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I. INTRODUCTION 


The Hubbard Hamiltonian [HH] and its extensions dominate the study of strongly 

correlated electrons systems and the insulator metal transition [1]. One of the attractive 

feature of the Hubbard Model is its simplicity. It is well known that in the HH the band 

electrons interact via a two-body repulsive Coulomb interaction; there are no phonons in 

this model and neither in general are attractive interactions incorporated. With these points 

in mind it is not surprising that the HH was mainly used to study magnetism. In contrast 

superconductivity was understood mainly in light of the BCS theory, namely as an instability 

of the vacuum [ground-state] arising from effectively attractive interactions between electron 

and phonons. However Anderson [2] suggested that the superconductivity in high Tc material 

could arise from purely repulsive interaction. The rationale of this suggestion is grounded 

in the observation that superconductivity in such materials arises from the doping of an 

otherwise insulating state. Thus following this suggestion the electronic properties in such 

a high Tc superconductor material close to a insulator-metal transition must be considered. 

In particular the one-dimensional HH is considered to be the most simple model which can 

account for the main properties of strongly correlated electron systems including the metal

insulator transition. Long range anti-ferromagnetic order at half-filling has been reported in 

the numerical studies of this model [3,4]. Away from half-filling this model has been studied 

in [5,6]. 

The Maximal Entropy Principle [MEP] is a useful tool to get the dynamical and 

thermodynamical descriptions. The main advantage of this formalism is to provide a definite 

prescription to determine the complete set of operators [Le. relevant operators] related to the 

problem under considerations. An attractive feature of the relevant operators is that they 

are group theory based anq. hence once a Hamiltonian for a system can be written down, 

the task of identifying the relevant operators can proceed ~n principle. Relevant operators 

for a given physical system along with the Hamiltonian in essence describe the essential bare 

bones of the physical system. In a series of papers [7-9], the generalized time-dependent 

Jaynes-Cummings Hamiltonian in the context of Maximum Entropy Principle [MEP] and 

group theory based methods [10] was studied. In particular, in [7] the MEP formalism 
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was used to solve time-dependent N-Ievel systems. A set of generalized Bloch equations, in 

terms of relevant operators was obtained and as an example the N = 2 case was solved. It 

was thus demonstrated in [7] that the dynamics and thermodynamics of a two-level system 

coupled to a classical field can be fully described in the framework of ME:f> and group theory 

based methods. Further in [8] a time-dependent generalization of the JCM was studied 

and by showing that tqe initial conditions of the operators are determined by the MEP 

density matrix the authors were able to demonstrate that inclusion of temperature turns 

the problem into a thermodynamical one. An exact solution was also presented in the time 

independent case. Finally in [9] more detailed analysis of the three set of relevant operators 

was given. These set of operators are related to each other by isomorphisms which allowed 

the authors to consider the case of mixed initial conditions. The mean values of the field's 

population, correlation functions and nth-order coherence functions are of interest and useful 

in several applications. The MEP formalism allows us to describe a Hamiltonian system in 

terms of those, and only those, quantum operators relevant to the problem at hand. Thus, 

this formalism is suitable to study the Hamiltonian given in [8,9]. In [8,9] the population 

of each level and not their difference is considered therefore the resulting Hamiltonian is' 

called a generalized time-dependent JCH. Recently the relevant operators for the generalized 

time-dependent m-photon Jaynes-Cummings Hamiltonian were determined in [11]. 

The HH for different band-fillings is studied in the context of MEP by Aliga and Proto 

[12]. The HH with a magnetic field was considered by Alam and Proto [13] using MEP 

techniques. In the present note we incorporate a magnetic field term in HH and identify the 

relevant operators. The set of relevant operators and their evolution equations without the 

magnetic field term considered by Aliga and Proto has also been independently checked by 

us. Moreover by neglecting the magnetic field term we easily recover the case considered 

by Aliga and Proto which provides a check on our calculations. It is interesting to note 

that Essler et al. [14,15] have suggested an extended Hubbard model which contains the 

t-J model as a special case. In fact this model is a mixture of the Hubbard and the t-J 

model. The model of Essler et al. [14] contains a magnetic field term. On a one-dimensional 

lattice Essler et al. [14] present an exact solution to their model via Bethe ansatz. It is 

further claimed that by using 1]-pairing mechanism one can construct eigenstates of the 
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Hamiltonian with off-diagonal long-range order and that in the attractive case the exact 

ground state is superconducting in any numbers of dimensions. The model of Essler et 

al. [14,15] is motivated by high-Tc superconductivity and is expected to describe a system 

of strongly correlated electrons. The model of Essler et al. [14] possesses a huge symmetry 

group [for example it has eight supersymmetries] and it would be interesting to obtain the 

set of relevant operators corresponding to it. 

