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Abstract 


We treat the interaction of a trapped ion with a standing-wave light field relax­

ing the previous condition of the trapping ion being on the node of the standing 
wave. In addition our treatment is valid to all orders in the Lamb-Dicke pa­
rameter, 1}. Only a simple transformation to the "dressed basis" [subject to 
the constraint of Pauli algebra] is required in order to show that the ion inter­
acting with a standing light-wave may be described by the Jaynes-Cummings 
like Hamiltonian to first order in the parameter 1]. Going beyond the leading 
order in 1} leads one naturally to a Nonlinear Jaynes-Cummings type Hamil­
tonian. Nonlinear Jaynes-Cummings dynamics of a trapped ion was recently 
discussed by Vogel and Filho. However our approach gives/specifies an ansatz 
how to arrive at the nonlinearity. The ansatz of leaving invariant the Pauli 
algebra after transformations amounts to a linear transformation in the su(2) 
algebra describing the two-level system. The outcome is a Jaynes-Cummings 
like Hamiltonian or a Nonlinear Jaynes-Cummings like H~rhiltohian [if ndn­
linear terms are kept] with the effective coupling dependen~' oli the'par:ameter 
X aimed to figure the trapping location in the standing wave~.. The,maili' ide~, 
namely leaving the Hamiltonian form invariant while cha~ging the physical 
parameters, can pave the way to a new understanding of ~uge-1iketransf6r-
mations in the present context. }_ 
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Introduction 

Field theories in particle physics of spin one-half fermions [matter fieldsJ interacting 

with spin-one vector bosons [force fields] subject to the principle of local gauge invariance 

have been very successful in fundamental processes. The familiar examples are quantum elec­

trodynamics [QEDJ, quantum chromodynamics [QCD1 and quantum fiavorodynamics [QFDJ. 

QED, the theory of electrically charged spin one-half fermions interacting with massless spin 

one photons, is remarkably precise in predicting physical quantities up to 15 decimal places. 

The quantum corrections up to several loop orders in QED precisely and beautifully fit the 

experimental data. Given the successes of gauge theories in describing the fundamental 

interactions, it is natural to expect that the physical and mathematical techniques arising 

from these theories may have direct and/or indirect relevance to the understanding of other 

areas, such as quantum optics and condensed matter physics. Indeed several attempts to 

incorporate ideas from gauge theories into condensed matter physics and quantum optics 

exist. 

In the context of quantum optics, the Jaynes-Cummings model is a favorite among the­

orists and experimentalists. As is well-known when we consider a quantum two-level system 

interacting with a single mode of quantized field one is led to the familiar Jaynes-Cummings 

Hamiltonian [JCH], [IJ provided one is interested only in the difference of the population of 

the two levels. The JCH has been extensively used as a model Hamiltonian in fields such as 

quantum optics, nuclear magnetic resonance, and quantum electronics. It is well-known that 

a two-level system interacting with a single mode of radiation is mathematically equivalent 

to spin one-half system interacting with the a single mode of radiation. It appears that the 

authors Yang et al., [2J have overlooked the fact that this similarity between the JC model 

and that describing a spin-i particle in a magnetic field is well-known. To quote them, [21 

"We now establish the similarity between JC model and one describing a spin-i particle in 

a magnetic field." A compact method/notation to solve various nonlinear extensions of the 

JCH will be reported elsewhere 

An interesting study of the JCH is the periodic spontaneous collapse and revival due 

to the quantum granularity of the field [4J. In the rotating wave approximation [RWAJ, the 

JCH becomes solvable and it has been widely used in the last several years [5-10]. There 

are many other interesting works on the JCH. 

A question that naturally arises is, why is the JCH so successful and rich in predictions? 

An answer could be that it is the simplest Hamiltonian one can write for a spin-half system 

interacting with a single mode of a quantized field and thus it covers a whole spectrum of 

natural phenomena, since as already mentioned it seems that we can formulate a large class 

of successful quantum theories based on the interaction of spin one-half fields interacting with 

spin one fields. Exploiting the general structure of a spin one-half system interacting with a 

radiation field by using well-known results a compact method/notation has been developed 

to solve various nonlinear extensions of the JCH [3J. For example in the present note by 

demanding that the transformed dressed matrices obey the Pauli algebra we are able to 

demonstrate the correspondence of trapped ion dynamics interacting with a standing-wave 

light field to the JCH and provide an ansatz and a rationale for arriving at the Nonlinear 

Jaynes-Cummings like Hamiltonian. 

