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Status of the electroweak phase transitions 

z. Fodor 

KEK Theory Division 
Tsukuba, 1-1 Oho, Ibaraki, 305, JAPAN 1 

Abstract: The observed baryon asymmetry of the universe has finally been determined at the finite 
temperature electroweak phase transition. In order to understand the baryon asymmetry a quantitative 
description of the electroweak phase transition is needed. In this talk some features of this phase transition 
are summarized. Particular interest is paid to the analytical and lattice estimates on the sphaleron 
transition and to the nature of the electroweak phase transition in the standard model and in the minimal 
supersymmetric standard model. On the one hand due to the large top-quark mass no SM-like Higgs 
boson can give strong enough phase transition. Thus, in the standard model the electroweak baryogenesis 
scenario can be excluded. On the other hand there is a small region in the parameter space of the minimal 
supersymmetric standard model, which might explain the observed baryon asymmetry. Since this small 
region is predicted perturbatively a lattice confirmation is needed. 

Introduction 

According to the standard picture of the cosmological phase transitions at high temperatures (e.g. in 
t.he early universe) the electroweak gauge symmetry has been restored. As the universe expands and 
supercools there is a phase transition between the high temperature "symmetric" and low temperature 
"broken" phases. The characteristics of this phase transition (critical temperature: Te , surface tension: 
u, etc.) are clearly of interest. There are evidences that the world is made of exclusively matter, at least 
on the 1013M0 scale. The quantitative measure of the baryon asymmetry is the dimensionless ratio of 
the baryon number density to the entropy density 

(1) 

Since no known mechanism can separate on the above huge scales we have to understand the origin of 
this asymmetry. There are basically two possibilities. The baryon asymmetry might have been an initial 
condition of our universe or it could have been generated in the early universe. The second possibility 
(baryogenesis) is clearly more attractive. 

In order produce the observed baryon asymmetry three conditions must be satisfied. 
a. baryon number violating processes 
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Figure 1: Transition rate normalized by T4 as a function of the temperature. 

b. C and CP violation 
c. departure from the thermal equilibrium (the basic question is the strength of the phase transition). 
It is easy to understand the role of these conditions. 
a. In the lack of baryon number violation the baryoniC charge of the universe were constant. Assuming 
zero baryon number as an initial condition would result in no baryon asymmetry today. 
b. If Cor CP were conserved, then the rate of processes producing baryons (a) would be the same as the 
rate of processes producing antibaryons. No net baryon number could have been generated. 
c. In thermal equilibrium the universe stationary, it has no time dependence. If the initial condition were 
zero baryon number, it would remain zero forever. An attractive proposal is to understand the observed 
baryon asymmetry as produced at the finite temperature electroweak phase transition [1]. Section 2 will 
discuss the first (a) Section 3 the last (c) condition in this scenario. Section 4 contains the conclusion. 

Sphaleron rate at finite temperature 

The basic source of the baryon number violating processes in the standard model is the electroweak 
anomaly for baryon number, which demands that 

~B""" g2 Jdtd3 xtrFF, (2) 

where 9 is the weak coupling and F is the field strength of the weak gauge field. This anomaly equation 
relates the produced baryon number to topological transitions of the weak gauge fields. The vacua with 
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Figure 2: Diffusion of N c s. 

different topological numbers (Ncs) are separated by a potential barrier. 
Note, that the above anomaly equation holds not only for baryons but for leptons, too. Thus, baryon 

and lepton numbers are violated simultaneously (B + L violation). 
At zero temperature the transition between the vacua is a tunneling event with an unobservably 

small probability: ~ 10-170 . The transition at high temperatures, but below Tc is a thermal jump. The 
system jumps up to the top of the barrier (a saddle point: sphaleron) and rolls down to the neighbouring 
vacuum. In the meantime baryon and lepton numbers are violated. The jump to the barrier, therefore 
the transition rate is suppressed by the Boltzmann factor 

rex: exp [-Esph/T] , (3) 

where the sphaleron energy is proportional to the mass of the W-boson Esph ex: mw/ow [2]. 
Rapid baryon violation processes in the broken phase can wash out the asymmetry generated before. 

Therefore a "minimal" condition for a successful baryogenesis is that these processes should be slower 
than the expansion rate of the universe. Comparing (3) with the Hubble constant the minimal condition 
can be written as <{Jb/Tb > 1, where <{Jb is the value of the Higgs field at the transition temperature Tb. 

Above Tc the exponential suppression of the transition rate is absent. Naive power counting suggest 

(4) 

where the constant K, is of order 1. 
Recently it has been argued [3] that the assumptions used to derive 4 are not valid. The real depen­

dence on Ow is a different one 
(5) 
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Figure 3: The dimensionless coefficient K as a function of the inverse lattice spacing. 

