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Abstract 

The role played by the Brans-Dicke dilaton in resolving the cos­
mological constant problem is investigated both in the Brans-Dicke 
theory and in the supergravity theories. The supergravity theory is 
understood to be a natural generalization of the Brans-Dicke theory. 
It is found that the idea of the rolling vacuum is consisten t with the 
constancy of the gauge coupling in the 4-dimensional Calabi-Yau com­
pactification of the lO-dimensional supergravity theory. The appear­
ance of the various mass scales in nature is attributed to the possibilit y 
of expanding the physical quantities in terms of the ratio of the size 
of the internal space with the Planck length. The crucial test of the 
theory will be to find the time dependence of the mass scales. 



1 Introduction 

Brans-Dicke theory[l] has been investigated so far as a variant of Einstein 
gravity without positive experimental evidence [2]. Recently, however, La 
and Steinhardt [3] suggested that the Brans-Dicke theory is capable of solving 
the graceful exit problem [4] which existed in the original inflation model of 
Guth [5]. 

On the other had it has been known that there exists a scalar field 
which is similar to the Brans-Dicke dilaton both in 4-dimensional [6] and 
10-dimensional supergravity theories[7]. Its physical meaning, however, has 
not been fully investigated so far. The purpose of this work is to clarify the 
role played by the Brans-Dicke scalar in resolving the cosmological constant 
problem [8]. 

The basic idea is the following. The Brans-Dicke scalar is characterized 
by the fact that it couples to the trace of the energy momentum tensor: 

(1) 

This equation shows that r/> couples to the vacuum energy i.e. the cos­
mological constant when it is not vanishing. If r/> takes some non-vanishing 
constant value in the vacuum state, it causes the well known difficulty of 
non-vanishing cosmological constant. The vanishing r/> is achieved only when 
the vacuum energy is zero as is seen from (1). Completely different situa­
tion emerges when the vacuum corresponds to the solution which is "rolling 
down the hill". The cosmological constant term will be multiplied by the 
exponential of the dilaton field in the Einstein frame and it will vanish when 
the dilaton field tends to -00 as the time passes. This is the situation we 
investigate in this work. 

The strong argument [9] against the vacuum which is "rolling down the 
hill" comes from the observation that it might result in an unacceptable 
time-dependence of such fundamental constant as the electric charge [10]. 
The purpose of this work, therefore, is to show that this observation is false. 
It is shown in particular that in the Calabi-Yau compactification [11] of the 
10-dimensional supergravity we have the time independent gauge coupling 
at least or most likely only in the case of 6-dimensional internal space. We 
find that the scalar field which originates in the II-dimensional supergravity 
conspires with the scalar field which corresponds to the size of the internal 
space to make the electric charge time-independent. 
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Brans-Dicke theory is not a conformably invariant theory. We must there­
fore select a specific conformal frame in which the comparison is made of the 
experimentally observed physical quantity with the theory. We find that we 
can consistently interpret the finite cosmological constant only in the so called 
Einstein frame where the gravitational constant is time-independent rather 
than in the Jordan frame where the cosmological constant is time- dependent. 
As a matter of fact we always write the Lagrangian of the 4 dimensional [6] or 
of the 10-dimensional [7] supergravity theory in the Einstein frame assuming 
implicitly that the gravitational constant is time-independent. 

In section 2 the Brans-Dicke theory with the cosmological constant is in­
vestigated. Rolling solution for the vacuum in the Jordan frame is compared 
with that in the Einstein frame. It is shown that the cosmological constant 
can be absorbed in the boundary condition in the Einstein frame and so 
there is no way to set any bound on its value. Whereas it follows the usual 
argument in the Jordan frame. Section 3 is devoted to the study of its im­
plication to cosmology. It is pointed out that the finite temperature universe 
expands faster than the zero temperature universe, which is nothing but the 
vacuum. 

We also point out that part of the observed cosmological red shift is 
compensated by the time change of the mass of the elementary particles. In 
section 4 we discuss the space-time compactification of superstring theory. 
We show that in the case of 6-dimensional internal space (4-dimensional 
space-time) there exists a vacuum solution in which the size of the internal 
space is slowly expanding and the gauge coupling is independent of time. 
We find that the breaking of the supersymmetry must occur at 1011 GeV if 
the grand unification scale is assumed to be 1015 GeV which is the inverse 
size of the internal space. We also find that so to speak the two bridge poles 
in the hidden sector at 1011 GeV and at 107 GeV suspend the bridge which 
interconnect the grand unified world with the low energy world. We make 
some concluding remarks in section V. 

