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Abstract 

The beam propagation in optics is not only a fundamental but a practical problem. The 

commonly used approach is the paraxial approximation. It is natural in some situations 

such as the catastrophic beam collapse in self-focusing media to go beyond the paraxial 

approximation. Indeed since the late eighties and now more recently the problem of go­

ing beyond the paraxial approximation has been revisited numerically and analytically by 

several groups. In most of these approaches the refractive index variation associated with 

Kerr nonlinearity is incorporated but they dQ not take into account the vectorial effects 

and consequently fail to satisfy the divergence equation. More recently there have been 

attempts to incorporate the vectorial nature by considering the interaction between propa­

gation and polarization. In particular the interaction between propagation and polarization 

was considered in a guiding structure for the description of intraJiber geometric rotation of 

polarization. Recently Crosignani et aI. have proposed a different approach based on the 

coupled mode theory to deal with the problem of nonparaxial propagation. 

The purpose and motiva.tion of this work is to examine the general equation for linear 

and nonlinear optical propagation beyond the paraxial approximation in the context of 

the coupled mode approach. The complete set of equations incorporating the backward 

propagating modes are written out. The relation between self-focusing and nonparaxiality 

is discussed. It is well-known that the model equation for propagation of a laser beam in a 

nonlinear Kerr media is the nonlinear Schrodinger equation (NLS}. The singularities of NLS 

equation near the self-focusing region are looked at from the point of view of the general 

equation for propagation. In particular we attempt to examine the region of validity of NLS 

and compare the self-focusing region in NLS and the general propagation equation. It is 

interesting to look at the power in the paraxial and non-paraxial parts. 
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1 Introduction 

The Helmholtz equation which is the wave equation for the electric field E can be written as 

V2E+2V(E. Vlnn) +~n2E = O. (1) 

It is well-known that Eq. 1 can be readily deduced from Maxwell's equation for a media with 

a refractive index depending on space, n(r,z) = nl + bn, where r = (x,y) describes the 

plane transverse to the beam propagation direction z, and nl is the unperturbed part of the 

refractive index bn being a representative of the perturbation. A reasonable and commonly used 

approximation is the paraxial approximation. In the paraxial approximation the dependence of 

the electric field on the transverse and longitudinal coordinates is separated out for a general 

monochromatic wave as 1 

E(r,z, t) = F(r, z) expi(wt - kz). (2) 

If one plugs Eq. 2 into Eq. 1 and assumes that the perturbation of refractive index is small, i.e. 

bn <: lone arrives at the Fock-Leontovich wave equation: 

8 i 2) .k(- + -V.L F = -l-bnF. (3)
8z 2k nl 

A particular form for perturbation of refractive index 6n is usually chosen, namely 

6n = n21EI2 = n21F12. (4) 

This form of variation of the refractive is associated with Kerr nonlinearity. Substituting Eq. 4 

into Eq. 3 one arrives at 

8 i 2 • k 2 (5)(8z + 2k V.L)F + In2n;IFI F = O. 

Eq. 5 is nothing but of the form of the nonlinear Schrodinger equation [NLS](4J, 

-i'i: + a.LW + IwI
2
w = O. (6) 

Eq. 6 is the model equation [i.e. NLS1 for propagation of laser beam with a Kerr nonlinearity, 

with W(x, y, z) being the electric field envelope, z the distance in the direction of the beam 

propagation and a.L = Vl is the two dimensional Laplacian in the transverse (x,y) plane. 

lIn Eq. 2 we use F for the envelope function rather than A as is usual (see for e.g. flfilJ in order to a.void 

confusion with the vector potential. For most pan we try to adhere to the usual conventions in order to make 

it convenient for the reader. 
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It is important to note that in the derivation of Eq. 3 from Eq. 1 three approximations in 

the form of assumptions have been made, namely 

1. Paraxial approximation. 

2. 	Slowly varying approximation of the vector field along the direction of propagation, i.e. 

dropping of the second derivative of the vector field along the direction of propagation 