The origin of this damping is the fact that nearly static magnetic fields can be absorbed by the system, 
which results in a loss of energy for the magnetic fields of interest. In the symmetric phase the baryon 
number violating processes are much faster than the expansion rate of the universe. 

In recent years there has been considerable activity in order to determine the sphaleron transition rate 
at both sides of the phase transition. No successful numerical method is known for a full Minkowskian 
theory; however, important results have been obtained by real time simulations in the classical approxi­
mation for the finite temperature theory. 

The used procedure contains several steps. The classical theory is formulated in terms of fields and 
their conjugate momenta on a spatial lattice. The phase-space of the system is then sampled with the 
statistical weight exp( - HIT). Starting with some initial configuration from the thermal sample the 
classical canonical equations give the real-time evolution of the fields. As a function of time one can 
determine different observables and their averages (such as changes of the topological charge). There 
are fewer physical degrees of freedom in the theory than the number of the phase space variables used 
to formulate it. It is a highly non-trivial task to find effective thermalization algorithms for constrained 
systems. At present there are two good solutions to this problem [4]. 

In the broken phase numerical simulations [5] indicated an extreme difference between the lattice 
results and (3) The observed sphaleron transition rate was a bit smaller than in the symmetric phase; 
however, as it can be seen on Fig. 1 no Boltzmann suppression has been observed. Going down into the 
broken phase the difference between the analytical and lattice results is several orders of magnitude. It 
is argued [3J that the. reason is the problematic definition of the topological charge on a lattice, which 
give a systematic error in the rate. 

A large scale numerical study for the sphaleron rate in the symmetric phase [6J favoured the naive 
law 

(6) 

The classical motion of the Chern-Simons number consists of two pieces. The thermal fluctuation, which 
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linearly diverges with the lattice cutoff, and a random walk between different vacua (see Fig. 2). 

< B2(t) >= c + rVt. (7) 

A detailed finite size and finite scaling analysis suggested that the above naive formula is correct with a 
coefficient of It = 1.09 ± 0.05. 

According to [3J the observed rate might be only a lattice artifact. The authors reanalysed their data 
with an improved technique (cooling of lattice field configurations to determine the time evolution of the 
topological charge) [7J. 

They introduced, along with the real time t, a cooling time r. The dynamical variables are functions 
of them: Pi(t, r), qi(t, r). The t evolution is given by the standard equation of motions, while for the 
evolution in the r direction an overdamped motion is used 

(8) 

It is easy to see that in the vicinity of a static solution cooling leads to an exponential decay of stable 
eigenmodes and exponential growth of unstable ones. Moreover, the rate of decay (growth) is exponen­
tially rapid for high frequency mode. The new results has shown some deviation from the older one; 
however, the r = It'a~T4 law of the symmetric phase can not be confirmed. 

Fig. 3 shows the result of this analysis (open squares and triangles) and that of [8] (open dots). 
According to [3J the rate should have a 1/f3 behaviour. Clearly, larger measurement samples and careful 
systematic error analysis is needed to resolve the issue of the lattice spacing dependence of the rate. 

A definitely positive outcome of the cooling technique is the new simulation in the broken phase. 
With the cooling technique no transition between the different vacua has been observed. This result 
resolves the discrepancy between [5] and eq. (3); however, no definite answer to the numerical value of 
the transition rate could be given. (Recently the multi canonical technique has been successfully applied 
to determine the nonperturbative transition rate in the broken phase [9].) 

The nature of the phase transition 

Perturbative studies show that in the realistic Higgs mass range (mH > 70 GeV) the perturbative 
approach breaks down [11], it predicts 0(100%) corrections [10] for the relevant quantities (e.g. interface 
tension, latent heat or correction to the course of the phase transition). 

A nice illustration (c.f. Fig. 4) for that is the interface tension as a function of the Higgs-boson mass 
in different orders of the perturbation theory. As it can be seen in the physically allowed region (according 
to the LEP experiments the lower bound for the standard model Higgs-boson mass is relatively large: 
mH > 75 GeV) the perturbation theory breaks down, its predictions can not be believed. 

A popular way to study this basically non-perturbative problem is first to perform a dimensional 
reduction in perturbation theory. One starts with the original theory (e.g. Standard Model) and integrates 
out the heavy degrees of freedom perturbatively. The obtained theory is a three-dimensional bosonic one. 
The temperature dependent parameters of this theory are determined by the matching conditions between 
the full theory and the reduced one. 

