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Abstract 
The present baryon asymmetry of the universe has finally been de­

termined at the finite temperature electroweak phase transition. The 
strength of this transition plays a crutial role. The perturbative ap­
proach breaks down for the physically relevant mH > 70 GeV Higgs­
boson mass region. Four-dimensional lattice simulations are carried out 
in order to give a systematic and controllable solution to the problem. 
For smaller Higgs-boson masses (mH < 70 GeV) the phase transition 
is of first order and its strengh rapidly decreases as mH increases. For 
larger Higgs-boson masses lattices with asymmetric lattice spacing is 
used. Perturbative relationship between the lattice asymmetry and the 
anisotropy parameters of the action is presented. For mH ~ 80 GeV the 
phase transition is much weaker than the perturbative prediction, the 
results are even consistent with the no first order phase transition sce­
nario on the ~ 1 - (T level. This fact is a sign, that the phase transition 
ends at mH ~ 80 GeV. 

Introduction 

In the early universe at high temperatures the electroweak gauge sym­
metry has been restored. It is conceivable that the observed baryon 
asymmetry can be understood within the standard model 1. Clearly, 
the study of a "electroweak baryogenesis" requires a detailed knowledge 
of the transition from the symmetric to the broken phase. In order to 

60n leave from Inst. Theor. Phys., EOtvOs Univ., Budapest, H-1088 Hungary 
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provide the observed baryon asymmetry, one needs a departure from 
thermal equilibrium, thus a sufficiently strong first order phase transi­
tion via bubble nucleation. As it will be shown in the minimal standard 
model the phase transition is too week and the electrowek baryogenesis 
can be excluded. 

Sect. 2 presents the results of the lattice approach with isotropic 
lattice couplings. They are compared with the perturbative results. 

Sect. 3 contains a perturbative analysis of the lattice asymmetry re­
sulting in anisotropies in the lattice action. Since the phase transition 
is quite weak the different lattice spacings in time and space directions 
make it possible to fix the high critical temperature and to use a large 
spatial volume in the meantime. Result of the anisotropic Monte-Carlo 
simulations are presented. It is shown that the thermodynamical quan­
tities, such as latent heat and interface tension, are much smaller than 
the perturbative predictions. This result can be interpreted as a sign 
that the phase transition ends at mH ~ 80 GeV 

Sect. 4 gives a summary. 

2 Lattice results on isotropic lattices 

Perturbative studies show that in the realistic Higgs mass range (mH > 
70 GeV) the perturbative approach predicts 0(100%) corrections 3 ,2 for 
the relevant quantities (e.g. interface tension, latent heat or correction 
to the course of the phase transition). A nice illustration (c.f. Figure 1) 
for that is the interface tension as a function of the Higgs-boson mass 
in different orders of the perturbation theory. Some of the nonpertur­
bative estimates (e.g. magnetic mass 3) suggest a weaker, others (e.g. 
vacuum-condensate 30) a stronger first order phase transition than the 
perturbative approach. A systematic and fully controllable way to solve 
the problem is the use of lattice simulations. 

A particularly popular way to study the problem is to perform a 
dimensional reduction in perturbation theory. One starts with the orig­
inal theory (e.g. Standard Model) and integrates out the heavy degrees 
of freedom perturbatively. The obtained theory is a three-dimensional 
bosonic one (e.g. SU(2)-Higgs or SU(2)xU(1)-Higgs model). The tem­
perature dependent parameters of this theory are determined by the 
matching conditions between the full theory and the reduced one. Static 
thermodynamical properties, mass spectrum and other related features 
have been studied both analytically and numerically for these three­
dimensional models 5,6,1,8,9,10,11,12,13,14,15,16,11. According to these re­

sults the electroweak phase transition is of first order for small Higgs­
boson masses; however, it turns out to be an analytic cross-over above 
mH ~ 67 GeV (critical Higgs-boson mass value for the SU(2)-Higgs 
model). 
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Figure 1: Surface tension from the different potentials as a function of m H . 

