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ITamb aem munyso co dus xonuunst I'enpura Hearosuua Koaeposa - 3a-
MEUAMEALHOZO YueHo20, J06pozo, uymxoezo uesosexa. IIpu xcusnu Ienpuzx
Heanosuu ne ycmasas ocruwamscs baecmawumMy pabomamy maxur xo-
pudeee mamemamuxu,xax JJaeud I'uavbepm u Peauxc Kaeiin,u ur ne me-
Hee BaecTnauemy YMEHUW HATOOUMD 8adNCHOe HUIUUECKOE NPULOIEHUE TLOAY-
YEHHBIM MAMEMATMUYECKUM De3ysbmaman. B nybauxyemviz deyr pabomaz
I'enpuza Hearoeuua, omHOCSUWUTCA K NOcIeTHEMY Nepuody e2o HayuHOU de-
AMEALHOCTNY, OH, KAK HAM KAHCEMCR, CTNPEMUACS CAE008GTND UMEHHO FTUM
nymem. 3dect Mbl HAZOOUM 2aAPMOHUUHOE NPUAONCENUE AOCTAPAKMHOZ0,HA
nepeviil 832asd, mamemamuuecxoeo annapama (meopus Mopca u npoexmu-
6HAS 20MEMPUS) K UCCAE008AHUI NPUHYUNUALLHBIT NPobAeM Mmeopemuye-
cxoli Pusuxy, 6 GaHHOM CAYYaGE K BLIACHEHUID 2eoMemPUUEcKoll ocHoabl 6
obwell creme XBAHMOBAHUS U K BLIYUCAEHUID KOHMUHYGALHBIT (uau dyn-
KUUOHAALHBIT) UHMESPA.L08.

Five years passed since the death of Genrikh Ivanovich Kolerov, an out-
standing scientist and a good friend. Genrikh Ivanovich was filled with admi-
ration for brilliant studies by great mathematicians David Hilbert and Feliz
Klein and their high skill to find important physical applications of mathe-
matical results. In his last two papers Genrikh Ivanovich tried, as we think,
to keep this way. The papers contain harmonic application of the abstract,
at first sight, mathematical apparatus (Morse theory and projective geome-
try) to study fundamental problems of theoretical physics, in particular, the
geometrical basis in the general scheme of quantization and calculation of
continual (functional) integrals.
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QUANTIZATION AND PROJECTIVE
GEOMETRY *

G. 1. Kolerov

One of the principal ideas of the geometric quantization consists in the
introduction of the linear connection in a certain bundle space [1, 2], the
Hilbert space of states H being constructed of section of the given bundle
space. In this case the space of sections F can be determined as the space
in which sections are nullified by the covariant differentiation along any
vector £. In our paper we tried to demonstrate that the geometry of the
quantization can be developed from the classic geometry, particularly, from
the projective one.

Let us construct the bundle space £ over the symplectic space with the
fibre C' (the complex plane)

by introducing the linear connection

Vefu= 0@ (1)

where Q(z) is a vector on M: Q(z) = p;(z)dz’; and f,(z) is the section of
the bundle space. If in the space M for a some coordinate neighborhood U;
with the coordinates {z',p;} we define the trajectory along the curve ¢(r)
with the infinitesimal generator X, then

o fdz* d  dp d
X“E{dr dze ~ dr dp,,} ' )

*Poster report at VIII International Conference on Mathematical Physics, Marseille,
France, July 1986.




