
::rI)V~ -E2-9S-288 

f.H.KonepOB--- ,UBE PAEOTbI 
no fEOMETPWIECKOMY KBAHTOBAHHIO 

G.I.Kolerov 

TWO PAPERS 

ON GEOMETRICAL QUANTIZATION 


I 

.lly6Ha 1995 



JOINT INSTITUTE FOR NUCLEAR RESEARCH 

E2-95-288 

G.I.Kolerov 

QUANTIZATION AND PROJECTIVE GEOMETRY 

G.I.Kolerov 

LINEAR CONNECTION 


AND CONTINUAL INTEGRAL 


(APPLICATION OF THE MORSE THEORY) 


Dubna 1995 



03.08.1936 - 15.07.1990 




I1smb Jtem .MV:I-tYJtO co a'l-tS reO'l-t'llU'l-tbt Fe'l-tpuxa Hea'l-toeu'lla KoJtepoea 3a­

.Me'llameJtb'l-t020 Y'lle'l-t020, a06p020, 'llymre020 'lleJt06erea. I1pu 3ICU3'1-tU Fe'l-tpux 

Hea'l-t06U'll 'l-te ycmaeaJt eocxu'U.(ambcs 6Jtecms'U.(u.Mu pa60ma.Mu mareux reo­

pwpeee .Mame.Mamureu, reare ,l(aeua FuJtb6epm u (PeJturec KJteil'l-t, u ux 'l-te .Me­

'l-tee 6Jtecms'U.(e.MY Y.Me'l-tU1O 'l-taXOaUmb ea3IC'l-toe ifJu3U'lleCreOe npuJto3ICe'l-tue noJty­

'lle'l-t'l-tbt.M .Mame.MamU'llecreu.M peaYJtbmama.M. B ny6Jtureye.MbtX aeyx pa60max 

Fe'l-tpuxa H ea'l-toeU'lla, om'l-tocs'U.(uxcs re nocJtea'l-te.MY nepuoay e20 'l-taY'll'l-toil ae­

smeJtb'l-tOCmU, O'l-t, reare 'l-ta.M rea3ICemcs, cmpe.MuJtcs cJteaoeamb U.Me'l-t'l-to 3mU.M 

nyme.M. 3aecb .Mbt 'l-taXOaU.M 2ap.MO'l-tU'll'l-toe npuJto3ICe'l-tue a6cmpa1Cm'l-t020, 'l-ta 

nepebtil e32JtSa,.Mame.MamU'lleCre020 annapama (meopus Mopca u npoeremu­

e'l-tas 2eO.Mempus) re uccJtea06a'l-tu1O npu'l-tt.(unuaJtb'l-tbLX np06Jte.M meopemU'lle­

c1Coil ifJu3ureu, e aa'l-t'l-to.M cJty'llae re ebtSC'l-te'l-tU1O 2eo.Mempu'llecreoil OC'l-t06bL e 

06'U.(eil cxe.Me reea'l-tm06a'l-tus u re ebt'llUcJte'l-tU1O reo'l-tmu'l-tyaJtb'l-tblX (uJtu ifJy'l-t­

1CtCUO'l-taJtb'l-tbtx) U'l-tme2paJt06. 

Five years passed since the death of Genrikh Ivanovich Kolerov, an out­

standing scientist and a good friend. Genrikh Ivanovich was filled with admi­

ration for brilliant studies by great mathematicians David Hilbert and Felix 

Klein and their high skill to find important physical applications of mathe­

matical results. In his last two papers Genrikh Ivanovich tried, as we think, 

to keep this way. The papers contain harmonic application of the abstract, 

at first sight, mathematical apparatus (Morse theory and projective geome­

try) to study fundamental problems of theoretical physics, in particular, the 

geometrical basis in the general scheme of quantization and calculation of 

continual (functional) integrals. 
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QUANTIZATION AND PROJECTIVE 

GEOMETRY.* 


G. 1. Kolerov 

One of the principal ideas of the geometric quantization consists in the 
introduction of the linear connection in a certain bundle space [1, 2], the 
Hilbert space of states H being constructed of section of the given bundle 
space. In this case the space of sections F can be determined as the space 
in which sections are nullified by the covariant differentiation along any 
vector ( In our paper we tried to demonstrate that the geometry of the 
quantization can be developed from the classic geometry, particularly, from 
the projective one. 