One can also attempt to solve Hamiltonians using the mathematics of supersymmetry 

[SUSYJ. Although SUSY still awaits experimental verification in the context of particle 

physics, we are free to use SUSY as a mathematical tool to solve various physical problems. 

In particular SUSY quantum mechanics has proved quite useful in the solution of various 

problems (see [111 for a review). One example of SUSY quantum mechanics at work is the 

exact supersymmetry in nonrelativistic hydrogen atom considered by Tangerman and Tjon 

[11], there are many others. Solutions of the JCH and its extensions using SUSY will be 

reported elsewhere [12]. 

The Hamiltonian of the trapped ion interacting with a standing wave, where the 

trapped ion is on the node of a standing wave to first order in the Lamb-Dicke parame­

ter 17 was given by Cirac et al.,. [13J. It was shown in Ref. [13J that the dynamics of the laser 

cooled two-level trapped ion is described by the JCH. The analogy established in [13] be­

tween trapped ion dynamics and cavity QED is an important one and has resulted in many 

proposals/ideas, for example, quantum non-demolition measurement of final temperature 

[14,15]' experimental study of collapse and revivals [16J and theoretical studies of the same 

[17,13,18]. One intuitively expects that the dynamics of the ion away from the node can also 
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be described by JCH. One of the purposes of this note is to extend the result of Ref. [13] by 

allowing the trapped ion to be anywhere (not just on the node) in the standing-wave light 

field. Recently Wu and Yang [19] (see Note added) have also attempted to extend the work 

of Ref. [13]. In their analysis [19] they introduce the usual interaction picture which is not 

necessary, as is clear from our work. More precisely, the use of interaction picture in our 

approach is not needed in the context of establishing a correspondence between a trapped 

two-level ion interacting with a standing-wave light field and the JCH. One simply needs 

to use the transformation to the dressed basis to establish the correspondence between the 

trapped ion interacting with the standing-wave light field and JCH. The particular form 

of the transformation is determined by imposing the condition that the algebra of Pauli 

matrices be maintained. 

We also go beyond the first order in", and point out that by keeping second and higher 

order terms in", we are lead to the multi-photon or m-photon JCH [20-23}. Going beyond the 

leading order in ", leads one naturally to a Nonlinear Jaynes-Cummings type Hamiltonian. A 

nonlinear Jaynes-Cummings dynamics of a trapped ion was recently discussed by Vogel and 

Filhol [24]. However our approach gives/specifies an ansatz 40w to arrive at the nonlinearity. 

Our procedure consists of two new points: the first one consists in replacing sin[",(a + 

at)] by cos[",(a+at) +x] in the Hamiltonian to describe the general position X of the trapped 

ion and expanding in powers of",. The second ansatz amounts to a linear transformation in 

the su(2) algebra describing the two level system which leaves the Pauli commutation rules 

invariant. The outcome is a JC like Hamiltonian with effective coupling dependent on the 

parameter X aimed to figure the trapping location in the standing wave. The main idea 

namely, leaving the Hamiltonian form invariant while changing the physical parameters can 

pave the way to a new understanding of gauge like transformations in the present context. 

Our results consist of an extension of Cirac et. al. [13] to ions trapped on other parts of 

the standing wave (not just the node), and the proposed model opens a way to go beyond the 

first-order in the Lamb-Dicke parameter "" allowing naturally the incorporation of nonlinear 

II thank W. Vogel for informing me about his work. We note that Wu and Yang [19] seem to be 
unaware of Ref. [24]. 

effects. A nonlinear Jaynes-Cummings dynamics of a trapped ion was recently discussed 

by Vogel and Filho [24]. It is natural to ask the question why should one incorporate the 

nonlinearities in the form as suggested in Ref. [24} instead of some other form? Moreover 

what rules dictate the structure of nonlinear JCH? Our ansatz provides the rationale for 

the construction of nonlinear JCH, or at least provides some hints in constructing nonlinear 

JCll. 

In addition, and importantly, our algebraic technique is akin to gauge-like transforma­

tions, which in the present context, leave the Hamiltonian form invariant while changing the 

physical parameters. 

