the square brackets above a 
variable symbol indicate its weight wunder SO (1 ,1 ) group gauge 
transformations. This SO(1,1) group is a subgroup of the Lorentz 
group SO (1,D-t) but also may be considered as structure group of the 
superstring world sheet in the framework of the presented formulation 
of superstring theory. When D=4, the weight w may be presented in 
terms of the charges qL and qR [8-101 under the chiral complex 
subgroups DL (1) and DR (1) of S1 (2 •C) group by the relation w = 

=(9.-~). 
2 



(3) 

are built of the corresponding spinor Lorentz harIoonics [8,19] as 

D=4 : tt-Z1m=u<+I->m= va-c1"aI1rfi+, tl+zJm=tl-I+m.= va+c1"a4rfi-, (4a) 

])=10 : U(-2I= 31 u-: oa.13 u: u£+zJ = 81 u! o~ u!. (4b) 
1ft aA. Ift~.l m a.t. m ~ 

On the shell defined by the motion equations 

aSD • N = 0 = aSD • N 

apt+z~ Oq>t-2~ 

for the reper coefficients efl< o't. deln. s.c"fC:es. ~r= rI d.Lt ( E) vJef 

p(+Z~ = ~ (a rt/2 (~ _ 'J;) and bqf--.l~ = ~ (a rt/z (~ + ~) 
of the superstring world sheet the action SD,N, ( b) transforms into 
the action from Ref. (15] 

'" 1 J ,u.. _uv (,1f1 I.Jl ( -2J [+zJSD.N ( b > = zca:" d't UIJ 6'""" '1L ""V um un , 
where the auxiliary vectors 

nO= 1(rr+Z!+ rr--.l1 )= u(O) nl= 1(rr+ZJ_u!_-2J)= u(g. 
WI ZJIl JIl - WI' m ZJIl III - m' 

comprize the Lorentz harmonics according to Eq.(4). 
The vector moving frame formulation (15] is equivalent to the 

Hambu-Goto one (for 1=0) and to the Green-8chwarz one (for H=1,2), 
after adding the corresponding Wess-Zumino terms 1rtio the action. 
Therefore it is evident that at the classical level the formulations 
(1) are equivalent to the corresponding Green-Schwarz theories. 

The lDrentz harn-lOnic variables [8-10] used in Eqs. (4a) are 
restricted by the normali7,ation (or harmonicity) conditions 

,=",1,)- va.- v+ - 1 - 0 (5a)
U = a -. 

The invariance of the action (1) under the gauge transformations from 
[U(1)]c = U (1)x U.(1) = SO(1.1)x 80(2) subgroup of SL(2,C) together

L 

with the harIoonicity conditions (5a) perm!ts to identify. ·the space -of 
harmonics . {V~,r4} with the coset space 8L{2.C,)/[U{1 )10= 

-=S0(1.3)1S0(1,1)x SO(2). Four 1ndependent (')mbtnations of the Lorentz 
harmonics v~' together with the variables p~ and cp't parameterize 6 
independent components of the two light-like vectors 

3 
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1
~M ± or wam +•••E L± 

which present the. superstring theory constraints. 

In Eqs. (4b) U: == (u! • u: ) ( where A=1 •••••8; A=1 •••• ,8 are 
a (lA aI. 

the indices of 8(s) and 8(c) splnor representations of SO(8) group) 
are the Lorentz hamonlc variables for the case 1>=10 [19J. Th.tse 
variables are restricted by the 1261 harmonicity conditions 

(5b) 

3'llO)= Ik u: ~ u! dnc¥ u!' - (5c)u: 1 :: 0 
aI. f3' (lA 13-'M 

imposing only 210+1=211 independent restrictions on the Lorentz 
harmonics [19]. Due to the invariance of the action (1) under the 
transformations from SO(1.1) )< SO(8) gauge group and the harmonicity 
conditions (5b,c) the number of the independent variables among the 
256 components of UA~ equals to 16(=256-211-28-1). In accordance with 

a 
this fact the harmonics UA~ may be considered as the coordinates of 

a. 
the coset space SO(1t9)/SO(1,1)~O(8). Together with the variables p~ 
and ~~ the 16 independent combinations of the harmonic variables UA~ 

a. 
parameterize the 18 independent components of the two light-like 
vectors L+ in 1>=10. 