[z..axis}, lPF/8z2 
• 

3. Scalar approximation, which means that the term in the Helmholtz equation, i.e. Eq. 1, 

which mixes the polarization, namely the term 2V(E· V ln n) is neglected. Once this term 

is dropped the divergence equation V· (n'E) = 0 is no longer satisfied, as is explicit from 

the derivation of the Helmholtz equation from the Maxwell's equations. An immediate 

consequence of dropping the polarization mixing term is that the solutions no longer 

satisfy the divergence equation V· (n2E) = 0: One of the places where these points were 

reported in literature is [31 

The NLS equation, which as mentioned before is the model equation for a laser beam prop­

agation in a media with a Kerr nonlinearity, was used by Kelley [11 to predict the possibility of 

catastrophic self-focusing of optical beams whose power is above a threshold value, a prediction 

confirmed byexperimenta [21. However in view of the approximations, see items 1 through 3 

above; used in arriving at -NLS from the complete wave equation, namely the Helmholtz 'equa­

tion, one does not expect the NLS equation to model successfully the advanced stages of the 

self-focusing. Indeed starting with the work of Feit and Fleck (51 several authors [4, 5, 6, 7, 8, 9} 

have argued that the approximations used in arriving at NLS sliould be relaxed in order to get 

rid of the unphysical singularity formation predicted by the NLS. 

A different and attractive approach to study the laser beam propagation which is able to 

describe the propagation in presence of any tensorial refractive index variation at any order in 

the smallness of the parameter >../w is based on the coupled mode theory [10, 11, 12, 13, 14, IS}. 

The coupled mode approach is able to deal with both linear and nonlinear beam propagation. 

Some of the distinct advantages of the coupled mode approach are: 

1. 	It is inherently first order in 8/8: without the need of invoking the slowly varying ap­

proximation as is done in the approaches based on the Helmholtz equation ,as mentioned 

above. 

2. 	 It automatically takes into account the vectorial effects associated with the polarization 

mixing term 2V(E· Vlnn). 
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3. 	One motivation for using the coupled mode approach is that it is more suited to quanti­

zation which is needed for studying quantum effects. This is one of our motivations for 

considering it. 

The layout of this paper is as follows. In the next section we discuss the coupled mode 

theory approach to the nonparaxial equation for linear and nonlinear optical beam propagation. 

Section three deals with the incorporation of the backward propagating modes. Section four 

contains a discussion of questions and possible solutions. Concluding remarks are given in 

section five. 

2 	 Coupled Mode Theory approach to Nonparaxial equation 

for Linear and Nonlinear optical beam propagation 

As is usual in coupled mode theory we split the quantities [i.e. fields and derivatives (operators)1 

into transverse and longitudinal parts. In particular the propagating field can be expressed 

as a superposition of transverse radiation modes of the unperturbed refractive index: nl and 

its evolution can be looked at in the presence of the perturbation UIOCiated with 6n in the 

framework of the coupled mode theory. A choice for the continuum set oforthogonally polarized 

normalized modes of the unbound space or radiation modes is [141 

E{e,ljr) NleXp{-ie.r)[z-~~z] 

E{e,2;r) N2exp{-i e· r) [~z-(p( + ~~)ri +e,z] . (7) 

The magnetic field associated with the electric field in 7 is given by 

H{e,ujr) = (l/w/-'o)(e +p(z)xE«,ujr), U =1,2. (8) 

We note that eis the propagation vector associated with the transverse plane defined by the vec­

tor r. Similarly p( is the propagation component associated with the direction of propagation, 

namely the z direction, and is given by 

p( {k2 - i! - e:)1/2, 

(k2 - e2)1/2, 05; e 5; k. 	 (9) 

The normalization factors Nl and N2 are given by 

2NI(e) (1/21f)[I3f,Wpo/{pl +e:)1 1/ , 

N2(e) (l/21f)[I3(wel!{pl + e:)ll/2, 

N2(e) Nl{e)/k (10) 
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We recall that k (wlc)nl =konl' It is straightforward to see that the modes given in 7 are 

orthogonal Le. and satisfy the orthonormalization condition 

roc (+oo
)-00 )-00 drz· E(e,O'jr)xU*(e',u'jr) =62 (e - e')6IT ,IT' 0',0" = 1,2 (11) 

with normalization factors given as in 10. 