In this case for every function ¢ the following equalities take place:

chi =p-V;z (3)
Vi(ps)=(E-0)f+¢-Vs- f
From (3) and (1) we obtain
V_g_ﬁ_ - ég = ngém . (4)

dr

Where I'7; = (1/ih)pab7, fo = Refo +iImf, = em f3. Using (2) and (4)
we obtain the expression for the covariant derivative along the curve ¢(7)

Dfa _df 5 dz™

dr _d'r+ am” g (5)

or in the differential form

Dfy = dfs + ;.%Q(a:)fa . (6)

The expression for sections which are nullified by the covariant derivative
has the following form

Dfa(z)=0 . (7N
In a particular case, if Q(z) = p; dz*, then
fa(z) ~ erpifs (8)

Thus, we obtain the expression for a plane wave.
Let {Uy} be the covering of M and g,p are the transition function

fa(2) = gop(z) fo(z); 2€UsNUp . (9)

Let the point T in the neighborhood U, be specified by the homogeneous
coordinates {z*,Zo,i = 1...4}. By introducing the absolute [3] we obtain

o(z,2) = ampz™z" =0 . (10)

Then the distance between two points = and y is expressed by the logarithm
of the unharmonic relation of the group constituent by these two points and
the points (j,7) where the line which connects them crosses the absolute. In
other words

Su(e.y) = K EENTVEEY) ~ ooy ()

2 o(z,y) - V=, y) - o(z,7)e(y, ¥)
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It may be written in the other form

Sa(.’ll, y) - g—ln (P(x» y) + \/@2(9?» y) - QD(:L‘, 11:)‘,0(?/, y) . (12)

Ve, z)p(y, )
The expression ¢%(z, y)—¢(z, z)¢(y, y) represents the quadratic function
$(P,P) = = Y AikimPikPim (13)

of the variables p;r = z;yx — zry; which are called the Pliicker coordinates.
The coefficients of this function are the following

Aiklm = QikQlm — Gim Gk - (14)

The unharmonic relation of four points (z,y,j,¢) which is under the loga-
rithm in the expression (11) can be written in the form

N _Yy—J . z—]
D ; = : .
(2,933,79) i o i (15)

By virtue of the unharmonic relation properties the following formula holds
Sa(2,2) = Sa(2,9) + Sa(y,2) - (16)

Let us take expression (4) as the absolute [4]
o(z,z) =% — 22+ R%*z2 =0 . (1n

If in formula (12) we take the limit B — oo so that k/R — const., then
for §,(z,y) in heterogeneous coordinates ' = z'/z¢ the following can be
‘obtained:

2

So(z,y) = const.\/(i —7) —c*(z4—Pa)* . (18)
In other words, we obtain the expression for an interval in the case of the
pseudo-Euclidean geometry. Such an extreme limit corresponds to the sit-
uation when the points (j,7) pass through the straight line (z,y) with the
absolute (17) and are merged into the unique point on this line which is
situated at infinity. In this case the absolute degenerates into cyclic points.
Assuming that const. = mc we obtain the expression for a free particle

which can be written as the following

So(z,z) = meVz? = piz* (19)
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where p; = mez’/Vz2. Taken y* = z* + dz*, we determine from (12)

.. 8s
9op(2) = Dap(z, 2 + dz; j,1) = exp {75-} - (20)
From (19) at 1/R < 1 we obtain
i .
gap(z) ~ exp {—ﬁpiéx'} . (21)

Thus, formula (21) coincides with expression (8) obtained from geometric
quantization.

If we calculate the variation 65 at y* = z* 4+ dz* with an accuracy of
the third order in dz' by making of (11) we arrive at the Fubini-Study
metrics which determines the natural metrics in the complex projective space
between the couple of straight lines crossing the origin of coordinates. The
differential from corresponding to this metric is

w = k8d%In |p(z, )| (22)

Now let us add, to the available images of our geometry, the infinitely
remote elements
& —c’zf=0; z=0 (23)

end consider the transformation group retaining these elements. If the points
x and y are unharmonically placed with relation to (23), that is

D(z,y;5,1) = ~1 (24)

then k :
§ = 5{in(=1) + 2min} . | (25)

Assuming that in (25) k = ¢h (where h is the Planck constant) we obtain
1
S =nh(n+ 5) (26)

that coincides with the condition of quantization in case of the quasiclassic
approximation. Here from (24) and (13) it follows that the Plicker coordi-
nates have the form

pik = cbix (27

where ¢ is the constant.