.. 
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2 Brans-Dicke Theory with Cosmological Con­
stant 

Brans-Dicke theory [1] in the Jordan conformal frame is characterized by 
the following action 

S ~ JJ(-ii) [-JR - A ~g"V8"J8v J] + Sm (.j;,g",,) . (2) 

Here the notation A is to indicate that the variable A is in the Jordan 
frame. Cosmological constant A is absent in the conventional Brans-Dicke 
theory, while it plays the fundamental role in this work. ~ stands for an 
arbitrary matter field. Note that Sm(~' 9#J.v ) does not depend on the Brans­
Dicke dilation field 4>. The Brans-Dicke action is not invariant under the 
conformal transformation. This implies that we obtain a different theory if 
we perform a conformal transformation to equation (2). Einstein frame is 
characterized by the fact that the gravitational constant is field-independent 
in it. It can be obtained from the Jordan frame by the following conformal 
transformation. 

(3) 


with 
1 1 -2f3q (4)0/ 2K2 e , 

where 
(3 (5) 

and 
(6) 


mp being the Planck mass. 
The action becomes 

In contrast to the Jordan frame the Einstein frame gives the matter action 
which depends on the Brans-Dicke scalar through e2f3q 9#J.v' This is shown to 
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result in the time-dependence of particle masses. Furthermore, the cosmo­
logical constant has an ordinary stringent bound in the Jordan frame but it 
evades the bound in the Einstein frame as is shown below. It is shown that 
it is absorbed in the initial condition of the vacuum solution which is rolling 
down the hill. 

In the case when no matter field has the vacuum expectation value we 
obtain the following set of vacuum equations in the Einstein frame. 

(8) 

and 
(9) 

where DI" is the conventional covariant derivative. Assuming that the vacuum 
space is maximally symmetric; 

(10) 

we obtain the following solution [3] for equation (8) and (9): 

a = ao +2{3o:t, (11 ) 

with 
1 ( 2{30: )

(1 = (10 - 2{31og 1 + -;;;;t , (12) 

where 
0:2 = 2w +1

3k, (13)
w-­2 

and {3 is given previously. ao and (10 are related by, 

- _0:_e- 2{3(10a (14)o - J",2).. . 

Corresponding solution in the Jordan frame is 

ii = [jo:t +aoef3
(10, (15) 

with 
- ).. {3( )24> = 20:2 [jo:t +aoe (10 • (16) 
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If we take the existence of finite cosmological constant seriously it is impos­
sible to have a matter dominating universe except for a period of very early 
universe where quantum effect may be important. Throughout the almost 
entire period of the universe the expansion rate will be given by the cos­
mological constant. The discussion of the case of finite temperature will be 
given in the next section. At the present stage of the universe where the 
temperature is very low the universe will be close to the vacuum given either 
by equation (11) or by equation (15). The theory in the Jordan frame gives 
the following expansion rate, 

H=~= (3a =(3~2Al (17)a /3at + aoe{3O'o V' 

We have, therefore, 

(18) 


where mp stands for the Planck mass. Here we used the fact that the grav­
itational constant is expressed in terms of the field <P in the action given by 
equation (2). H is the Hubble constant at the present time. Thus the A is 
restricted by the usual limit and it is as small as (10-3 ev)4. In the Einstein 
frame we have 

H=~ 1 
(19) 

a t +...L 0!ie2{3Vr -2{3O'o 

A is completely arbitrary in this case and can be absorbed in the initial value 
0'0. This is the key observation for the later discussions and because of this 
we regard the theory in the Einstein frame to be the right theory rather than 
that in the Jordan frame. 

The O'-dependence of the matter action Sm("p, e 2{30' gil-v) in equation (3) 
gives the time dependence of the physical variables. The matter action for 
the scalar, the gauge vector and the Dirac spinor in the Jordan frame takes 
the form; 

Sm - f J(-g) [-~8,,~8"~ - V(~) - ~g".gP"F".F'." 
- i~,aDa;fi - g~;fi~], (20) 
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where 

(21) 

with e~ being the vierbein and ; J.L stands for the gravitational covariant 
differentiation. Under the conformal transformation 

(22) 

we get 
(23) 

Equation (20) shows that the gauge coupling remains constant even in the 
Einstein frame because of equation (23) which is valid only in the 4-dimensional 
space time. Changing the variable from ~ and ~ to 4> = e{3q ~ and tP e~{3q~ 
respectively we obtain the matter action in the Einstein frame; 