The electric field can be expanded in terms of the modes as 

E(r,z,t) 'LJ J deE(e,O';r)[c+(e,O';z)exp(iwt-ip(z) 
IT 

+c-(e,O'j z) exp (iwt + ip(z») (12) 

Let us consider only the forward propagating mode c+ for the moment ignoring its coupling 

with the backward propagating mode c-. Denoting c+ by cEq. 12 simplifies to 

E(r,z,t) = L J f d,eE(e,O'jr)c(e,O'j z)exp (iwt - ip(z). (13) 
IT 

On the other hand we may write E(r, z, t) in terms of the envelope function F as 

E(r, z, t) == exp (iwt - ikz)F(r, z) 

- 'L exp (iwt - ikz)FIT(r, z) (14) 
IT 

We can immediately see from Eqs. 13 and 14 a relation between the envelope function and 

the expansion coefficients c, since 

E(r,z,t) LexP(iwt-ikz)J JdeE(e,O';r)
IT 

exp I-i(p(z - kz»)c(e, O'j z) 

..... exp(iwt - ikz)F(r,z) 

_ Lexp(iwt - ikz)FIT(r,z) (15) 
11 

holds as is clear from the above discussion. We may thus write 

FIT(r, z) = J J deE(e, 0'; r) exp [-i(p(z - kz»)c(e, O'j z). (16) 

Eq. 16 [and Eq. 20 below, when the forward and backward modes are considered) are important 

equations since they state the essence of the coupled mode theory. For it is from the these 

equations that we understand the relation between the envelope function and the expansion 

coefficients, c's. Moreover we can see from these equations that in the coupled mode approach 

why we need not use the slowly varying approximation to ignore the second derivative. 
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The evolution equation for the c coefficient can be written as 

:z c(e, 0'; z) -iwfonl Y; J J de' J J dr' 

exp [i(p( - P(I )z)c(e', 0"; z)E·(e, O'j r')[6n(r', z) : E(e',O"; 1"»). (17) 

We can convert Eq. 17 to an evolution equation for the envelope function as follows. Multi­

plying Eq. 17 by E(e, 0'; r) exp [-i(p(z - kz)l, integrating over e, and substituting the resulting 

expression into the z derivative of Eq. 16, as explained in the next section, we obtain 

LFIT(r',z) = -iwfonl J J dr' J J de 

E(e,O';r)E*(e,O'jr')[6n(r',z): F(r',z»), 

L == L+, 
+_8 i2 i" (IS)L = 8z + 2k V..L - Sk3 V..L + ... 

In order to express the right-hand side of the above equation IS in differential form we can 

expand the tensors E(e, 0'; r)E·(e, 0'; r') as a power series in the ez and e,. Using the expression 

of the nonlinear refractive index 6n which is valid in the presence of the optical Kerr effect 

[13, IS) and assuming for simplicity that F~ '" -(ilk)V..L . F..L ,F, = 0, F,(z = 0) = 0 one 

obtains the following evolution equation for u = (n2/nl)I/2 Fz , 

8 i(lP 8') i(8' 82)2] .,
[8Z + 2' 8X2 + 8y2 - 8 8X' + 8Y' u+ -Iut u= 

2 
i ( EJ2 8 ) 2 i lau 12-2' 8X2 - 8y2 (lui u) - 3 8X u 

2
i ( 28 u 28

2U*) i 8 ( 28 ) (19)-3 lui 8X' - u 8X2 - 38X lui 8Xu , 

where (X, Y, Z) = k(z, y, z). 