Another possibility is to study the full four-dimensional theory by 
lattice simulations. Since fermions always have nonzero Matsubara fre­
quencies, the perturbative treatment of these, at high temperatures very 
massive, modes could be satisfactory. Thus, the starting point of the 
lattice analyses is the SU(2)-Higgs model, which contains the essential 
features of the standard model of electroweak interactions. The four­
dimensional SU(2)-Higgs model at finite T is defined by the following 
action 

s =t dr Jd'x [~F:"F:" + (D.¢)t(D.¢) 

-~m24}¢ + A(¢t¢)2] , (1) 

where DIJ. and F;", are the usual covariant derivative and the Yang­
Mills field strength, respectively. f3 = liT, and the T integration is over 
periodic bosonic fields. This model has been studied on the lattice by 
18. In the last three years our group (DESY-Electroweak collaboration) 
presented a series of papers 19,20,21,22,23,24,215,26,27 in order to clarify the 
details of the phase transition on four-dimensional lattices. Our work has 
been done on computers at HLRZ Jiilich (CRAY-T90) and DESY-Ifh, 
Zeuthen (APE-Quadrics). This presentation summarizes some of the 
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results. Some other issues are covered by the talk of J. Hein 28. Readers, 
who are interested in the details of the analysis, can found them in the 

original papers. 
The simulations have been performed for four set of parameters 

(mw = 80 GeV): mH :::::: 18 GeV,g~are = 0.5; mH :::::: 35 GeV,g~are = 0.5; 
mH :::::: 49 GeV, g~are = 0.5 and mH :::::: 80 GeV, g~are = 0.5. A moderate 
renormalisation of the gauge-coupling (gR), approximately 5% has been 
found. Comparing the lattice results with the perturbative predictions 
these renormalization effects are taken into account. 

In this chapter results only for the first three Higgs-boson masses 
are presented. mH :::::: 80 GeV needs a special treatment by means of 
lattices with anisotropic couplings. This method and the results will be 

discussed later. 
The latent heat has been calculated from the discontinuity of the 

energy density (8f). The necessary partial derivatives along the lines of 
constant physics have been determined by use of the one-loop renormal­
isation group equations, whereas the critical points have been given by 

29
the inspection of the gauge-invariant effective potentia1 and determined 
nonperturbatively, too. The obtained values are: (8fITc

4
) = 1.68(17) 

(for mH :::::: 18 GeV), (8fIT:) = 0.240(34) (for mH :::::: 35 GeV) and 
(8fIT:) = 0.125(19) (for mH :::::: 49 GeV). 

The interface tension is one of the most important quantities de­
termining the course of the electroweak phase transition. It has been 
determined using the two-coupling method. The obtained results are: 
(0'IT;) = 0.84(16) (for mH :::::: 18 GeV), (0' IT;) = 0.065(10) (for mH :::::: 
35 GeV) and (aIT;) = 0.008(2) (for mH :::::: 49 GeV). Another possibility 
22 is to measure the interface tension by use of the finite volume tun­
neling between the symmetric and the broken phase. This phenomenon 
leads to the splitting of the ground state, which gives the interface ten­
sion by Eo = C exp( -LtL;lIa). Measuring correlation lengths of 0(250) 
the final result reads: (aIT;) =0.053(5) (for mH :::::: 35 GeV). 

The comparison for cpc/Tc, 8QIT:, alT; and TclmH is shown in 
Figure 2 (mH :::::: 18,49 GeV). The dots with error bars represent the 
perturbative result at one-loop (g3) and at two-loop (g4) level. For each 
quantity the dashed lines show the region allowed by the statistical error, 
whereas the dotted lines include the systematics, too. The values of 9 
and mH Imw are those Of21. 

For mH :::::: 18 GeV (cf. Figure 2) both the one-loop and the two­
loop results are in good agreement with the lattice data. For mH :::::: 49 
GeV the two-loop results agree definitely better with the Monte Carlo 
data, except for the surface tension. The two plots may be interpreted 
in the following way. For small Higgs-boson masses the perturbative 
approach is in very good shape, already the one-loop approximation gives 
a reliable result. As mH grows, the higher order contributions become 
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Figure 3: Critical temperature as a function of the lattice spacing. 

o 

more and more important, yet a two-loop calculation is still satisfactory 
for mH ::::::: 49 GeV. In this range of parameters the non-perturbative 
features of the symmetric phase are not important enough to destroy 

+ 	 the perturbative picture. 
The comparison for mH ::::::: 35 GeV is presented for Tc/mH because 

for this quantity very precise results exist and an extrapolation to zero 
lattice spacing is also possible (Figure 3). As it can be seen there is 

q approximately three standard deviation discrepancy between the lattice 
and perturbative result. Note, that the result of the three-dimensional 

~ 
technique predicts a Tc/mH much closer to the perturbative result. The 

o 	 lattice artefacts of the four-dimensional approach are expected to be 
proportional to a2 

, whereas in the three-dimensional method they are 
proportional to a. 