The main purpose of this paper is to answer the question: Can we identify a set of 

relevant operators for the Hubbard Hamiltonian including a magnetic field term? The aims 

of this short note is to give such a set and the evolution equations for it. The layout of 

this paper is as follows. Section two contains discussion and definitions relevant to Hubbard 

Hamiltonian in the context of mean field method. In section three we recall some well-known 

results of the group theory based MEP formalism. In section four we give the relevant 

operators and the evolution equations for their expectation values in the context of the 

Hubbard Hamiltonian without and with an a magnetic field term present. Conclusions are 

given in the last section. 

II. HUBBARD HAMILTONIAN AND THE MEAN FIELD METHOD 

The Hubbard Hamiltonian can be written as 

iI = -r' L c10'c;0' + U L niTni!. (1) 
<it;>, 0' i 

r' is the hopping parameter between the nearest neighbours, clO' creates an electron with spin 

0' at site i, ~O' destroys an electron with spin 0' at site i, U is the on-site Coulomb interaction 

and niO' = clO'~O' is the number operator for spin 0' at site i. 

A modified Hubbard Hamiltonian, 

ill = -T' .~ at"ci" + U~[n.f - ~][n.! - ~ll, (2) 
<I,,>, 0' I 

is also used by some authors [5,6]. One may rewrite iII in terms of iI 
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A I '" At A U"'[A A l(A A) 1]H1 = -r .~ CitTCjtT + ~ nijni! - '2 nij + ni! + 4 
<I,,>, tT I 

= H - ~ ~[n,l +nl!l + ~NUt (3) 

I 

N in Eq. 3 is the number of sites. It is important to note that the Hamiltonians given in 

Eq. 1 and Eq. 3 cannot be considered as equivalent even when they lead to the same set of 

the relevant operators, since the 9 matrix [see Eq. 22 below] associated with the Hamiltonian 

in Eq. 1 is different from that which corresponds to the Hamiltonian in Eq. 3. 

In order to get solvable model, in this note, we resort to the mean-field method. Our 

main approximation is to replace the product of operators in the hopping term by averages 

according the rule 

(4) 

It is important to note that in contrast to [16] the mean-field approximation in our case,like 

[17], has been applied to the hopping term. In [16] the mean-field approximation is applied 

to the Coulomb term. In our approximation the Hamiltonian can be written in site-diagonal 

form, the sites being coupled only by the mean-field parameter LltT, for the definition of LltT, 

See Eq. 7 below. 

In order to apply the above rule, viz Eq. 4 to the hopping term we rewrite the latter 

as 

(5) 

Applying the definition of the averaging procedure, viz Eq. 4 to the hopping term 

written as in Eq. 5 we obtain 

L c!tTCjtT = L cltTcjtT + c}tT~tT'
<iJ>, tT tT 

~ L Ll; < cltT + c}tT > +LltT < ~tT + CjtT > 
tT 
-I < LltT > 1 

21- nitT - njtT, (6) 
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where we have used the definitions 

A* '" '" 
1...l.0' = < CiO' + CjO' > . (7) 

Using the reduction given in Eq. 6 we may write the Hubbard Hamiltonian in Eq. 1 as 

+r' L I < ~O' 	> 121+ U L nij'ni!. (8) 
0' 

Next we want to write the HH in terms of one site only to this end we observe that 

in one dimension [1-d] each site has two nearest neighbours, in 2-d each site as 4 nearest 

neighbours and so on. Denoting the number of nearest neighbours by m we define 

(9) 

Using these definitions we may write the one-site equivalent of Eq. 8 

(10) 

Eq. 	10 allows us to rewrite the Hamiltonian in Eq. 3 in the form 


flu = (r - ~) L iti" - r L t."C;" - r L t.;cl, 

0' 0' 0' 

+(rlt.12 + ~)j + Uitir1l;!o (11) 

It is convenient to introduce a compact notation 

(12) 

where we have defined 

A A ,..def 
ni = nit + nil, 

A 	 Adef A * ... t A * "t A" A
Xi = I...l.tCit + I...l.! Cit + I...l.tCit + I...l.!Ci!, 

'" def AA

ri = nitni!· (13) 
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n, is the number of electrons at site i, Xi is the mean field hopping interaction between 

neighbouring sites and Tf. measures the double occupancy probability or simply the number 

of pairs at the site i. 