Since the plane equation in the projective space has the following form
z'yi = (2,9) = 0 (28)

we can compare the points {z} and {y} of our projective space with the
vectors T and §. The condition (Z,y) = 0 may be considered as the condition
of the appurtenance of the point (z*) to the polar plane of the point (¥")
relatively to the quadric (23). Moreover, the vector j has the normalization
condition % = p2.

Assuming that the vector § has the meaning of the momentum vector p
with the normalization condition p = (mc)?, we may obtain from (24), (13),
(27), the following expression

[p,x] = thI : (29)

at the appropriate choice of constant ¢ in formula (27). Here the brackets
mean the oblique scalar product. For each polar point p equation (28)
describes a circle. In fact, by introducing. the coordinates

Ty =5(2+2) z3=§(1-2%) (30)
Iy = %(z - f) Iy = %(1 + Zf)

eq. (28) may be rewritten as the equation of the circle in the complex plane

(2): .
azZ+bz+bz-d=0 . (31)

For simplicity let us be restricted to two measurements and write the equa-
tion of the circle in the coordinates (z3,z4)

2, 2
—z5 + 5 = p?

If the vector p is normalized as —p? = (mc)? and p is equal to (mc)?, then
from the unharmonic condition (24) and by neglecting the indices we may
obtain
p-z~A where A= 24 =23 i a=h
ps X4

This can be considered as the analogue of the uncertainty relation.

Now consider the conformal mapping of the plane onto the plane by
using the analytic function w = f(z). If its linear elements are related by

ds' = eP ds, then in consequence of the mapping being conformal, it follows




that p = In |f'(2)| whence @(2) = In f'(2) = p + ig where ¢ is the function
conjugate to p.
Taking the Schwartz derivative of the function f(z).

B f'" § _f_i 2
{w,2} = 7 a7 (32)
it may be shown that
Im{w, z} d2* = (V.p; — p:p;) du' du? (33)

where V; is the covariant derivative; {u'} are the curved coordinates of the
plane. ‘

Conformal mapping between the planes is called circular if it maps the
circle onto the circle or onto the straight line. In this case the lines of the
constant curvature pass through the same points and from this condition it
follows that

(Vip; — pipj) =0 . (34)
Therefore {w, 2z} = 0 whence w = (az + b)/(cz + d). In the general case [5]
{w,2} =R(2) , (35)

where R(z) is a regular function over the whole plane except the finite
number of points. Equation (35) can be written in the form

g"(z) + %R(z)g(z) =0 . (36)

Then w = ¢1(2)/g2(2), where g;(z) and g2(z) # 0 are linearly independent
solution of eq. (36).

Consider g, and g, as the current coordinates of the vector radius R in
some subsidiary plane. Using the new variables w = glggl, dz = gy dgy —
g2 dg, we obtain

dz =< R,dR > (37)

where < R, dR > is the oblique product. From (37) it follows that

- dR - d’R
<R,—L_l;> —-1: <R,Ez—2> =0 (38)
and, from (38), consequently, follows that the vectors d2R/dz?, and R are
collinear. In this case .
d’R _

10



'h
where 1

2[f'(2)]?
Expression (36),(39) and (40) determine the variation of the curved lines at
the conformal mappings.

Using the Kobayashi metric based on the conception of a great set
O(U, M) of holomorphic mappings of the unit circle U on the manifold
M and fixing the points p and ¢ € M we define the chain of mappings on
M from p in ¢ consisting of a certain number m of holomorphic mappings
fi € O, the number m of pairs of points £,€7 € U(j = 1...m) so that
&) =p, fm(En) = a, f1(€) = fF(&41)- For (j =1...m ~ 1) we may
define the distance between the points p and ¢

k= {w,z} . (40)

Ym(p,q) = inf Y _ p(&, ) (41)

j=1

where p is the Lobachevski distance in a unit circle. The bottom facet is
taken from all chains {f7,¢},£/}7, on M from p to ¢ with any numbers of
links.