J If-:\ [ gPV 	 . 
Sm = V ( -g) -	T{8p 4>81.14> - (38p u4>8v 4> - (38v u4>8p 4> + (328p u8v u4>2} 

- (~p2e21i"4>2 +e4>4) - ~g"Pgvn F ""Fpn - ~ (i-y"D" - g4» til (24) 

where we have taken the explicit form for V( 4»: 

(25) 

The vacuum solution in this case has to take into account the non-vanishing 
4>. The exact solution in this case for a u is given by equation (12). The only 
change is that we have to replace A by A+ ~J.L24>5 +e4>~ in equation (14) with 
4>0 being the solution of 

(26) 

4> 	 is given by: 

4> = 4>0 rao = 4>0 .
V-;; Je-2{3qo + 2(3at/ ao 	

(27) 

This solution implies that r/J may start with the non-zero value r/Jo but it 
eventually tends to zero as the time passes. The rate of the transition is 
directly related to the expansion rate of the vacuum which is approximately 
that of our universe itself. 
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3 Cosmology 

Our discussion in section 2 has been on the vacuum solution which is 
rolling down the hill. Our universe may be approximated by the vacuum 
solution at a very low temperature as it is now. This is the consequence of 
the finite cosmological constant which is much larger than the matter density. 
We have seen in the previous section that it does not cause any problem for 
the theory in the Einstein frame. Let us discuss briefly the case of finite 
temperature (3-1. We have, 

(28) 


and 

(29) 

with 
6£i = _K2(p + 3p)a. (30) 

Here F is given in the free gas approximation [12], 

where Vo(0') is the effective potential at zero temperature and M2 is given 
by, 

(32) 

where f3 in section 2 has been replaced by f30 not to be confused with the 
temperature. p and p are related to F by, 

of 
p = F + f3 of3 

and p = -F. (33) 

We see from (31) that the effective potential is a monotonic function of 0'. 
This implies that the universe will correspond to the solution which is rolling 
down the hill as in the case of the vacuum. The cosmological constant does 
not stay constant and it seems that the exponential expansion does not occur 
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even at the finite temperature. Nevertheless, it is very important as will be 
discussed later that the expansion rate of the universe is much faster than 
that of the vacuum. We expect that this is realized qualitatively because 
of the higher density at higher temperature. We note that equations (28) 
through (33) guarantee that the universe expands like Vi at the initial stage. 
Quantitative discussion throughout the entire period will be given elsewhere. 
More complete picture can be obtained by studying the equation; 

where the boundary condition is 0'(f3) = 0'(0). Equation (34) is the Euclidean 
gravity with the temperature f3- 1 

• By transforming it back to the Minkoski 
metric we will obtain the solution which describes the universe for the entire 
period. 

Assuming that the present universe is approximately described by the 
rolling vacuum solution given in section 2 we study the effect of time de­
pendent masses when we compare the theory with the experiment. The 
expansion rate at the present time to is given by, 

a 1
H-------- (35)

- a - ao/2f3a + to . 

The ratio of the frequency v(t) of the light emitted at t to the frequency 
Vl(tO) emitted now from the same phenomenon is given by 

V(t) m(t) a(to) 
(36)

Vl(tO) = m(to) = a(t) 


V(t) will be cosmologically red shifted to v(to) by, 


v(t) a(to) 
(37)

v(to) = a(t ) 

We get, therefore, 

a(to) _ 1 
(38)a(t) . 

8 




4 

This leads to the following formula for the relation between the luminosity 
distance dL and Z; 

dL =(1 + Z)~a(to)sin C(to)~(to)I09(1 + Z)) , (39) 

for the case of the closed universe [13]. Here sin should be replaced by either 
1 or sinh in the case of marginal or open universe respectively. In deriving 
equation (39) the effect of the time dependence of the mass has to be taken 
into account in relating the apparent luminosity with the brightness of the 
universe. The detailed comparison of equation (39) with the observation 
remains to be done. We can check that it corresponds roughly to the case of 
the deceleration parameter qo being equal to -1 in the standard model. 