The Hamiltonian in Eq. 10 is a special case of the Hamiltonian form in Eq. 12 with 

the identifications a = T and 1 = TI~12. If we set a = T - ¥and 1 = TI~12 + ¥in Eq. 12 

we recover the Hamiltonian form given in Eq. II. 

The magnetic field can be readily accommodated by adding the term h(nii - nil) to 

the Hamiltonian form in Eq. 12, viz, 

(14) 

where we have defined 

(15) 

n, and Ni respectively represent the symmetric and antisymmetric sums of the number 

operators for both types of spin. We define 1L\12 in analogy with 1~12 as 

1L\12 de! I~i 12 - I~! 12 , 
2 

I~i 12 = 1~12 T L\12, 

1~!12 = 1~12 _ L\12, (16) 


where we have written I~i 12 and IA! 12 in terms of 1~12 and 1L\12. 

III. OUTLINE OF THE MEP FORMALISM 

It is instructive to summarize the principal concepts of the MEP [7-9,18,19]. A sum

mary of MEP formalism has been given in [11]. Here we again outline it for the benefit of 

the readers not familiar with [11]. 

Given the expectation values < OJ > of the operators OJ, the statistical operator pet) 
is defined by 

pet) = exp (-A01 - t A;61) , (17) 
3=1 
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where L is a natural number or infinity, and the L+1 Lagrange multipliers A;, are determined 

to fulfill the set of constraints 

j = 0, 1, ... , L , (18) 

(00 = j is the identity operator) and the normalization in order to maximize the entropy, 

defined (in units of the Boltzmann constant) by 

s(p) = - Tr [p In p] . (19) 

Eq. 17 is a generalization of the more familiar density operator. For e.g. in open system, 

where we have Grand Canonical Ensemble there are two Lagrange multipliers, 13 = k;T and 

J.L are present, and we write the density operator as [20] 

p(t) = exp (13n(T, V, J.L) - 13H + 13J.LN) , (20) 

As is well-known the dynamics are governed by the time evolution of the statistical operator. 

The time evolution of the statistical operator is given by 

init = [H(t), p(t) J . (21) 

The essence of the MEP formalism in conjunction with the group theory method is to 

find the relevant operators entering Eq. 17) so as to guarantee not only that S is maximum, 

but also is a constant of motion. Introducing the natural logarithm of Eq. 17 into Eq. 21) it 

can be easily verified that the relevant operators are those that close a semi-Lie algebra 

under commutation with the Hamiltonian iI, Le. 

L 

[H(t), OJ ]= iii :E 9,;(t)O, . (22) 
;=0 

8 



Thus the relevant operators may be defined as those satisfying the above equation. Equa

tion 22) defines an L x L matrix G and constitutes the central requirement to be fulfilled 

by the operators entering in the density matrix. The Liouville Eq. 21 can be replaced by 

a set of coupled equations for the mean values of the relevant operators or the Lagrange 

multipliers as follows [21]: 

,., L 
d <OJ>t '" ..

dt = - ~gij <Oi> , j = 0, 1, ... , L , (23) 
1=0 

j = 0, 1,... , L. (24) 

In the MEP formalism, the mean value of the operators and the Lagrange multipliers belongs 

to dual spaces which are related by [19] 

,., 8Ao 
(25)<OJ>= - 8A.· 

1 

IV. THE RELEVANT OPERATORS AND EVOLUTION EQUATIONS FOR THE 

HUBBARD HAMILTONIAN WITH A MAGNETIC FIELD TERM 

For notational convenience we now drop the subscript i, in all formulae from now on. 

The set of relevant operators for the HH with a magnetic field term is more than twice the 

number of relevant operators without it. It is thus informative and useful to give the set of 

the relevant operators for the HH without the magnetic field. To t~is end we first consider 

the Hamiltonian form given in Eq. 12. A little work shows , that number operator n does not 

commute with the Hamiltonian, after some calculation we obtain 

[iI, n] = -irp, (26) 
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where p is given by 

(27) 


Pis the mean field electron's current. Thus so far we have introduced three operators besides 

the Hamiltonian, namely n, x and p belonging to the relevant operator set. To determine 

the whole set we must proceed by finding the commutation relations of all the operators 

with the Hamiltonian until we get the complete set. The commutation relation of x with 

the Hamiltonian yields 

(28) 


where i_ is the mean field pair's current and can be written as 

(29) 


We note that since the c's are fermion operators they anticommute, hence as a consequence 

of this cl commutes with nr, viz, explicitly, clnr = clclcr = -ClClCr = c~crc! = nrc!. 
The commutation relation of p with the Hamiltonian introduces yet another two op

erators i+ and WI. i+ represents the mean field pair's interaction. 