Let us construct the bundle space C over the symplectic space with the 
fibre C (the complex plane) 

C ---+ C 
11r 
M 

by introducing the linear connection 

V x!a = in
1 

Q(X)!a (1) 

where Q(x) is a vector on M: Q(x) = 'Pi(x)dxi; and !a(x) is the section of 
the bundle space. If in the space M for a some coordinate neighborhood Ui 
with the coordinates {xi, Pi} we define the trajectory along the curve c( T) 
with the infinitesimal.generator X, then 

(2) 


·Poster report at VIII International Conference on Mathematical Physics, Marseille, 
France, July 1986. 
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In this case for every function 	<p the following equalities take place: 

Vt.pi; = <p' Vi; (3)
Vi;(<Pf) = (x '<p)f + <po Vi;' f 

From (3) and (1) we obtain 

A AV 
~ . e/3 = rma/3em 	 (4) 

Where r~/3 = (l/ih)<Pa bF, fa = Refa + iImfa = emf:"· Using (2) and (4) 
we obtain the expression for the covariant derivative along the curve c( T) 

(5) 

or in the differential form 

(6) 

The expression for sections which are nullified by the covariant derivative 
has the following form 

Vfa(x) =0 (7) 

In a particular case, if Q(x) = Pi dx i , then 

(8) 

Thus, we obtain the expression for a plane wave. 
Let {Ua} be the covering of M and ga/3 are the transition function 

(9) 

Let the point x in the neighborhood Ua be specified by the homogeneous 
coordinates {xi, xo, i = 1 ... 4}. By introducing the absolute [3] we obtain 

(10) 

Then the distance between two points x and y is expressed by the logarithm 
of the unharmonic relation of the group constituent by these two points and 
the points (j, i) where the line which connects them crosses the absolute. In 
other words 

~l <p(x,y) + V<p2(x,y)- <p(x,x)<p(y,y) 
) 

_
Sa (x, Y - n ~--:---:...;;:::::;::;=~====;-==?=~~ (11)

2 <p(x,y)- y'<p2(x,y)- <p(x,x)<p(y,y) 
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It may be written in the other form 

(12) 

The expression ~2(x, y)-~(x, x)<p(y, y) represents the quadratic function 

<p(p, p) = - L AiklmPikPlm (13) 

of the variables Pik = XiYk - XkYi which are called the Plucker coordinates. 
The coefficients of this function are the following 

(14) 

The unharmonic relation of four points (x, y,j, i) which is under the loga­
rithm in the expression (11) can be written in the form 

.. y-j x-j
V(x,Y;J,1,) = --. : --. (15)

y-1, X-1, 

By virtue of the unharmonic relation properties the following formula holds 

(16) 


Let us take expression (4) as the absolute [4] 

~(x,x) =x2 - e2x~ +R2x~ = 0 . (17) 

If in formula (12) we take the limit R -+ 00 so that kjR -+ const., then 
for Scx(x,y) in heterogeneous coordinates xi = xijxQ the following can be 
obtained: 

(18) 


In other words, we obtain the expression for an interval in the case of the 
pseudo-Euclidean geometry. Such an extreme limit corresponds to the sit­
uation when the points (j, i) pass through the straight line (x, y) with the 
absolute (17) and are merged into the unique point on this line which is 
situated at infinity. In this case the absolute degenerates into cyclic points. 

Assuming that const. = me we obtain the expression for a free particle 
which can be written as the following 

(19) 
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where Pi = mcx i /y';2. Taken yi = xi + dxi , we determine from (12) 

g"(I(X) =1),,(I(x, x +dx;j, i) = exp { b:} (20) 

From (19) at 1/R < 1 we obtain 

g,,(I(x)~ exp {*Pibxi } (21) 

Thus, formula (21) coincides with expression (8) obtained from geometric 
quantization. 