Calabi-Yau compactification 

Supergravity theory can be regarded as the natural extension of the 
Brans-Dicke gravity theory. Before going into the detailed discussion of 
the 10-dimensional supergravity we make a brief preliminary study of the 
4-dimensional supergravity. The full action has been obtained by Cremmer 
et al.[6]. They start with the action in the Jordan frame just as in the simple 
Brans-Dicke theory and make an appropriate conformal transformation to 
arrive at the action in the Einstein frame. The relevant part of the action 
which is needed to study the vacuum structure reads; 

(-grt.c = -~R+e-G(3+G~G~-lkdl) 

- ~g2 (Ref;:J) (diT;a j 
Zj) (G'kTttZl ) 

+ G/~ia z·a"'z*i 
J "" , 

(40) 

where G is given by, 

1
G(z, z*) = J(z, z*) - l094 I g(z, z*) 1

2 
, (41) 

with 9 being a superpotential. Here we have 

Gli = aGo 
OZi 

(42) 
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G" 
i -

l' 
J stands for the inverse matrix to 

(43) 

Tti is the representation matrix of the generators Ta of a certain Lee Al­
gebra. 9 is the coupling constant. Minimal theory is defined [6] to be the 
theory with laP = Sap and GJi = -is;. Although the discussion given below 
does not need these assumptions, we restrict ourselves only to this case for 
simplicity except for the Brans-Dicke dilaton. The Brans-Dicke dilaton is 
one of the chiral multiplet (Zi' XLi, hi) which we denote by (</>, eL, h<fJ). The 
superpotential 9 has a special dependence on </> in order that the vacuum 
should exhibit the time dependence as has been discussed in section 2. We 
assume the following specific form for g; 

(44) 

where </> is the complex dilaton field, 

(45) 

With this specific form for 9 we can rewrite equation (40) in the following 
form; 

~R + e-~+<fJ~-G [3 - 2(</>J + ~) - 2GliG~] - ~DaDa 
2 16' 2 

~O,,4>RO" 4>R ~O"ho"4>[ - ~O"ZiO" Z·o (46) 

Here G has the dependence on the z's except for </>. We obtain the vacuum 
equations from equation (46) assuming equation (10) as in the case of the 
Brans-Dicke theory. The following ansatz is made to solve these equations 
based on the experience in section 2; 

a(t) = 0: + {;t, (47) 

and 
(48) 
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The vacuum equations then reduce to the equations among the constants; 

,= 4, 

1 -1 -G (23 G1iG1) 02f3i f + 2P e 8- 2 i = , 

(32 + k + p-2 {e-G c: -2dG;) + 8(2} = 0, (49) 

with P = 0:18 = f3lf, and 

G 
. £.i + 3f3 i.i _ 2 e- {G1i (2G1iGI • _ 15) _ 2Glli i G1.} 

0: + f3t (8 + ft) 2 J 8 J 

o(DOt DOt)
+ = 0 (50) 

OZi 

We also have, 
<PI = 0, (51) 

Equation (50) together with equation (28) determines Zi (Zi = 0 is a trivial 
solution) and other equations determine the values of f3 and f. We note 
that not all Zi can be zero since otherwise either f3 or f will become negative 
because of the second equation of (49), 

2: _2G'iG: < O. (52) 

The rest of the discussion parallels the conventional one in many ways except 
that we can associate the origin of the mass scales (for example the scale of 
the hidden sector) with the time variation of the dilaton field. For example, 
the supersymmetry breaking scale is given by, 

p;2 = M; e - Sf G~ (8 + ft) -1 , (53) 

for certain i. We then have 

(54) 


where M 3/ 2 is the gravitino mass. This is key equation to justify the super­
symmetry breaking in the hidden sector [14]. We obtain, 

M~ = Me-Sf(8 + ft)-l. (55)
2 

11 



Suppose that (8 + ft)-l is as small as 10-16Jl becomes of the order of 1011 
GeVand M3/ 2 becomes 103 GeV. This point will become much clearer when 
we discuss the compactification of the IO-dimensional supergravity. 

Equation (50) determines the time dependence of Zi'S. We assume z/s in 
the hidden sector has no time dependence. Then they satisfy 

Gli (2G1iGj _ I;) - 2G"iiGj = O. (56) 

Here i stands for the hidden sector and j runs over all the Zj'S but because 
of small (8 + et)-l only the hidden sector components are relevant. If we 
assume that the supersymmetry is broken only in the hidden sector we have 

3' e-Gz·i + --.!:i·i +4__G"OiG' = 0, (57)
a p2a2 0 

for the other Zi'S. Here a is the size of the rolling vacuum and the index zero 
stands for the hidden sector. The contribution to G is dominated by the 
hidden sector component. The last term of equation (57) vanishes when Zi 

does not couple to the hidden sector. Assume that G contains the following 
term; 

G = LCiZOz·izi' (58) 
i 

We then get 

(59) 

with 
4 -G 

C. _ Ci e G' 
~, - o· (60)

p2 

This can be easily shown to have the following solution; 

zi = (0 + f3t)lI zi, (61) 

where zi are constants and v is given by 

(62) 

We can obtain any mass scale by adjusting the value of ei. It is not unnatural, 
for example, to have a violation of SU(2) x U(l) at the tree level in this 
scheme. 
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Although the 4-dimensional supergravity theory is in itself an interesting 
theory, it is too ambiguous to confront with the experimental observation. 
We need such ad hov assumptions as the minimality etc. to obtain a concrete 
result. We, therefore, turn to the discussion of the 10-dimensional (super­
string) supergravity [7] which leads to a rather remarkable consequence. 