(30) 


where i+ and WI are defined as 

(31) 

The commutator of i_ with the Hamiltonian yields the final relevant operator of the 

present set, namely W2, 

(32) 
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W2 is given by the following expression 

(33) 

The three remaining commutation relations required to close the algebra can be expressed 

entirely in terms of operators already defined. These read 

[iI, 4] = -i(o + u)L, 


[iI, Wl] = i2lal 2rp, 


[iI, W2] = i8IaI 2ri_. (34) 


Thus we have a set of seven relevant operators, namely n, x, p, i_, i+, Wl and W2 

which close the algebra as is clear from Eqs. 26, 28, 30, 32 and 34. Using Eqs. 22 and 23, 

the evolution equations for the present set of relevant operators immediately follow and are 

d <n>t r " (35).dt = n, <P>t, 


d <x>t 0 '" U '" 

dt = Ii <p>, +Ii" <1_ >h (36) 

d <p>t . 0 '" U A 4r '" 
dt = -Ii <x >t -Ii" < 1+ >t +7t <Wl >t, (37) 

d <i+ >t _ (0+ U) l'" (38)dt - Ii < - >t, 

d <i_ >t (0 + U) '" r '" 
dt - Ii < 1_ >t +ji' < W2 >t, (39) 

d <Wl>t 21al 2 r '" (40)- Ii <p>"dt 


d <W2>t 81al2r '" 

- Ii <1_ >t, (41)

dt 
(42) 
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The magnetic field term modifies the HH by a simple looking term, viz N, as is 

immediately apparent from the Hamiltonian form in Eq. 14. We observe that N differs by a 

negative sign between the number operators of spin-up and spin-down states from n. This 

observation leads us to expect that like n, N when commuted with the Hamiltonian will 

lead to a set of relevant operators parallel to the ones obtained in case of n. 

[iI,N] = -irP, (43) 

where P is given by 

(44) 


[iI, X] = -iaP - iUL_ - ihfJ + i4rnl (45) 

where X, L_, 01 are given by 

" def A * .... t A * "t A.... A ....X = ~tCt - ~!C! + ~tCt - ~!C!, 

L_ def i([LlfC~ - Lltct]n! - nr[Llicl- Ll!c!]), 


01 def i(Llf LliCfCl+ LltLl!Ctc! + LltLliCtCl+ LlfLl!C~C!). (46) 


(47) 

L+ def ([Llfcf + Lljct]n! - nt[Llicl+ Ll!c!]), 

n def ( /Llt /2 [.... ....t] + ILl!/2 [.... ....t] Ll* A .....t .... t A " "A )2 - --2- Cj,Ct -2- c!,C! + t~!CtC! +~!~tC!Cj . (48) 

The commutators of L+ and L_ with the Hamiltonian are 

(49) 
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and 

(50) 

The commutators of ii, X, p, with the Hamiltonian in presence of magnetic field are 

[iI, ii] = -irp, 

[iI, x] = -ia:p - iui_ - ihP, 

[h,p] = ia:x + iU4 - i4rwl + ihX, 
[h, 4] = -i(a: + u)i_ - ihL_, 


[h, i_] = i(a: + u)i+ - irW2 + ihL+", 


[h,Wl] = i21~12rp - i2hn3 , 


[h, W2] = i81~12ri_ - i4hn3 _ (51) 


If we set h to zero we recover the equations obtained before, which provides a check on our 

calculations_ 113 and 114 are defined as 

(52) 

In addition we define two more operators 115 and 116 

(53) 

It is clear from the definitions of n 1 , n3 and n6 given respectively in 46, 52 and 53 that 

(54) 

Eq. 54 provides a check on our calculation since it implies that once we have independently 

calculated the time-evolution equations for n 6, nb and n3 they must obey the relation 

d < 06 >t d < 01 >t d < n3 >t 
(55)dt = dt + dt . 
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Similarly it follows from definitions of n2 [see 48], ns [see 53] and the definitions of nand 