In this case the light-likeness conditions (2) and the 
orthogonality of the vectors U 

m
t 
;!:2) and U 

m
( t. 

(40 ) 

are the consequences of the well-known identity ~lc¥ ~1)8m == 0 [3). 
in contrast to the normalization conditions (3) which coinCide with 
Eq. (50) and present one of the harmonicity conditions (the relation 

u< t)u<Jmt= - OfJ is a consequence of tile relation (3) ). 
'" 



. In .l!!q. (1) SVZ.O.N denote the Wess-Zumino term for the 
corresponc:U.ng superstring [1]. It has the fom 

SWZ ~=•• N=I= a; a I ctt 00 sflV D~X'" ( DV 80umOlJ.rfl - eOumOlJ.Dvrfl) (6a) 

for D=4 , N=t and 

-" 
•• 

(6b) 

for D=10 , K=2B • The presence of this tem with a=-l/c in the action 
(I) leads to the invariance of this action under the z-syumetry 
transformations generated by the following covariant and irreducible 
first class constraints. For D=4 they has the form 

rP- + ..a- 4t Do Vo. - (-210) 4t ...d _ - p(+J .... 
1)::4: D-(o)= v-- Da(O) - C'(f' (-1+>'1: V + CtJ:'iJat:J- Vo. (p)'t' 

P 

(7a) 

Where 

Da(O)= -'Ita + t [p", + air W(Jtn ) ~ rfl 
are the pr1.JnarY Grassmann cons'traints Which coincide with the ones 
from the original formulation of the Green-Schnrz superstr.tng; 

- + p + (+-. .... ( -I+) ) • L/ ••
P.= (p .... 'Ita' 'It~... ~. d' p(P)jJ.' p(CP)jJ. :: - (-1) II 8Z 

are the momentum densities canonj.cally conjUgated to ~e tile targe.t 

space coordinates 

z-:: (x'" eO. rfl v+ ~ d-I+)~ (n(+I-~) 
f• • • a' 0.' '. T 

1.e. [z· (0) •Pm (<f' ) } p =-"10 (a-if ) • and f inallYf-ao):: iP"7d 
For D=lO the covariant and irreducible z-~:try gene~tors .h~ 

the follo;Ring form 

1)=10: 

(7b) 

5 
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the components of matriX Which is inverse to U/'=(u! "U:) areQ. a. a.l 
A A. A. 

denoted by (U-<1,.. u+O.) : cr:a. [19]. Unlike the case D=4, it is impos-
A A 	 .. 

sible to express the components of lTla. 1.11 terms' of u! and u: in a 
0. 	 a.A a.l 

,.. A 

simple covariant way. Therefore tee variables u-<1,.. u+O. are to be 
A I 

considered as the independent harmonics. At the same t~ the 256 

inversibility conditions for the matrices U and crt (crtQ. U,..b = Ob ) 
0. 0.Q. 

?xe to be added to the set of harmonicity conditions (5c,d) 
,.. ,.. 

-<1 +3A.: U U,.. - (jAB = 0 3 ;: u+O. u: - 0 = 0 
A a. A. A ai A' 

A 

3 ;:u-<l.u: = D, 	 (5d)
AA A aA 

The momentum densities 

" " 12...a..-...a..+ p+ p- p[ -2 J [+2 J)
p.~ ( .Prn" ~a ' ~a ' Y-~, Y-i' ~' ~' (p)~' p(~)~ 

enterIng in the relations (7b) are the canonically conjugated ones 

for the target space coordinates 

zll:(X'", ea1 , e02, u! , u: " u-a" u~. p[+2]~. qJ-2J~); 
, (lA <U A A 

-I-21t: u: It .jA.- -' u-<iyt p:. -I+2 ]t: u! 1't p1+_ u+tl..:yt p! • 
aA AA A .AAA aA a.A AA A A AA a.A 