The bosonic part of the 10-dimensional supergravity action with the super 
Yang-Mills field is, 

where R is the 10-dimensional scalar curvature and, 

(64) 


with 

W3 - AOt FOt - [M NP] 1 of AOt AfJ A"'Y - -a9JOt/h [M N P] - W3L, (65) 

with W3L being the gravitational Chern-Simon form. The symbol [MN P] 
means the total anti-symmetrization as usual. Our task is to find the vac­
uum solution to the equations derived from action (63) in which the dilaton 
field tP is time-dependent. At first sight it seems impossible because of the 
explicit appearance of tP- t multiplying the F2 term which then will give the 
time dependence of the gauge couplings [9]. Our goal is to show that it 
does not happen in the compactified 4-dimensional theory. The compactified 
vacuum solution has so far been discussed under the assumption of super­
symmetry. This led inevitably to the vanishing of the cosmological constant 
or the Minkovsky space-time. On the other hand the finite cosmological con­
stant plays the fundamental role in our approach. We, therefore, must violate 
the exact supersymmetry at some energy scale depending on the magnitude 
of the cosmological constant. It will be shown later that the energy scale is 
determined to be of the order of 1011 GeV if we assume the grand unification 
scale is 1015 GeV. As was shown by Candelas et al. [11], there are 2 condi­
tions to be satisfied if the supersymmetry is to be preserved in the process of 
compactification. One is the condition of Ricci flatness and Kahler property 
for the compactified space and the other is the Kahler-Yang-Mills equation 
for the gauge field. We can certainly give up all these conditions to break 
the supersymmetry. But we choose to give up only the Kahler-Yang-Mills 
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equation to make the discussion simpler. This means that we break the su­
persymmetry in the super-Yang-Mills sector rather than in the supergravity 
sector. We denote the internal Calabi-Yau components by"a, b, c, ... and the 
external components by /-l, v, p, . ". The dimension of the Calabi-Yau space 
is left open; 

(66) 

with De and Di being the external and the internal space dimensions respec­
tively. The internal space has the metric 

(67) 

with 

(68) 

The square of the size of the Calabi-Yau space f(x) can depend on the 
external coordinate x especially on time t. The scalar curvature R can then 
be calculated with the result; 

R = ~ir l DI' (gl'V ov!) + ~i gl'V DI' (I-IOv!) 

+ ~Di9l'vr 2ol'!ov! +R(Del (69) 

where R(De ) is the De-dimensional curvature. Ricci flatness of the metric gab 

has been used to derive equation (69). This leads to the following formula for 
the gravitational part of the action given in equation (63) (we take 2K2 = 1); 

SG - - Jj _g(10) R(10) d10x 

- J v-g(DeldDexSD' ( _R(Del + (2m - 7Di)gl'vOS;OvS) , (70) 

where the dimensionality has been explicitly denoted and f = S2. Equation 
(70) shows that the size of the internal space S (x) plays the role of Brans­
Dicke dilaton in addition to the original ¢> field. We have also calculated the 
left hand side of equation (70) in the case of maximally symmetric internal 

14 



space just for comparison with the result; 

Sa - - JV_g(lO)R(lO)d10X 

- J J_g(DeldDexSD'{ _Rf.Del 

+D.(D. - 1) (g""aS~a"s + ;2)}, (71) 

We see from (70) and (71) that the Calabi-Yau space is in a way much 
simpler than the maximally symmetric space in the sense that the former 
has no potential term in the action. We also found that the computation 
which leads to equation (70) is less tedious than that leading to equation 
(67). We need another tedious step to perform the conformal transformation 
in the space-time of dimension De. In general we get, 

where the transformation is defined by, 

(73) 

The Einstein frame corresponds to 

(74) 

with 

A = D2~ 20 (75) 
e 

Here the 9,.,.11 is the metric in the Einstein frame. Throughout this section 
the quantity A in the Einstein frame is written as .Ii rather than that in the 
Jordan frame. The gravitational part of the action (70) becomes, 