3 Incorporation of the Backward Propagating Modes 

In the presence of both the forward and backward modes present we may readily generalize 

Eq. 16 to read 

FIT'±(r,z) = J J deE(e,O'jr)exp[=Fi(p(z-kz»)c±(e,O'i Z). (20) 

The evolution equations for the c coefficients are: 

d~c+(e,O'jz) r;.J J de'[K+'+(e,O';e',u'jz) 

IT 


exp[i(P( - p(,)zjc+(e',O";z) 


+K+'-(e, 0'; e', 0"; z) exp [i(p( + p(' )zjc-(e', 0"; z)1 (21) 
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and 

d
dzc-(e,O'jz) E / / d(/[K-'+({,O'j{/,o'jZ) 

iT' 

exp [-i({3( + {3(, )zJc+ ({', 0"; z) 


+K-'-({, O'j{',u'j z) exp [-i({3( - {3(, )z]c-({', O"i z)] (22) 


with the condensed notation defined as follows 

K"'({,O'je',u'jz) pK({,O'j{',O" jZ) +qk({,O'je', 0'; z), p,q = +,-, 
K({,O'j{',O',jZ) -iWEonl f / drEt[6n(r,z): Et({',O";r)], 

k({,O'j{',O"jz) -WEOnl f / drE:[6n(r,z) : E .. ({/,O"jr)], 

T: V == TijVj. 	 (23) 

In order to obtain the evolution equations for the envelope function, as mentioned above, we 

first differentiate Eq. 20 with respect to z, to obtain, 

8 ' d 
8zF"±(r,z) f f d(E({,O'jr)exp[=Fi ({3(Z - kz)]dzc({,O'jz) 

=Fi({3( - k)Y'±(r, z), 

{3( (k2 - e)I/2 = k(l - e /k2)1/2, 
1 {2 1 {2 2 

({3( - k) =::I (k[1-2k2 -S(k2 ) + ....j-k), 

e -iVJ., 
±_8 i2 i .. 

L = 8z ± 2k VJ. =F 8kl VJ. + .... 	 (24) 

Multiplying Eq. 21 by E({,O'jr)exp[-i({3(z -kz)] and integrating over { and substituting in 

Eq. 24 for tc+({,O'jz) using the expression for tc+({,O'jz) given in Eq. 21, we obtain for the 

evolution equation for the forward propagating mode, 

L+FV,+ E / f d(E({,O'jr) f f d('[K+'+({,O'j{',O"jz) 
iT' 

exp[-i({3(, - k)Z]C+({/,O"jZ) 


+K+'-(e, O'j e ,0"; z) exp [i({3(, + k)z)c-(e', 0"; z)]. (25)
' 

To obtain the evolution equation for the backward propagating mode we multiply Eq. 22 by 

E(e, O'j r) exp [i({3(z - kz)], integrate over e and substitute for f.c-(e, 0'; z) in Eq. 24 using 

Eq.22, 

L-FV,­Ef f d(E(e,O'jr)f f d('[K-'+(e,O'je/,O" j z) 
iT' 

exp[-i({3(, + k)z]c+(e/,O"jz) 


+K-'-(e, O'ie', o'jz)exp [i({3(, - k)zjc-(e', O"j z)]. (26) 
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Eqs. 25 and 26 are a set of nonlinear coupled differential equations. 

We may exploit various approximations based on specific situations to to simplify Eqs. 25 

and 26. For example, we may ignore the longitudinal component of the field, i.e. E ... The rela· 

tionship between the envelope function and the c coefficients in conjunction with the definitions 

given in Eqs. 23 allows us to write Eqs. 25 and 26 as 

L+Fv ,+ = -iwEonl E f f dr' f f d(E({, O'j rHE-({, O'j r') 
v' 

[6n(r',z) : Fcr'·+(r/jz)] 

+E-({,O'j r') exp [2ikz][6n(r', z) : Fcr"-(r', z)]}. (27) 

and 

L-FV ,­iWEonl E f f dr' f f d(E({,O'jrHE-({,O'jr') 
cr' 

[6n(r/, z) : Fcr'·-(r/j z)] 

+E-(e,O'jr') exp [-2ikzJ[6n(r/,z) : Fcr"+(r/, z)]}. (28) 

respectively. We note that in the absence of the coupling to the backward propagating mode, 

Eq. 27 reduces to Eq. 18, as expected. This provides a check on our calculation. It is important 

to keep in mind that it is not permissible to neglect the derivatives of c- even though the 

amplitude coefficient itself does not grow to appreciable values (11). 