JC and m-photon JC Hamiltonians 

The master equation of a single two-level ion trapped in a harmonic potential and 

located at the node of standing-wave light field is, [13}, 

d: 	 -i [vata + ~Uz - ~o (0'+ + 0'_) sin[",(a + at)}, p) 

+~(2U_Pu+ - u+u_p - pu+u_), (1) 

where Ll is the detuning of the two-level transition from the laser frequency, v is the trap 

frequency, no is the laser Rabi frequency, and", = 1rao/..\ is the Lamb-Dicke parameter with ao 

the amplitude of the ground state of the trap and ..\ the optical wavelength. at and a are the 

creation and destruction operators for phonons, respectively. The 0'., i = x, y, z are the usual 

Pauli matrices [4] with u± = !(u;1:±iulI ), the raising and lowering operators for the two-level 

system. We note the familiar relations governing u's, i.e., {Ui,Uj} = 6ij , [ui,uil = 2ifij/cU/c, 

i, j = x, y, z. p, does not concern us here and is defined in Ref. [13]. As mentioned in 

Ref. [13], it accounts for the momentum transfer associated with the spontaneous emission 

of a photon. 

The Hamiltonian for a single two-level ion trapped in a harmonic potential and located 

at the node of a standing-wave light field is easily read from Eq. 1. We have 

11. = /ivata + /i~Uz -Ii~o (0'+ + 0'_) sin[",(a + at)}. (2) 
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\Ve note that the population occupation operators are defined in the usual manner: 0"22 

0"11 = o"z and 0"22 + 0"11 = 1 or alternatively 0"22 == H1 + O"z) and 0"11 == H1 - 0",;). 

It is straightforward to extend Eq. 2 to the case in which the ion is not necessarily on 

the node by letting -sin[7](a + at)] -? sin[7r/2]sin[7](a + at)] -? cos[7](a + at) + 7r/2J -? 

cos[7](a + at) +xJ. We thus obtain the Hamiltonian for a trapped ion in a harmonic potential 

and located anywhere on a standing-wave light field, 

t a flo t1t == twa a + li2 0"z + li2 (0"+ + 0"_) cos(7](a + a ) + X]· (3) 

We can write cos[7](a + at) + xJ = cos[7](a + at)} cos X sin[7](a + at)] sin X and expand Eq. 4 

in powers of the Dicke parameter 7] to obtain, 

A 
1t = livata + Ii-O"z

2 
flo flo. t+1i2 (COSX)(0"+ + 0"_) 7]1i2 (S1O X)(0"+ + O"_)(a + a ) 

-*Ii~o (cos X)(O"+ + O"_)(a + at)2 

+ ~~ Ii ~O(sinx)(O"+ + O"_)(a + at )3 + 0(7]4). (4) 

For the moment ignoring the term of order equal to or greater than 7]2 and using the defini­

tion/relation 0"+ + 0"_ = O"z, we may rewrite Eq. 4 as 

t A flo flo. t
1t = liva a + li2 0"z + Ii 2"(cos X)O"z -7]li2"(S1O x )(0"+a + O"_a ), (5) 

where in the last line we have gone to the usual RWA. We have gone to the RWA since we 

wish to compare our Hamiltonian to the JCH, which is usually written using RWA. In order 

to cast Eq. 5 into the JC form, we can combine the second and third terms in Eq. 5 into a 

single term by defining the transformation 

A flocosX 
Ez = n-O"z + --fl-O"z, 

n JA2+fl~cOS2X . (6) 

We note that E~ = 1. Using 6 in Eq. 5 we can write the latter as 

1t == livata + Ii~Ez - 7]1i ~o sin x(O"+a + O"_at), (7) 

5 

In order to have a consistent Pauli algebra between the E matrices, we must supplement Ez 

in 6 with Ez and Ey, where 

A flo cosx 
Ez = nO"z - --fl-O"%' 

Ey O"y, 

E± ~(Ez ± iEy), (8) 

which arej[can found/determined with some simple algebra. For example, a simple way 

to determine Ez is to assume that it is some arbitrary linear combination of O"z and 0".1 

and then determine the coefficients appearing in the linear combination by using the fact 

that {Ez1 Ez} == O. It is easily checked that E! = 1, E: = 1, {Ez , Ey} 0, {Ey, E,;} = 0 

{E,;, Ez} = 0, [Ez, Ey] = 2iEz, [Ey, Ezl = 2iEz and [Ez•EzJ == 2iEy. These relations can 

be summarized or put into the usual compact notation namely {E i , Ej } = Dij' (Ei' EjJ = 

2ifijl;El;, i, j x, y, z. We thus have a consistent Pauli algebra. 