It =(1't JT. and. finally It are the 1>=8 "a-matrIcer;" defined in 
AA AA 	 • .1 

[1] • 

Note that unllke superstring a massless superparticle [8] and 

6 



null super-p-branes [9]1) are described by the s1ngl.e light-like 
vector which is the momentum density Pm • As a consequence, their 
actions are characterized by more higher (in comparison with 
superstrings) gauge synmetries including 80{1,l»)C SO(2»)C)l (for D=4)a 
and 80(l,l)>c 80(8)>c)1. (for D=10) , where ~ and K. are the Lorentz 
boosts for the case D=4 and D=10, generated by the operators [8,9,19) 

(01-2> 0.-rr ",.(+210) :-4+-+D=4: V +•• -= v s:o.+.... v +•••:: v .. l."'o.+ ••• 

(8) 

OWing to this observation, the harmonics ~ and ~.u~ may be 
considered as the coordinates of the coset spaces 
80(l.3)/80(l,l)~O(2)>c)~ (D=4) and 80(l.9)/SO(1,1»)C SO(8»)C)K. (»=10) 
respectively. The number of this coset coordinates, namely 2 (for 
D=4) and 8 (for D=10) together with 1 coordinate of the target space 
p't exactly equals to the number of independent components of the 
light-like vector Pm (3 or 9 respectively). Thus the demand of the 
lDrentz boost symnetry considered in [19,201 for the def1n1tlon of 
Lorentz harmonics is admissible only for the cases of superparticles 
[8] and null super p-branes [9). but it is not correct demand for 
superstring. 

Now we investigate the covariant BRST-BFV quantization of the new 
formulations of superstrings (1) using the approach developed in 
[9,10]. 

1) The action functional for null superstring (pel) in D=4 [9] and 
D=10 is given by Eq. (1) with b=O and the Wess-Zumino term being 
absent (I.e. a=O in Eqs. (6». It is known [21] that null superstring 
has the invariance under the fermionic z-symmetry without the inclu
sion of the Wess-Zumioo terms in the action. We stress that in the 
case of N=2 superstring the structure of z-symmetry distincts drasti
cally from the one corresponding to null-superstring (b=O) since it's 

z-synmetry generators Dl~{(J) == U~-D!«J)+ ••• and rf.~«J) :: U~-~«J)+ ••• 
a a 

are all in the (s)-spinorial representation of 80(8) group. ThUS, in 
distinction with bosonic string and N=l superstring case, the 
tensionless limit of N=2 superstring is s1Dgular not only in quantum 
[22 J, but also in classical theory. 
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3. The natural generalization of the action functional SO.N(b) 

(1) for extended objects with p>l has the form 

S (p) = I dfP+f. [- (ar'/2 ~ w.": u(o] + c (det ~ )f./P" , ] (9)O.N ( b ) 0 ~ m ,0 , 

"it N M ~~ 
where et"=(e!!'•••• •g;) are the inverse reper-vcoenicients for p-brane 
world sheet. By means of u~oj the subset of (p+l) vectors from the 

orthonormal frame set u(n)=(ufO) U W 
•• ~ ufO-f.»= (UCO] u(·» (see

m-m'm' 'm - m'm 

[2.15,18]) is defined. These vectors must be constructed using the 
corresponding spinor Lorentz harmonic variables. For the case of 
superstring . 

fV.ee = (0:" )1./2 ( ~+z]~ + bqf-21~1.), ( _ ~+21~ + b qI-2lJ..L»), 

and the light-like vectors U~+21 are defined by Eqs.(4) for D=4 
and D=10 cases. 

It is easy to see that for p>l the gauge group of the action (9) 
contains the subgroup SO(l.p)~ SO(D-p-l) instead of SO(l,1)~ SO(D-2) 
one which appears in the superstring case. Consequently we need 
spinorial Lorentz harmonic variables parameterizing the coset 

SO(l,D-l)/SO(l,p)~ SO(D-p-l) 
for an adequate description of super-p-branes in D dimensions. The 
additional Wess-Zumino terms for the actions (9) have well known form, 
[23] and their eXistence impose r1gid restrictions on the admissible 
values of the triades (D,p,H). 
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