The theory has a dimensionful coupling, which fixes the overall scale. The two dimensionless quantities 
are x and y. One of them is x which determines the properties of the phase transition (connected to the 
zero temperature features of the original four-dimensional theory) 

2 41 mH mtopx"-'---+C2--. (9)
8m~ mtv 

The other one is y which is used to tune the system in order to find the phase transition point (connected 
to the temperature of the original four-dimensional theory) 

(10) 
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Figure 4: Surface tension from the different potentials as a function of m H • 
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Figure 5: Phase diagram of the three-dimensional SU(2)-Higgs model. 
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Figure 6: Critical temperature as a function of the lattice spacing. 

Here Cl and C2 are some constants. 
Static thermodynamical properties, mass spectrum and other related features have been studied both 

analytically and numerically for these three-dimensional models (a recent summary is [12] and see refer­
ences therein). 

According to these results the electroweak phase transition is of first order for small Higgs-boson 
masses; however, it turns out to be an analytic cross-over above mH ~ 67 GeV (critical Higgs-boson 
mass value for the SU(2)-Higgs model) [13]. Due to the large mass of the top-quark the phase transition 
can not fulfill the <{Jb/Tb condition for any choice of the Higgs-boson mass. 

Fig. 5 shows the phase diagram of the three-dimensional theory. The solid line corresponds to 
the two-loop perturbation theory and the open symbols represent the result of the lattice simulations. 
For x values smaller than '" 0.03 the phase transition is strong enough to satisfy the minimal condition 
<{Jb/Tb> 1. The phase transition ends around x '" 0.1 (we will discuss the determination of the endpoint). 
For large enough x values no phase transition can be observed, only a rapid cross-over occurs. 

The determination of the endpoint of the finite temperature EWPT, thus a characteristic feature of 
the phase diagram, can be done by the use of the Lee-Yang zeros of the partition function Z [13]. One 
analytically continues Z to complex values of the couplings by reweighting the available data. Denoting 
"'0 the lowest zero of Z, i.e. the zero closest to the real axis, one expects in the vicinity of the endpoint 
the scaling law Im{",o) = dt{x)V-V + d2 {x). In order to pin down the endpoint one looks for a x value 
for which d2 vanishes. Again, the change in x can been done by reweighting (or by direct simulations at 
different x couplings). 

Using this Lee-Yang technique the Bielefeld group obtained Xend =0.0951(16), whereas the result of 
the Leipzig group is Xend = 0.1020(20) (the two groups used different lattice spacings in their simulations). 

Another possibility in order to understand the non-perturbative features of the electroweak phase 
transition is to study the full four-dimensional theory by lattice simulations. Since fermions always have 
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o Matsubara frequencies, the perturbative treatment of these, at high t~mperatures ve:y massive, 
::~:: could be satisfactory. Thus, the starting point of the lattice analys~s IS th~ SU(2)-HlggS model, 
which contains the essential features of the standard model of electroweak mteractlOns .. 

In the last three years our group (DESY-Electroweak collaboration) pres:nted a s:nes of papers (see 
141) 'n order to' clarify the details of the phase transition on four-dimenslOnallattlces. Our.work has (e.g. I HLRZ J"l'ch (CRAY-T90) and DESY-Ifh Zeuthen (APE-Quadncs). The

been done on computers at u I 'V G V 49 
simulations have been performed for four set of parameters (mw =80 GeV): mH ~ 18 Ge ,35 e , 

GeV and 80 GeV. . 'd' all' .
For the first three masses the usual lattice formulation can be apphed, th~s 1 entlc attIce spacl~gs 

in the spacial and temporal directions. In these cases a fairly good agreement IS found between the lattIce 

results and perturbation theory [16]. . ' . 
As an illustration (see Fig. 6) Tc/mH is presented for mH ~ 35 GeV. For thIS quantIty very preCIse 

results exist and an extrapolation to zero lattice spacing is also possible. We have used L t =2,3, 4 ~? 5 
to extrapolate to the continuum limit. As it can be seen there is approximately three standar~ devI~tlOn 
discrepancy between the lattice and perturbative result. Note, that the result ?f the :hree-dlmenslOnal 
technique predicts a Tc/mH much closer to the perturbative result. The lattice ar~lfact~ of the four­
dimensional approach are expected to be proportional to a2 

, whereas in the three-dimenslOnal method 
they are proportional to a. 

The mH ~ 80 GeV case is much more difficult. The phase transition gets weaker, the lowest ex­
citations have masses small compared to the temperature, T. From this feature one expects that a 
finite temperature simulation on isotropic lattice would need several hundred lattice points in the spatial 
directions even for Lt = 2 temporal extension. 