If we calculate the variation 68 at yi = xi + dxi with an accuracy of 
the third order in dx i by making of (11) we arrive at the Fubini-Study 
metrics which determines the natural metrics in the complex projective space 
between the couple of straight lines crossing the origin of coordinates. The 
differential from corresponding to this metric is 

(22) 

Now let us add, to the available images of our geometry, the infinitely 
remote elements 

(23) 

end conside~ the transformation group retaining these elements. If the points 
x and yare unharmonically placed with relation to (23), that is 

V(x,yjj,i) = -1 (24) 

then 

8 = ~{ln( -1) +271"in} (25) 

Assuming that in (25) k = ih (where h is the Planck constant) we obtain 

1 
8 = 71"h(n+ 2") (26) 

that coincides with the condition of quantization in case of the quasi classic 
approximation. Here from (24) and (13) it follows that the Pliicker coordi­
nates have the form 

(27) 

where c is the constant. 
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Since the plane equation in the projective space has the following form 

(28) 

we can compare the points {x} and {y} of our projective space with the 
vectors x and y. The condition (x, y) = 0 may be considered as the condition 
of the appurtenance of the point (xi) to the polar plane of the point (yi) 
relatively to the quadric (23). Moreover, the vector y has the normalization 
condition fi2 = p2. 

Assuming that the vector y has the meaning of the momentum vector p 
with the normalization condition p = (mc)2, we may obtain from (24), (13), 
(27), the following expression 

(p, x] = ihI (29) 

at the appropriate cho~ce of constant c in formula (27). Here the brackets 
mean the oblique scalar product. For each polar point p equation (28) 
describes a circle. In fact, by introducing. the coordinates 

Xl = ~(z + z) X3 = ~(1 - zz) 
(30) 

eq. (28) may be rewritten as the equation of the circle in the complex plane 
(z): 

azz +bz +bz - d = 0 (31) 

For simplicity let us be restricted to two measurements and write the equa­
tion of the circle in the coordinates (X3, X4) 

If the vector p is normalized as _p2 = (mc)2 and p is equal to (mc)2, then 
from the unharmonic condition (24) and by neglecting the indices we may 
obtain 

P4 X3
P . X I'V A where A= - = - at A= Ii 

P3 X4 

This can be considered as the analogue of the uncertainty relation. 
Now consider the conformal mapping of the plane onto the plane by 

using the analytic function w = fez). If its linear elements are related by 
ds' = eP ds, then in consequence of the mapping being conformal, it follows 
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f 

that p = In 1J'(z)\ whence r.p(z) = In J'(z) = p + iq where q is the function 
conjugate to p. 

Taking the Schwartz derivative of the function fez). 

fill 3 (f") 2
{w,z}=Y-2 7' (32) 

it may be shown that 

Im{w,z}dz2 = (\l(Pi - pdJj) dui du i (33) 

where \l i is the covariant derivative; {ui } are the curved coordinates of the 
plane. 

Conformal mapping between the planes is called circular if it maps the 
circle onto the circle or onto the straight line. In this case the lines of the 
constant curvature pass through the same points and from this condition it 
follows that 

(34) 


Therefore {w,z} = 0 whence w = (az +b)/(cz +d). In the general case [5} 

{w, z} = R(z) , (35) 

where R(z) is a regular function over the whole plane except the finite 
number of points. Equation (35) can be written in the form 

1 
g"(z) + 2R(z)g(z) = 0 . (36) 

Then w = gl(Z)/g2(Z), where gl(Z) and g2(Z) f:: 0 are linearly independent 
solution of eq. (36). 

Consider gl and g2 as the current coordinates of the vector radius ii in 
some subsidiary plane. Using the new variables w = glg:;l, dz = gl dg2 ­
g2 dg1 we obtain 

dz =< ii, dii > (37) 

where < ii, dii > is the oblique product. From (37) it follows that 

/ - dii) / _ d2ii) (38)\ R, dz = 1 j \ R, dz2 = 0 

and, from (38), consequently, follows that the vectors d2iiidz2 , and ii are 
collinear. In this case 

(39) 
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where 
1 

(40)k=-2[f'(z)]2{W,Z} . 

Expression (36),(39) and (40) determine the variation of the curved lines at 
the conformal mappings. 

U sing the Kobayashi metric based on the conception of a great set 
O( U, M) of holomorphic mappings of the unit circle U on the manifold 
M and fixing the points p and q E M we define the chain of mappings on 
M from p in q consisting of a certain number m of holomorphic mappings 
fi EO, the number m of pairs of points ej, e; E U(j = 1 ... m) so that 

f 1(eD = p, fm(e::J = q, fj(ej') = f j+1(ej+1)' For (j = 1 ... m - 1) we may 
define the distance between the points p and q 

Im(P, q) 
m 

= inf L pee;, eJ)
j=1 

( 41) 

where p is the Lobachevski distance in a unit circle. The bottom facet is 
taken from all chains {f j 

, ej, {i}~1 on M from p to q with any numbers of 
links. 