3 Electroweak theory on asymmetric lattices 
.,.... 

Qj) Qj) For larger MH (e.g. MH = 80 GeV) the phase transition gets weaker, 
the lowest excitations have masses small compared to the temperature, 

Figure 2: Perturbative and lattice results for mH R:: 18 GeV and mH ~ 49 GeV. 	 T. From this feature one expects that a finite temperature simulation on 
isotropic lattice would need several hundred lattice points in the spatial 
directions even for L t = 2 temporal extension. These kinds of lattice 
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sizes are out of the scope of the present numerical resources. 
In order to solve this problem we will use the simple idea that finite 

temperature field theory can be conveniently studied on asymmetric lat­
tices, i.e. lattices with different spacings in temporal (at) and spatial 
(as) directions. This method solves the two-scale problem in a natural 
way 31. Another advantage is, well-known and often used in QCD, that 
this formulation makes an independent variation of the temperature (T) 
and volume (V) possible. The perturbative corrections to the coupling 
anisotropies are known in QCD (see refs. 32,33). 

For simplicity, we use equal lattice spacings in the three spatial direc­
tions (ai = as, i = 1,2,3) and another spacing in the temporal direction 
(a4 	 = at). The asymmetry of the lattice spacings is characterized by 
the asymmetry factor { = as Iat. The different lattice spacings can be 
ensured by different coupling strengths in the action for time-like and 
space-like directions. The action reads 

S[U,cpl f3s L (1- ~TrUPI) + f3t L (1- ~TrUPI) 
sp 	 tp 

+L HTe('I't'l") +A [~Te('I't'l") -1]' 
x 

-K. t, Te ('I'~+IP.," '1'.) - KtTe ('I';+P.,4 '1'.) } , (2) 

where Ux,/J. denotes the SU(2) gauge link variable, Usp and Utp the path­
ordered product of the four Ux,/J around a space-space or space-time 
plaquette, respectively. The symbol CPx stands for the Higgs field, which 
is also written as cpx = Px . ax, with px E R+ and ax E SU(2). 

The anisotropies 

2 _ f3t 2 _ Kt 
r,8 - f3s rIO: - Ks 	 (3) 

are functions ofthe asymmetrye. On the tree-level the coupling anisotro­
pies are equal to the lattice spacing asymmetry; however, they receive 
quantum corrections in higher orders of the loop-expansion 

ra =e2 [1 + c,8(e)l + b,8(e)A + 0(g4, A2)] , (4) 

r! =e [1 + c,,(e)g2 + b,,(e)A + 0(g4, A2)] . (5) 

Here formal double expansion in g2 and A has been performed. In this 
double expansion we use the formal power counting A '" g2. It is useful to 
introduce the hopping parameter K2 = KsKt and f32 = f3sf3t. In general, 
the determination of r,8 (e) and rx (e) should be done non-perturbatively. 
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This can be achieved by requiring that the Higgs- and W-boson corre­
lation lengths in physical units are the same in the different directions. 
This idea can be applied in perturbation theory as well (see e.g. 33), and 
we will follow this method in our analysis too. It is believed that this 
procedure ensures a rotationally invariant effective action 33,34. 

The main goal of a perturbative approach is to perform a one-loop 
analysis of the theory defined by eq. (2). This means first the determi­
nation of the mass-counterterm. One wants to tune the bare parameters 
in a way that the one-loop renormalized masses are finite in the contin­
uum limit (however, their values in lattice units vanish asMren = 0 for 
as -+ 0). At the same time the vacuum expectation value of the scalar 

. field will be also zero in lattice units (asv = 0 for a -+ 0) , Le. we are 
at the phase transition point between the spontaneously broken Higgs 
phase and the SU(2) symmetric phase. The condition is fulfilled by an 
appropriate choice of the hopping parameter (critical hopping parame­
ter). The ratios of the couplings b,8 and rIO:) are still free parameters 
and can be fixed by two additional conditions. We demand rotational 
(Lorenz) invariance for the scalar and vector propagators on the one-loop 
level. This ensures that the propagators with one-loop corrections have 
the same form in the z and t directions. Clearly, arbitrary couplings 
for different directions in eq. (2) would not lead to such rotationally 
invariant two-point functions. 