(76) 


where K is given by; 

K = (De - 2~(De -1) A2 _ D.(2D. -7)0 (77) 
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The rest of the action (63) can also be computed with the result; 

s = J c;. [_~g~va~¢>av¢> +C - !""-iSA-~p-v"Fa Fa]
m V -9 8 ¢>2 F 4 'P 9 9 ~v P" , (78) 

where CF is given by, 

£p = J[_~q,-iS-A+4g.'9bb (Fa.bFa.~ + Fa·'Fabb) 

+ 4>- i S-2A+2g.,aoA a. BoAa'] . (79) 

Here the gauge field with the internal indices a or a are allowed to depend 
on time t (80 is the time derivative). To obtain equation (79) we neglected 
the HMNP components. This can be justified later within the framework of 
the expansion scheme in terms of S-1 [15]. 1;'he determinant of the internal 
metric has been set equal to lowing to the Ricci flatness condition. Equation 
(79) is the result of the extra R2 term added to equation (63) coming from 
(0/)2 correction from the string theory. We also made use of the formula [15], 

and the last term has been cancelled with its counter part coming from R2 
term. As a matter of fact this is the only place that our theory deviates 
from the minimal10-dimensional supergravity. CF provides the equation of 
motion for F which replaces the Kahler-Yang-Mills of Condelas et al [11]. 
Not all the Calabi-Yau metric are the automatic solution to the equation of 
motion. We get the following equations for F and the Kahler potential ~; 

(81) 

and 

_!l ( r-;.""-!S-2A+2!l Aab) + r-;.""-!A-A+4{ ob ( _Faiib)9abU O V -9'P 4 Uo V -9'P 4 V- 9aii9bb 

+gjalhg •• gbbA'Yb FiJ.b+a' (g••9bbFabb) +gjiJa'Yg••gbr,A'Y· F/3bb} 

= O. (82) 
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We first discuss the case when FOtab, FOtab and F Otab are time independent 
and the second term of equation (79) can be neglected. We will discuss more 
general case later. Combining equation (76), (78) and (79) we obtain; 

S - Sa + Sm 
V- J R(-R - K91'v8S~8vS - :91' 8;t8v<fo - A<fo- i S-A+4 

_ ~ A.- i SAg-IJ.Pg- 11K F Ot F Ot ) dDe X (83)4 If' IJ.II pK , 

with 

(84) 


The last term in equation (83) has been written explicitly to clarify the issue 
although F:;II will have no vacuum expectation value. We see that the factor 

</J-i SA multiplying the F2 term rather than mere </J-i in the 10-dimensional 
case. Our problem is to see whether this factor can be time independent 
when the vacuum is rolling down the hill. The action given in equation (83) 
can be rewritten in the form: 

JR [-.n - (81J.~181J.~1 + 81J.~281J.~2) - >..e-N t{)l] , (85) 

with 

(86) 


and 4 1)A ­
~2 = ( -!K ~ - y'2(j IN, (87) 

where ~ and (j are defined through; 

S=e7K , (88) 

and 
A. a.:ia,I>
If'=e 3Y • (89) 

Here 

Jl (A-4)2
N= -+ ~-...:.- (90)

2 K 
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K being given in equation (77). The condition of the constancy of the gauge 
coupling is reduced to, 

<P2 = <Po, (91) 

where <Po is defined through, 

q,-tSA = e'PO = exp (- ~'P + ~.,.) . (92) 

The equation (91) leads to 

A(A -4) _ ~ 
(93)K -2' 

Combining this equation with equations (75) and (77) we obtain, 

(94) 

It is remarkable that we have the time independent gauge coupling only in 
the 4-dimensional space-time. It is not clear at present how this result is 
related to the argument given in section 2 where we also found the constant 
gauge coupling only in 4 dimensional space-time but without compactifica­
tion process. We can explicitly solve the vacuum equation with the ansatz 
given in equation (10) and, 

a = a + j3t, CPt = ,log(S+ ft). (95) 

The result is; 

(96) 
(97) 

(98) 

(99) 

and 

(100) 
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We also have 
1 

s= [~(a+.atf e-~"'20. (101) 

This shows that the internal space is expanding as, 

Sex: a i 
1 

. (102) 

We now investigate the more general case in which an ad hoc assumption 
that Fcxab etc. are time independent is not made. We will keep, nevertheless, 
the favorable property of the solution we just found. We first note that the 
fermion part of the action which belongs to the same multiplet as the gauge 
bosons has the following form; 

e" = JA[-s;~ x"x" 