By shaping the form (22) in the fibre bundle space T(M) = UTp(M) 
p 

and using (20, 33, 40) we can turn to the limit m -+ 00 in formula (41) and 
thus obtain the expression for the Feynman path integral. 

Fig.1 

11 



References 

[1] A. A. Kirillov, Elements of the Theory of Representation, "Nauka", 
Moscow (1972). 

[2] B. Kostant, Quantization and Unitary Representation, Springer Lec­
ture Notes v. 170 (1970). 

[3] F. Klein, Vorlesungen uber nicht-Euklidishe Geometric, Verlag J. 
Springer, Berlin (1927). 

.., 

[4] F. Klein, Vorlesungen uber die Entwicklung der Mathematik im 19 
Jahrhunder teil II, Verlag v. Springer, Berlin (1927). 

[5] R. Courant, Geometrische Funktiontheorie, Verlag Springer (1933). 

12 




LINEAR CONNECTION AND CONTINUAL 

INTEGRAL (APPLICATION OF THE MORSE 


THEORY) * 


G. I. Kolerov 

The method of continual or functional integrals is of great importance 
in theoretical physics due to its universality. By using this method, one can 
represent a quantum quantity as a sum of contributions of classical virtual 
trajectories. Simple dependence on the Planck constant h demonstrates that 
the main contribution to a quantum quantityas h ---t 0 is ensured by a real 
classical trajectory. 

However, practical calculation of continual integrals encounter difficul­
ties. On the one hand, the traditional approach developed by Winner as­
sumes the continual integral as an integral over measure in a functional 
space, and therefore, is unadequate. On the other hand, the continual in­
tegral as a limit of finite-dimensional approximations is sensitive to their 
choice and gives no unique values. In this case the ambiguity caused by a 
different set of approximations has the same meaning as that of quantiza­
tion. There are some other attempts to use different methods to study the 
continual integrals. 

In this connection, the fundamental Morse theory is very interesting [1]. 
It studies, in particular, the variety of paths fl(M; p, q) connecting the points 
p and q on a smooth manifold M. On a space of piecewise smooth paths 
PS(M) where 7 : , 7('), 0::;,::; 1 the action functional S is given, ---t 

the value of which on the path 7 E P S(M) is determined in the local 
coordinates {xi} by the formula 

fl dx i dx j 

S(7) = Jo gija;;: d, d, (1) 

• Poster report at IX International Conference on Mathematical Physics, Swansea, 
Wales, July 1988. 
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At the same time, the extremals of the functional S (i.e. path, E PS(M) 
for which the linear functional S* on the space T-y determined by the vari­
ation of the functional 6 S is equal zero) coincide with geodesic metrics gij; 

(extremals of the length functional) in their natural parametrization. 
Let us choose a section of the unit interval 0 = TO < Tl ••• Tk 1 and 

denote, by n.PS (M; TO .•• Tk), the space in n(M; p, q) consisting of paths 
,: [0,1] ~ M so that r 

1. 	 ,(0) = 0, ,(1) = q 

2. 	 ,/[Ti-b Ti] is the geodesics at each i = 1 ... k, then for each I E R the 

manifold 


is determined. 

If the manifold M is full, then n? = E-l[O,I)nnl (where n is the interior 
of a set) and it is retracted on a smooth manifold B the points of which are 
"broken geodesics" with a fixed numbers of links connecting p and q. 

Proceeding to the limit I ~ 00 we can prove [1] that n(M; p, q) as the 
space of "broken geodesics" connecting the points p and q is homotopic ally 
equivalent to the space n(M; p, q) of all continued paths connecting the 
same points. 

In connection with this, one may consider a possibility to compute the 
continual integral by using the Morse theory. Furthermore, we shall use the 
methods of geometrical quantization [2] the principle idea of which is that 
under certain conditions the two-form simplectic manifold exists as a form of 
the linear fibre bundle curvature with connection, the space of states being 
constructed by sections of the given bundle space . 