The calculation is rather tedious and only the results are presented. 
The critical hopping parameter is given by 

{ 1 [ e 1 9{J1 ({, 0) 2 
Ke = ~,~ _n, +,~ ~Mn 6{J1 ({, 0) - (3 + {2) Ae + 16(3 + e)2 9 , 

(6) 
where the notation 

I n({, mas) = a!-2n r__1 A (7)lie (m2 + k2)n 

for 	the dimensionless lattice integrals on asymmetric lattices is used. 
One can demand rotational invariance in the continuum limit, as, at -+ 

o at fixed e = as Iat. The corrections to the anisotropies in the kinetic 
parts of the tree level propagators should be cancelled by the kinetic 
parts of the self-energies. This requires the knowledge of the wave func­
tion correction term in our theory. The functions C,8(e) and c,,(e) of eq. 
(4) are plotted in Figure 4. 

There are several important features of the result, which should be 
mentioned. 

a. Masses in the propagators: a consistent perturbative procedure on 
the lattice determines the bare parameters, for which the renormalized 
masses vanish, cf. eq. (6). With these bare couplings other quantities, 
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e.g. asymmetry parameters, are determined. However, using the one­
loop renormalized masses (asMH = asMw = 0) in the propagators 
instead of the bare ones leads to changes in the results, which are higher 
order in g2 and A. Therefore, all our results are given by the integrals 
with renormalized masses. 

b. g2 and A corrections: In Figure 4 we have given only CJ3 (~) and 
CK. (~). The functions b{3 (~) and bK. (~) vanish, thus there are no corrections 
of O(A) to the anisotropy parameters. It is easy to understand this result 
qualitatively, since only graphs with two or more scalar self-interaction 
vertices have non-trivial dependence on the external momentum. This 
feature is connected with the well-known fact that the cp4 theory does 
not have any wave function correction in first order in the scalar self­
coupling. It is worth mentioning that there is only one type of two-loop 
graph (the setting-sun) which should be combined with the one-loop 
graphs, in order to obtain the whole 0(A2) correction. 

c. Pure gauge theory: Some graphs contributing to the anisotropies 
are identical with those of the pure gauge theory. Evaluating these di­
agrams one reproduces the result of ref. 32 (the function C{3 (~) of the 
present paper corresponds to C1"(~) - cO'(~) of ref. 32). The most im­
portant contribution comes from the self-energy graph with vector four­
coupling. Inclusion of the scalar particles gives only small changes. The 
relative difference between the C{3(~) functions for the pure SU(2) theory 
and for the SU(2)-Higgs model is typically a few %. 

d. Quantum corrections to the hopping parameter: the contributions 
to the hopping parameter come from graphs with external scalar legs. 
This correction has the same sign and order of magnitude than that of 
the gauge anisotropy parameter; however it is somewhat smaller. It is 
possible to combine the anisotropies c~(~) = C{3(~) - CK.(~)' For this 
choice in the gauge sector and with "YK. = ~ the rotational invariance can 
be restored on the one-loop level, choosing the appropriate value for the 
lattice spacing asymmetry as/at. Thus, the masses in both directions 
will be the same. However, the obtained lattice spacing asymmetry will 
then slightly differ from the original ~i one gets as/at = ~(I-g2ctt(~)/2)+ 
0(g4, A2). 

It should be emphasized that the truly non-perturbative analysis 
of several thermodynamical quantities on lattices with anisotropic cou­
plings ought to include the non-perturbative determination of the anisotro­
py parameters. This can be achieved by the study of the correlation 
functions and/or static potentials given by Wilson-loops. 

This analysis has been done at fflH =72(5) GeV and gk =0.577(15) 
(c.f. Figure 5). We performed T =0 simulations at K. =0.10662 and at 
:fixed "Ytt = 4 but at three different "Y{3 values. We have chosen "Y{3 = 4 
and "Y{3 =3.919, as the tree-level and one-loop predictions, respectively. 
The third choice of the "Y{3 parameter was 3.8, a value which makes an 
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Figure 4: cJ3{{) and cK ({) as functions of l/{. 

interpolation for the restoration of the rotational invariance possible. 
The asymmetry parameter has been measured in three channels: 

Higgs, Wand static potential. E.g. the asymmetry parameter in the 
Higgs channel is defined by ~H = mH(z)/mH(t), where the masses are 
determined in lattice units. 