- ~S-A-lx"eaiirii Gw~bEcb8"/l + gS2 f"/l'Ygaa,A"') x/l] (103) 

where the indices a, a' etc. cover both a and a and a, betc. correspond to 
the tangential space to it. This equation shows that Acxa contribute, 

mx = S-2Acxa (104) 

to the fermion mass. Assuming that the time dependence of Acxa comes only 
through its dependence on S we expand A cxa in the following way [15]; 

Acxa s2Acxa + SAcxa + Acxa + S-IAcxa += (2) (1) (0) -1_ •.•. (105) 

The highest mass term comes from mx = A2a which is of the order of Planck 
mass. This is why we do not have much higher order than S2 in equation 
(105). We know from equation (101) that there is no way to determine the 
magnitude of S although it is slowly expanding with time. What does the 
experimental observation suggest on this matter? If we assume the existence 
of mass scale at the level of 1015 GeV, we can associate this mass scale with 
the second term in equation (105). This means that we have, 

(106) 
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Equation (105) then gives the mass hierarchy separated by 104 GeV; 

men) = Ar:)(mps)n-2mp (107) 
(n = 2,1,0, -1,· ..). 

We have the expansion formula for Faab etc. corresponding to equation (51); 

aab _ S4 vaab + S3 vaab + S2 vaab + S vaab +F - I'(4) I'(3) I'(2) I'(l) "', (108) 

vaab' . bh y,were I'(m) IS gIven 

vaab _ aa'a A ab bb' A A aa + ja/3"Y '" A/3a A"Yb
I' (m) - 9 a' (m+2) - 9 Ub' (m+2) 9 L..t m-n n' (109) 

n:52 

Corresponding formula for Faa~ and Faa~ is understood. The solution ob­
tained assuming that Faab, Faa;) and Faa;) are constant in time remains so 
if F(4), F(3)' F(2) and F(l) satisfy the Kahler-Yang-Mill's equation as is seen 
from equation (79). We will see later that this condition is to be replaced 
by the condition of vanishing Chern-Simon form up to Sl order. Note that 
the second term in equation (79) is S-IO times smaller than the first term in 
this case. These conditions guarantee that the supersymmetry is unbroken 
down to the energy 1011 GeV which is the typical energy obtained in the 
hidden sector hypothesis [14]. We obtain this result from the condition of 
time independence of the gauge coupling. There is the following problem to 
this value of S. We know that there is the observed cosmic red shift in the 
various atomic lines. The mass scale of the electron will correspond either to 
m-2 = A(~2)(mps)-4mp = A(~2) x 1TeV or more likely to a much lower scale. 
This means that the red shift is completely cancelled or it will turn into the 
blue shift. This will be remedied if the expansion rate of our universe was 
much larger than in the past when the temperature was much higher. The 
quantitative discussion on this point will be given elsewhere. An alternative 
choice is to make S as large as 10-llGeV-l 

• Then we have, 

(110) 

This is the typical low energy scale where the supersymmetry is broken 
and the red shift is half way compensated as in section 2. This is because 
S-2 ~ ((a)t)-2 as is shown in equation (102). The problem in this case is to 
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accommodate the grand unification scale of 1011 GeV with the other exper­
iments such as the lack of proton decay or the estimation of the Weinberg 
angle based on the grand unification. This solution, therefore, is not our 
choice. 

Since the non-vanishing character of dH = F2 - R2 is crucial to our 
discussion, the contribution of the anti-symmetric tensor H needs more clar­
ification. The Kiihler-Yang Mill's equations for F(4) , F(3) , F(2) and F(1) guar­
antee that dH has no positive exponent in 8. Suppose that this property is 
also valid for H itself i.e. the Chern-Simon term has the maximum exponent 
zero as well as 8M.F[NP] term in expression (64) for H (gravitational part is 
trivial), then we can easily prove that H can be neglected in equation (63); 
The contribution of H to the cosmological constant reads, 

f9 J r-;. ( A.). 3 8 6 HabCHa'b'C')J..,H = V -9 -4'38- ,+,-2" 9aa'9bb'9cc' , (111) 

which is negligibly small compared to LF when H is constant and <P-~ I"V 

8-12 
• It should also be pointed out that the equation of the vanishing Chern­

Simon form up to the 8 1 order completely replaces the Kiihler-Yangs-Mills 
equation up to the 8 1 order. In summary we get 