In order to solve this problem we have used the simple idea that finite temperature field theory can be 
conveniently studied on asymmetric lattices, i.e. lattices with different spacings in temporal and spacial 
directions [15]. The resulting action contains anisotropies in the couplings. This action has been studied 
in perturbation theory and on the lattice. 

One wants to tune the bare parameters in a way that the one-loop renormalized masses are finite in 
the continuum limit (however, their values in lattice units vanish asMren = 0 for as ~ 0). At the same 
time the vacuum expectation value of the scalar field will be also zero in lattice units (asv =0 for a ~ 0) 
, i.e. we are at the phase transition point between the spontaneously broken Higgs phase and the SU(2) 
symmetric phase. The condition is fulfilled by an appropriate choice of the parameters (e.g. critical 
hopping parameter). The ratios of the other couplings are still free parameters and can be fixed by two 
additional conditions. We demand rotational (Lorenz) invariance for the scalar and vector propagators 
on the one-loop level. This ensures that the propagators with one-loop corrections have the same form 
in the z and t directions. 

Clearly, arbitrary couplings for different directions would not lead to such rotationally invariant two­
point functions. Technically the corrections to the anisotropies in the kinetic parts of the tree level 
propagators should be cancelled by the kinetic parts of the self-energies. This requires the knowledge 
of the wave function correction term in our theory. We have carried out both the perturbative and the 
lattice determinations of anisotropies. They are in complete agreement. 

The values of the thermodynamical quantities (u/T; and t:::.€/T:) for m H ~ 80 Ge V are substantially 
smaller than their perturbative values. They are even consistent with a no first order phase transition 
scenario on the approximately l-u level. These results can be interpreted as a sign for the endpoint for 
the finite temperature electroweak phase transition. 

Similarly to the standard model case perturbative two-loop results exist for the minimal supersymmet­
ric standard model phase transition [17]. An interesting feature of the result that it opens the baryogenesis 
window for light stop. Setting sun QCD diagrams (stop-gluon) can give large logarithmic contributions 
which increase the strength of the phase transition. Typically, setting sun diagrams give contribution 
proportional to <p21og <po 

In the case of stop-gluon graph the prefactor is proportional to the strong coupling, which resulted 
in an enhancement effect on <Pb/Tb. In order not to have infrared divergencies for the stop sector the 
authors restrict themself to m'ir > 0 sector (negative mb are related to the existence of colour breaking 
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Figure 7: The normalized jump of the Higgs field in the MSSM. 

minimum [18]). Fig. 7 shows that the ratio of the jump in the Higgs field divided by the temperature can 
be larger than one for low values of tan,8 (solid lines) and large enough mAo Very low tan,8 corresponds 
to a light neutral Higgs (lines of constant Higgs masses are dashed). The LEP limit tells us that this 
mass must be larger than ~ 70 GeV. Using this experimental bound the window for baryogenesis can be 
summarized as: mH < 85 GeVj 2.25 < tan,8 < 3.60 and mA > 120 GeV. 

The allowed parameter space is very constrained. In particular mH < 85 GeV will be soon tested 
at LEP. The authors claim that the large correction compared to the one-loop results (approximately 
100%) is not a serious problem here and it does not mean the breakdown of the perturbation theory. 
The reason for that is the fact that the QCD corrections are leading order on the two-loop level; thus the 
large correction is not a symptom of the perturbative expansion, it is merely the appearance of a new 
interaction term. 

Nevertheless, the setting-sun diagrams have bad infrared behaviour in the standard model. Direct 
lattice Monte-Carlo approach is probably needed in order to answer the question in the MSSM case, too. 

In order to answer the question for the MSSM the three-dimensional approach (dimensional reduction 
plus lattice Monte-Carlo simulations in three-dimensions) is used, too (see e.g. [12]). The results are 
qualitatively the same as summarized above. However, these analyses are less reliable precisely in the 
small m& region, which is the interesting one for electroweak baryogenesis. 
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4 Conclusions 

Analytical and real time numerical result for sphaleron processes are still not in complete agreement. 
Above Tc new analytical estimates suggest a r ex: o:~T4 behaviour for the transition rate, which is not 
seen unambigously in numerical studies. The present numerical techniques are not sensitive enough to 
determine the sphaleron transition rate below Tc. Perturbative studies show, that the electroweak phase 
transition can not be described above mH = 70 GeV by perturbative methods. Lattice results exclude 
successful baryogenesis in the minimal standard model. The present bounds on the Higgs-boson mass most 
probably results in a cross-over (no phase transition scenario). The minimal supersymmetric standard 
model still has some constrained parameter region, which perturbatively predicts a phase transition, 
strong enough for baryogenesis. 
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