At "Y{3 = 4 the maximal asymmetry parameter is found in the W 
channel and the minimal one in the Higgs channel. At "Y{3 = 3.8 the sit­
uation is just opposite. The simulations at the perturbatively predicted 
"Y{3 =3.919 point show that for all channels the obtained asymmetries are 
consistent with each other and with the perturbative value ~p = 4.052. 
Combining all of the nine asymmetry results one gets a rather small er­
ror ellipse for the anisotropy-asymmetry plane. This result, which is in 
complete agreement with the perturbative one, is shown in the insert of 
Figure 5. 

The agreement is not surprising. At T = 0 the electroweak theory is 
weak and can be treated perturbatively. Since the anisotropy parameters 
are the lattice counterterms, which are completely determined at zero 
temperature, one can safely use the perturbative results for the defini­
tion of the theory even in the highly nonperturbative finite temperature 
regime. 
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After confirming the perturbative result for the anisotropy parame­
ters one should calculate the thermodynamically interesting quantities 
at mH :::::: 80 GeV. As it is mentioned earlier in this mass region the 
phase transition is rather weak. This is the basic reason for using ~ :::::: 
4, which reduces the lattice volume by almost two orders of magnitude. 
The simulation parameters correspond to mH = 78(4) GeV pole mass 
and g~ = 0.539(16) renormalized gauge coupling. 

We have determined the critical temperature for two temporal ex­
tentions. The results are Tc/mH = 1.86(2) and 1.8(2) for L t = 2 and 
3, respectivcely. These numbers are quite smaller than the prediction 
of the continuum perturbative approach; however, lattice perturbation 
theory shows that Tc/mH increases with the temporal extent ion 21. 

We have seen in our previous analysis that the most robust way 
to determine the interface tension is to use the so-called two-coupling 
method. The lattice is an elongated one (L t = 2, 3 Lz :» Lx, LlI ). After 
enforcing an interface pair perpendicular to the z-direction by dividing 
the lattice volume in symmetric and Higgs phases with (Kl < Kc for the 
one half of the lattice and K2 > Kc for the other half of the lattice) the 
related additional free energy gives an estimate for the interface energy. 
The final answer is obtained in the AK = K2 - Kl -+ 0 limit. Our result 
is u/T; = 0.0006(4), which was determined by two different volumes: 
V = 2.242 .196 and V = 2.362 .256. 

The jumps of different order parameters (e.g. plaquette, link and 
length of the Higgs field) with the partial derivatives along the lines of 
constant physics give the latent heat. The lattice volume we used was 

4V = 2.242 ·96. For the normalized latent heat one obtains Ae/Tc = 
0.0033(27). 

The values of the thermodynamical quantities (u/T; and Ae/Tc 
4

) for 
mH :::::: 80 GeV are substantially smaller than their perturbative values. 
They are even consistent with a no first order phase transition scenario on 
the approximately 1-u leveL The fact that this result deviates from those 
of the three-dimensional investigations (for which this Higgs-boson mass 
region is definitely in the analytic cross-over regime) should be clarified 
in the future. 

4 Conclusions 

Perturbative studies show, that the electroweak phase transition can 
not be described above mH = 70 GeV by perturbative methods. One 
systematic way to solve the problem is to perform lattice simulations. 
There is an intensive work to do Monte-Carlo simulations, in both three 
and four dimensions. . 

The good quantitative agreement between the perturbative and lat ­
tice results found for Higgs mass values mH :::::: 18 GeV and mH :::::: 49 
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Figure 5: ~-evaluation at mH =72(5) GeV and g~ =0.577(15). 

Ge V is interpreted as evidence for the correctness of the present under­
standing of the electroweak phase transition. Non-perturbative effects 
present in the symmetric phase are neglected by perturbation theory, 
but they should contribute to the lattice results. These effects should 
be more pronounced for larger Higgs-boson masses. Thus, an impor­
tant problem is to perform lattice simulations in the physically relevant 
parameter region (mH > 70 Ge V) and to understand the above men­
tioned non-perturbative effects. This understanding is essential for a 
clear answer concerning the observed baryon asymmetry of the universe. 

We have performed a systematic analysis to answer the above ques­
tion by means of lattices with anisotropic couplings. We have defined 
the theory in an unambiguous way, by determining the perturbative re­
lations between the lattice couplings and the lattice spacing asymmetry. 
It has been shown that these relations are correct in a nonperturbative 
sense, too. Using this technique we have determined the thermody­
namical quantities (u/T; and Ae/Tc 

4) for mH :::::: 80 GeV. The results 
are substantially smaller than their perturbative values. They are even 
consistent with a no first order phase transition scenario on the approx­
imately 1-u leveL 
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