W3 = A"[o}""bc] - ~gri1'YA'*Ai1bA'Yc] = 0(8°), (112) 

and 

(113) 

and 

~ ( _ Daab) + ja!h '" A'Yb Dab + £)a ( Dabb)
0- 9aa9bb£(O) 9 9aa9bbL m.l'(-m) U 9aa9blj.l'(o) 

m 

+ j ath _ '" A'Ya D!3bb - 0
9 9aa9bb L (m)£ (-m) - • (114) 

m 

Equations (113) and (114) are obtained by expanding equations (81) and 
(82) respectively. [a a be] or [ajJlrye] in equation (112) stands for the anti­
symmetrization of a, band e. The electromagnetic charge is known be time 
independent to the accuracy of 10-12 [10]. This implies that F(-1) and F(-2) 
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should not contribute to the cosmological term (equation (84)). The simplest 
way is to assume Kahler-Yang-Mill's equation for these F's. 

In the case of heterotic string theory [16] where the symmetry is Es xEs 
we have the following scenario for the symmetry breaking. 

A(a,a') - S2A(a,a') + SA(a,a') + 
- (2) (1)' . " (115) 

where a and a' denote the observed and hidden Es respectively. Correspond­
ingly we have 

F(a,a') _ S4F(a,a') + S3F(a,a') + 
- (4) (3)' . " (116) 

where F is given by equation (109). In the expansion (115) A~;)a') is singlet 
in the hidden Es and only the observed Es will be broken down to much 
smaller group such as E6 • A~~)a') is also a singlet in the hidden Es and serves 

to break the grand unified group to SU(3) x SU(2) x U(I). A~~)a') and A~~'D') 
are singlet in the observed Es and the hidden Es will be completely broken 

(a a')by these two terms. A(_'2) correspond to the SU(2) x U(l) breaking. These 
quantities must satisfy equation (112), (113) and (114) together with the 
Kahler-Yang-Mill's equation for F(-I) and F(-2). 

Conclusion 

We have discussed the supergravity theory regarding it as the general­
ization of the Brans-Dicke theory. Brans-Dicke theory has the remarkable 
property that the cosmological constant term is multiplied by the exponen­
ti~l of the dilaton field (J' and will be damped down when (J' -.. -00 as the time 
passes. It is precisely what happens when the equation of motion is solved. 
The theory is defined in the so called Einstein frame where the gravitational 
constant is independent of time. In return the particle masses depend on 
time. This provides us the crucial test for the discussion given in this work. 
In the simplest version of Brans-Dicke theory the dependence is such that 
it partly cancels the cosmological red shift. The 4-dimensional gravity the­
ory gives us a solution in which the time dependence of the masses cancels 
the. red shift completely if the expansion rate of the universe is the same 
as that of the vacuum. It is, therefore, very important that the universe ex­
panded faster than the vacuum in the past. The 10-dimensional supergravity 
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is more complicated. If we assume the conventional grand unification scale 
of 1015 GeV, we are lead to the same situation as in the case of 4-dimensional 
supergravity. 

The solution we have obtained describes the vacuum which is 'rolling 
down the hill'. The crucial observation of this work is that we have the 
constancy of the gauge coupling in and perhaps only in the space-time di­
mension of 4. It is rather trivial in the simplest Brans-Dicke theory. But 
it seems rather remarkable in the compactified theory of superstring. One 
might suspect that these two situations are related. In any way the fact that 
the observed space-time dimension of 4 seems to be closely related to the 
constancy of the gauge coupling constant. It is assumed in this work that 
the supersymmetry is broken in the gauge boson sector by giving up the 
Kahler-Yang-Mill's equation. Supergravity sector remains to keep the su­
persymmetry thus leading to the Calabi-Yau compactification. We find that 
the size of the Calabi-Yau space is slowly expanding and gives the origin of 
the grand unification scale mG. The supersymmetry is then violated at the 

= 1015scale of m'b/mp which turns out to be 1011 GeV for mG GeV. We 
have a new scale of 101 GeV in the hierarchy of the masses which presum­
ably occurs in the hidden sector. We have the equations to determine both 
the Calabi-Yau metric and the gauge field in the vacuum (equation (81) and 
equation (82) or equation (113) and equation (114)). It is not obvious at this 
time how restrictive these equations are. The cosmology takes a new form in 
the Brans-Dicke theory with the cosmological constant. Large cosmological 
constant dominates the matter density throughout almost the entire period. 
The damping mechanism by the Brans-Dicke dilaton seems to persist at the 
finite temperature. The exponential expansion of the universe, therefore, 
seems to be hard to realize in this approach although the expansion rate can 
be much larger than that of the rolling vacuum itself. 
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