By shaping the form (22) in the fibre bundle space T(M) = |JT,(M)

P
and using (20, 33, 40) we can turn to the limit m — oo in formula (41) and
thus obtain the expression for the Feynman path integral.

P q
1 f2 f3

f
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LINEAR CONNECTION AND CONTINUAL
INTEGRAL (APPLICATION OF THE MORSE
THEORY) *

G. I. Kolerov

The method of continual or functional integrals is of great importance
in theoretical physics due to its universality. By using this method, one can
represent a quantum quantity as a sum of contributions of classical virtual
trajectories. Simple dependence on the Planck constant & demonstrates that
the main contribution to a quantum quantity as k — 0 is ensured by a real
classical trajectory.

However, practical calculation of continual integrals encounter difficul-
ties. On the one hand, the traditional approach developed by Winner as-
sumes the continual integral as an integral over measure in a functional
space, and therefore, is unadequate. On the other hand, the continual in-
tegral as a limit of finite-dimensional approximations is sensitive to their
choice and gives no unique values. In this case the ambiguity caused by a
different set of approximations has the same meaning as that of quantiza-
tion. There are some other attempts to use different methods to study the
continual integrals.

In this connection, the fundamental Morse theory is very interesting [1].
It studies, in particular, the variety of paths (M; p, ¢) connecting the points
p and ¢ on a smooth manifold M. On a space of piecewise smooth paths
PS(M) where v : 7 — (1), 0 < 7 <1 the action functional § is given,
the value of which on the path v € PS§S(M) is determined in the local
coordinates {z'} by the formula

U datdad
5(7)—/0 gij?—a?d‘r . (1)

*Poster report at IX International Conference on Mathematical Physics, Swansea,
Wales, July 1988.
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At the same time, the extremals of the functional S (i.e. path vy € PS(M)
for which the linear functional S, on the space 7., determined by the vari-
ation of the functional 65 is equal zero) coincide with geodesic metrics g;;;
(extremals of the length functional) in their natural parametrization.

Let us choose a section of the unit interval 0 = 79 < 7...7% = 1 and
denote, by QPS(M;ry...7), the space in Q(M;p,q) consisting of paths
v :[0,1] — M so that

1. y(0) =0, v(1)=g¢

2. v/[ri-1, 7] is the geodesics at each i = 1...k, then for each | € R the
manifold

Q=05 M;m...7%) = STHO, NN QPS(M; 75, .. 7) (2)
is determined.

If the manifold M is full, then Q9 = E~1[0,1)N$; (where Q2 is the interior
of a set) and it is retracted on a smooth manifold B the points of which are
“broken geodesics” with a fixed numbers of links connecting p and gq.

Proceeding to the limit ! — oo we can prove [1] that Q(M;p,q) as the
space of “broken geodesics” connecting the points p and ¢ is homotopically
equivalent to the space 2(M;p,q) of all continued paths connecting the
same points. .

In connection with this, one may consider a possibility to compute the
continual integral by using the Morse theory. Furthermore, we shall use the
methods of geometrical quantization [2] the principle idea of which is that
under certain conditions the two-form simplectic manifold exists as a form of
the linear fibre bundle curvature with connection, the space of states being
constructed by sections of the given bundle space .

Let us consider the bundle space £ over M with the fibre C (a complex
plane) through introducing the connection [3]

de%%@f, (3)

where £ € M; f is the section of the bundle space and Q@ = Q;dz’ is
the 1-form on M. Using the connection one can determine the covariant
derivative )

af df i

dz’
o~ @ W& @

14



The equality of this derivative to zero gives the condition for translation of
a differentiable path from the basic space M into bundle space £ and thus
Q@ defines the linear connection in it:

df - —;;Q;dz‘ f=0 . (5)
A solution to this equation for the case Q = p;dz’ is a flat wave

fol@) = ce™HP® (6)

describing the movement of a free particle.
For a given linear connection one may define the connection coefficients
using the formula [4]

Ve f=T%fu - (7)

dz?