Using Eq. 8 we may rewrite Eq. 7 completely in terms of E's, viz, 

t fl floa . t
1t liva a + li2Ez 7]li 2n S10 x(E+a + E_a ). (9) 

Comparing the Hamiltonian of Eq. 9 with the JCH 

1 
1t = Tiwlata + 2woO",; + lig(O"+a + O"_at), (10) 

we see a direct correspondence. In particular by making the identifications v - WI, fl - wo, 

and 9 - 7]~*sin X, we immediately see that there is a direct correspondence between the 

two-level trapped ion interacting with a standing-wave light field and the familiar JCH. The 

effective coupling 7]~*sin X is dependent on the Rabi frequency and can be adjusted in 

experiments. It is clear that Eq. 9 reduces in the special case of the ion at the node (Le., 

setting X = 7r/2) to the previous result (13]. 

Going back to Eq. 4, we see that the second-order term in 7] corresponds in the RWA 

approximation to the two-photon term in the m-photon JCH [20,21,23]. The higher-order 

terms in 7] similarly correspond to the multi-photon terms in the m-photon JCH. We have 

thus arrived at a nonlinear Jaynes Cummings Hamiltonian. One type of nonlinear Jaynes­

Cummings dynamics of a trapped ion was recently discussed by Vogel and Filho (24J. How­

ever our approach gives/specifies for the first time an ansatz how to arrive at the nonlinearity. 
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One can see that the fluorescence spectrum without the inclusion of the decay rate 

will consist of three peaks, as noted in Ref. [13J. In our case the three peaks will be centered 

at v = 0, ±O with 0 given in 6. We note that our 0 0 corresponds to 0 in Ref. [13J. If 

the decay rate is included, 0 wiII be changed to something like 0 = J6.2 + O~ cos2 X + C r2 , 

where c is a constant. It is claimed that c = 5 in [19J. However, we have not checked this. 

Conclusions 

In conclusion: 

• 	We have treated the interaction of a trapped ion with a standing-wave light field, 

relaxing the previous condition that the trapped ion remain on the node of the standing­

wave [13J. It has been shown here that the two-level trapped ion dynamics both off 

and on the node are described by JCH . 

• Our analysis relies 	on a transformation to the dressed basis, the transformation in 

turn is determined by demanding that the Pauli algebra hold between the transformed 

matrices. 

• 	We have also shown/indicated that by going to higher orders, Le., beyond first order 

in Lamb-Dicke parameter 1], we are lead to the m-photon JCH. Going beyond the 

first order in 1] coupled to the constrain of maintaining the Pauli algebra between the 

transformed matrices naturally leads us to the nonlinear JCH. This for the first time, 

to our knowledge, provides an ansatz and a rationale for obtaining a nonlinear JCH. 

A particularly interesting aspect of our work is the introduction of the ansatz which 

results from the observation that one must leave the Pauli algebra invariant after the trans­

formations. This amounts to the introduction of a linear transformation in the su(2) algebra 

describing the two level system. The outcome is a Jaynes-Cummings like Hamiltonian with 

effective coupling dependent on the parameter X aimed to figure the trapping location in 

the standing wave. The main idea, namely leaving the Hamiltonian form invariant while 

changing the physical parameters, can pave the way to a new understanding of gauge like 

transformations in the present context. 
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One could use the well-established field of ion trapping as a testing ground for strongly 

coupled QED because for a trapped ion the coupling parameters can be varied by the laser 

field strength. The ability to control/vary the coupling is an attractive feature of the trapped 

ion system. 

Note added: We recently became aware of the work by Wu and Yang, [19]which also deals 

with the extension of Ref. [13J. However, during the course of their analysis, they go to the 

interaction picture and in the end drop the time-dependences. In contrast, our approach 

is based on maintaining the algebra of the Pauli matrices after the transformation to the 

"dressed basis". Hence the use of interaction picture in our approach is not needed in the 

context of establishing a correspondence between a trapped two-level ion interacting with a 

standing-wave light field and the JCH. 
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