Let us consider the bundle space {, over M with the fibre C (a complex 
plane) through introducing the connection [3] 

(3) 

where e E M; f is the section of the bundle space and Q = Qidxi is 
the 1-form on M. Using the connection one can determine the covariant 
derivative 

(4) 
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The equality of this derivative to zero gives the condition for translation of 
a differentiable path from the basic space M into bundle space £ and thus 
Q defines the linear connection in it: 

(5) 

A solution to this equation for the case Q =Pidxi is a fiat wave 

--' 
(6) 

describing the movement of a free particle. 
For a given linear connection one may define the connection coefficients 

using the formula [4] 
V .A.. . / = rip/OI (7) 

dz' 

In the case of the connection being defined by (3) one has 

r Oi 1 ~OI 
iP = r;,PiUp 

The spaces with these connection coefficients are called "projective-euclidean", 
and the Ricci tensor, in our case, has the form 

OI PiPjRij = RijOi = 1i,2 (8) 

For the action S (1') defined by formula (1) the continual integral will be 
of the form 

(9) 

Since 
R = 9ijRij > 0 (10) 

The given space has the positive Gaussian curvature along any two-dimensional 
direction. In this space there are focal points over any geodesic. Let the dis­
tance between focal points be a = Ii/me. Then, it follows from the principal 
Morse. theorem that the space fi(M; p, q) of all paths connecting P and q is 
homotopically equivalent to the cell space, the dimensions of which .A are in 
a bijective correspondence with the geodesics of the index .A connecting p 
and q. 

15 
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Consider the continual integral for a one 3-dimensional cell [3] xi +x~ + 
2x~ $ a .. Let i(T) be the classical trajectory along which the action is 

extremal. The variation .of the trajectory can be represented as 

(11 ) 


where 011( T) is the deviation from the classical trajectory (see Fig.1) in the 
configurational 3-dimensional space {x}. " 

a Q 

Fi g.1 

In this case the action function can be represented in the form! 

(12) 

As we hav~ considered the segments of the geodesics, oS = O. Using (12) 
we can write expression (9) as follows: 

Jo•=exp ~Skl('Y) J{exp ~ f 6 S dr} V'Y2 (13) 

Consider the integral 

GOa =J{exp *J; 62S dT} VI = 
(14) 

IThe second order limitation supposes that under certain conditions the geodesic trans­
fers to the geodesic. 
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where R-y is defined by formula (10); R-y ~ 1/a2
• Assuming 6"7(r) to b~ a 

periodic function of r with the period a and integrating with the properties 
of the second variation [1) we get 

1f ( 1 ) 1/2 (15)
GOa ~;;, m 2 + p2 

Substituting (15) in to (13) we obtain 

rv ~ 1 eip(Xo-Xa)JOa - (16) 
a ym2 + p2 

If a configurational space is represented as a 3-dimensional cell manifold, 
then the integral (9), in accordance with the principle theorem of the Morse 

theory, will be represented as a sum over cells. Using (16) it can be repre­
sented as follows; 

( 17) 

no = 

This expression for the continual integral corresponds to that obtained in [5], 
i.e., a great number of pahts contributing to the integral may be approxi­
mated with the help of a certain projective operator which project the paths 
onto a certain definite group of paths contributing to the integral, in our 
case, on the edge of the cubic lattice. Since according to the Morse the­
ory, the broken geodesics approximates a great number of continual paths 
n(M;p,q). Formula (17) can be written as a finite result (21f/a) -l- d3 p at 
ni -l- 00. Therefore 

Jpq = V(xp - Xq) = J- 1 exp {i--:;;(px - Poxo)}= J 
2
e 'Ii px 

2 d4 p.J p2 +m 2 P + mII, 

(18) 
Generally spiking, this expression is indeterminate since the rules [6] for 
p2 = m 2 poles are not determined. These rules being given, we obtain 
different expressions for the Green functions of the Klein-Gordon equation. 

The principal goal of this work is to confirm the validity of the method of 
continual integral computation on the lattice in the case when the Ricci ten­
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sor R"'( on M depending on the potentials contributing to the action formula, 
is positively determined everywhere. Otherwise, particular solutions appear 
due to the connection between topology and curvature [1). In the solution 
of these problem the works by S. P. Novikov [7, 8J on the generalization of 
the Morse theory for multiple-valued functionals are very promising. 
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