In the case of the connection being defined by (3) one has

1
s = P05

The spaces with these connection coefficients are called “projective-euclidean”,
and the Ricci tensor, in our case, has the form

o pip;j
Rij = R = -552' : (8)
For the action S(7y) defined by formula (1) the continual integral will be
of the form . -
i
I = [ewo [ sar} o1, (9)
P h Jo
Since

R=gi;R;; >0 . (10)

The given space has the positive Gaussian curvature along any two-dimensional
direction. In this space there are focal points over any geodesic. Let the dis-
tance between focal points be a = i/me. Then, it follows from the principal
Morse theorem that the space Q(M;p,q) of all paths connecting p and ¢ is
homotopically equivalent to the cell space, the dimensions of which A are in

a bijective correspondence with the geodesics of the index A connecting p
and gq.
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Consider the continual integral for a one 3-dimensional cell [3] 22 + z2 +
z2 < a?. Let 3(r) be the classical trajectory along which the action is
extremal. The variation of the trajectory can be represented as

v(r) =3(r) +6n(r) , (11)

where 67(r) is the deviation from the classical trajectory (see Fig.1) in the
configurational 3-dimensional space {Z}.

Pl BTN

0 a

Fig.

In this case the action function can be represented in the form?!
S(7) = Su(¥) + 65 + 625 . (12)

As we have considered the segments of the geodesics, §5 = 0. Using (12)
we can write expression (9) as follows:

. . a
Joa = exp —Z—Skl('y)/ exp}~/ 8%Sdry Dy . (13)
A % Jo
Consider the integral

GOa = f {exp%fgﬁzSdT} Dy =

(oo ko (o S R} ar) Dy

1The second order limitation supposes that under certain conditions the geodesic trans-
fers to the geodesic.
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where R, is defined by formula (10); R, ~ 1/a®. Assuming én(r) to be a
periodic function of 7 with the period a and integrating with the properties
of the second variation {1] we get

. 1 1/2 )
6o~ T (Gris) (1%

Substituting (15) in to (13) we obtain

s 1

a /m?2 +ﬁ2

If a configurational space is represented as a 3-dimensional cell manifold,
then the integral (9), in accordance with the principle theorem of the Morse

theory, will be represented as a sum over cells. Using (16) it can be repre-
sented as follows;

2r\? 2 . a
Jpq — (-{;’—) Z exp {T(ROZ‘Q - ?’L.’L‘)} mﬂ* 3 (17)

T1,n2,N3

Joa Pl@o=za) (16)

22

a
noz\/n%%—n%-{hn%—k i

This expression for the continual integral corresponds to that obtained in [5],
i.e., a great number of pahts contributing to the integral may be approxi-
mated with the help of a certain projective operator which project the paths
onto a certain definite group of paths contributing to the integral, in our
case, on the edge of the cubic lattice. Since according to the Morse the-
ory, the broken geodesics approximates a great number of continual paths
Q(M;p,q). Formula (17) can be written as a finite result (27/a) — d3p at
n; — 00. Therefore

_ _ 1 { _ expr
Jpg = D(zp —24) = /?ﬁ";—gexp {-E(P-‘C -po-’to)} = / poame L
(18)
Generally spiking, this expression is indeterminate since the rules [6] for
p? = m? poles are not determined. These rules being given, we obtain

different expressions for the Green functions of the Klein-Gordon equation.
The principal goal of this work is to confirm the validity of the method of
continual integral computation on the lattice in the case when the Ricci ten-
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sor R, on M depending on the potentials contributing to the action formula,
is positively determined everywhere. Otherwise, particular solutions appear
due to the connection between topology and curvature [1]. In the solution
of these problem the works by S. P. Novikov [7, 8] on the generalization of
~ the Morse theory for multiple-valued functionals are very promising.
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