We thus see that based on the coupled mode theory the "simplest" equation which describes 

the linear and nonlinear optical propagation beyond the paraxial approximation is Eq. 19. 

The incorporation of the backward propagating mode leads to a more complicated system of 

equations. Based on the nonlinear equation, viz Eq. 19 for the beam propagation beyond 

the paraxial approximation one may address some physically relevant questions and possible 

solutions to these. We briefly discuss these in the next section. 

4 Questions and Possible Solutions 

The following questions naturally arise in the context of beam propagation using methods 

beyond the paraxial approximation and which take into account the vectorial effects: 

1. Can a small beam nonparaxiality arrest self· focusing of optical beams in a Kerr media? 

2. 	 What is the effect on the self· focusing ofoptical beams when one uses vectorial nonparaxial 

theory instead of the scalar nonparaxial theory? 

3. 	What can we say about the power balance equation resulting from the nonlinear beam 

propagation equation? 
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To discuss the above points we note that Fibich 14] argued on the basis of a modified NLS, viz, 

82'1/1 &1/J 
e 8z2 - i 8z + l'J..L'I/I + 1'1/112'1/1 = 0, (29) 

where 

e = (30)(4:rJ 2, 

that nonparaxiality arrests self-focusing when the beam width becomes comparable to its wave­

length. Furthermore the analysis reported in 14] claimed that a series of focusing-defocusing 

cycles of decreasing magnitude follows, ending with a final defocusing stage. Starting from the 

vector wave equation Chi and Guo 18J used an order-of-magnitude analysis to give a model 

for nonparaxial propagation. They 18] claimed that linearly polarized circular input beam will 

become elliptic in the self-focusing process and that their model leads to noncatastrophic self­

focusing with less maximum on-axis intensity than that of Feit and Fleck 15] and Akhmediev 

and co-workers [6, 7]. 

Eq. 19 is a generalization of the standard parabolic equation that describes the paraxial 

propagation in the following ways: 

• 	It includes the nonparaxial terms up to second order in the ratio of the wavelength to the 

. characteristic dimensions of the beam, which can be taken to be the beam waist 	w, i.e. 

the ratio >./w. It is clear from the expansion in Eq. 24 that in the context of the present 

formalism we can keep the nonparaxial terms to any order in >./w. 

• Vectorial effects are automatically taken into account. 

Furthermore it is first order in 8/8%, which has been accomplished without using the slowly 

varying approximation. We note that models of both Fibich [4] and Chi and Guo 18] contain 

second derivative in the % variable. It is worth noting that Eq. 19 bears some resemblance to 

the model equation given by Chi and Guo [8]. Our initial analysis of Eq. 19 indicates: 

•. The unphysical singularity ofNLS disappears as expected. In other words the self.focusing 

is noncatastrophic. 

• 	An initial linearly polarized circular beam is changed to an elliptically polarized one during 

the self-focusing process. This is expected, since cross-coupling between components of 

vector field leads to anisotropic behavior. The anisotropies are the result of polarization 

mixing. 

Simulation results in {5] show abrupt power loss at the self-foci and more gradual power loss 

in between that eventually lead to cessation of self-focusing. We expect that the power balance 

equation based on the complete treatment such as in coupled mode theory would account for 

all power transfers so that self-focusing is arrested. Our initial rough calculation confirms this 

expectation. Moreover coupled mode theory provides a nice picture for power transfer 111]. 
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5 Conclusions 

We have presented, as a first step, a discussion of the the general equation for linear and non­

linear optical propagation beyond the paraxial approximation. In this note we have examined 

the problem of beam propagation using the coupled mode formalism rather than the usual 

treatment based on the Helmholtz equation. The coupled mode approach has recently been 

also advocated in [15], however they do not include the backward propagating modes. We have 

included the backward propagating modes. Initial analysis of the nonlinear equation for beam 

propagation suggests that the unphysical singularity of the NLS encountered in the self-focusing 

region is absent. Moreover since the vectorial effects are automatically included, we expect the 

polarization to change during the self-focusing process. Elementaryreasoning suggests that an 

initial linearly polarized circular beam is changed to an elliptically polarized one during the 

self-focusing process. 
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