N that 

(56) 

which implies that 

d<ns>t = d <n2>t _1~12d <n>t _1~12d <N>t. (57)
dt dt dt dt 

The commutators of n1through n6 with the Hamiltonian are obtained after some 

calculation and may be displayed as 

[h, nl ] = i(2a + U)Os - i 2 r[l~12x -lal2X] + i 2 h 0., 


[h, n2] = -i(2a + U)06 - 2irlal2P, 


[h, ns] = irl~12x - irlal2X- i2hO., 


[h, n.] = irlal2p - irl~12P - i2hOs, 


[h, Os] = -i(2a + U)06 - irlal2P - irl~12p, 


[h,06] = i(2a + U)Os - iTI~12X + irlal2X. (58) 


It follows from the above discussion that we have a set of eighteen relevant operators 

in the presence of the external magnetic field, namely. n, x, p, i_, 4, Wl , W2, N, x, P, 
£_, £+, Ol , O2, ns, n., ns ,and n6 which close the algebra as is clear from Eqs. 26, 28, 30, 

32, 34, 43, 45, 47, 50, 49 and 58. However not all of the operators are independent as is clear 

from the relations given in Eqs. 54 and 56. Using Eqs. 22 and 23, the evolution equations 

for the present set of relevant operators can be written as 

d <n>t T '" 
(59)dt = h, <P>t, 


d <x>t a '" U h ...
A 

dt = Ii <P>t +n: <1_ >t +h, <P>t, (60) 

d <P>t a U 4r h ...A 

dt =-Ii <X>t-n: <l+>t+n: <Wl>t-h, <X>t, (61) 
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(62) 

(63) 

2'~'2'T h A 

it <P>t +2h: <03>t, (64) 

81~12'T" h"
it < 1_ >t +41i < 03 >t, (65) 

d <N>t =: <P> (66)dt it t, 


d X· U h 'T"
< >t = 0 <P>t +- <L_>t +;- <P>t -4;- <Ol>t, (67)
dt it it 1£ 1£ 


d <P>t 0 U h 4'T 0
A A A 

--dt- = -it <X >t -r;; <L+ >t -r;, <X >t + r;, < 2>t) (68) 

d <L+ >t = (0 + U) <L_ >t +!!:. <i_ >t +2: <01>h (69)
dt it it it 

d <L_>t __ (O+U) <L > _!!:. <i+>t -2: <02>t) (70)dt - it + t it it 

d <f21 >, = _ (2a+ U) <0&>, -2~ <0,>, +2i[l6.12 <x>, -1.6.12 <X>,], (71)
dt it 1£ 

d <02>t = + (2a+ U) <06>t +2:1~12 <P>t) (72)
dt it it 

d 0 'T hA< 3>t = -:ILiI2 <X>t +_1~12 <X>t +2;- <O.>t, (73)
dt it it 1£ 

d <0,>, =_::1.6.12 <p>, +::16.12<p>, +2~ <03 >" (74)
dt it it 1£ 

d <OS>t = +(20+U) <06>t _:,LiI2 <P>t +:1~12 <P>t, (75)
dt it Ii Ii 

d <06 >, _ (2a+U) <05 >, +::16.12<X>, -il.6.12 <X>" (76)
dt Ii Ii 

(77) 

15 

http:2i[l6.12


To check the identity given in 55 we add Eqs. 71 and 73 and see if the sum of these two 

equations agrees with Eq. 76. We can immediately see that indeed this is the case. Likewise 

using Eqs. 59,66, 72 and 75 we can see that the relation given in Eq. 57 holds. Thus we 

have an independent check of our stated relations. 

The" following remark is in. order in context of future outlook. The MEP formalism is 

limited to the mean-field approach. However the group theory based approach of identifying 

the set of operators which close the partial Lie algebra under commutation with the Hamil

tonian, is quite general. It is thus tempting to go beyond the mean-field formalism and use 

the set of relevant operators and their evolution equations to develop a technique which can 

take into account the quantum fluctuations. 

v. CONCLUSIONS 

We have given the set of relevant operators and the corresponding temporal evolution 

equations for the Hubbard Hamiltonian in the mean field approximation in the context of the 

maximal entropy formalism. The mean field approximation has been applied to the hopping 

term in the Hubbard term. As intuitively expected the inclusion of the external magnetic 

field leads to much larger set of the relevant operators than present in the case where the 

magnetic field is absent. 
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